Experiments using molecules (stable or radioactive) to detect P,T-violating new physics and measure hadronic P-violation

- Overview: particle electric dipole moments (EDMs) as probes of high-scale physics
- Polar molecules as amplifiers of EDM signals
- Case study: ACME search for the electron EDM
- Assembled ultracold molecules for EDMs`
- New initiative: nuclear "EDM" search with 223FrAg molecules
- ZOMBIES: measuring nuclear anapole moments

Dave DeMille

Department of Physics, University of Chicago Physics Division, Argonne National Lab

Funding NSF, Moore Foundation, Sloan Foundation, DOE

Search for new physics via electron EDM

ACME

Æ

Search for new physics via electron EDM

Crude dimensional estimates for eEDM

"natural" assumptions $g^2/\hbar c \approx \alpha$ $\sin(\phi) \sim 1$ $m_{\chi} \sim 50 \text{ TeV}$ \downarrow $d_e \sim \text{current limit}_{(N = 1 \text{ loop})}$

Limits on quark chromo-EDMs from hadronic "EDM" experiments

Polar molecules amplify observable effect of EDMs

Easily polarized \rightarrow 10³-10⁴x enhanced sensitivity vs. atoms

Observable energy shift $\Delta E_{\rm P,T} \propto Z^3$ in both cases

 $\mathcal{E}_{\rm eff} \equiv \Delta E_{\rm P,T} / d$

Electron EDM in ThO*, HgF^{+*}, YbF, RaF, YbOH...

Nuclear Schiff moment \approx "EDM" in TIF, ... Magnetic Quad. Moment in YbOH, ...

ACME III collaboration

University of Chicago

David DeMille (PI) Zhen Han (grad student) Peiran Hu (grad student)

Northwestern University

Northwestern University Gerald Gabrielse (PI) Xing Fan (postdoc) Siyuan Liu (grad student) Collin Diver (grad student) Maya Watts (grad student)

Daniel Ang (Harvard grad student) Cole Meisenhelder (Harvard grad student)

Harvard University John Doyle (PI)

Okayama University Ayami Hiramoto (postdoc) Takahiko Masuda (PI) Koji Yoshimura

Noboru Sasao Satoshi Uetake

Other collaborators Cris Panda (Berkeley) Nick Hutzler (Caltech) Xing Wu (Michigan St.)

David DeMille

Zhen Han

Peiran Hu

Koji Yoshimura Satoshi Uetake

John Doyle

Naboru Sasao

Gerald Gabrielse

Daniel Ang Cole Meisenhelder

Siyuan Liu John Mitchell

Xing Fan

New molecular beam technology: hydrodynamically enhanced cryogenic buffer gas beam

[Maxwell *et al.* PRL 2005; Patterson & Doyle JCP 2007; Barry *et al.* PCCP 2011; Hutzler *et al.* PCCP 2011]

- Inject hot molecules (e.g. via laser ablation)
- Cool w/cryogenic buffer gas <u>@high density</u>
- Efficient extraction to beam via "wind" in cell: $10^{-3} \rightarrow >10\%$
- "Self-collimated" by extraction dynamics
- Rotationally cooled by supersonic expansion
- Cold (~1-4 K) & moderately slow (v ~ 150-200 m/s)

Beam brightness ~10³ × larger than prior sources for refractory/free radical species

"New" molecular species: ThO* [A.C. Vutha et al. J. Phys B 2010]

- Sufficient coherence time for measurement in *metastable* state $H^{3}\Delta_{1}$
- Largest effective internal \mathcal{E} : ~80 GV/cm [Skripnikov et al. (2016), Fleig & Nayak (2016)]

Suppressed magnetic moment

<0.01 μ_B in $H^3\Delta_1$ reduces *B*-field systematics [Idea: Meyer, Bohn, Cornell *et al.* (JILA); Measured: A.C. Vutha *et al.*, PRA 2011]

• Omega-doublet co-magnetometer

suppresses many possible systematics & requires only very modest polarizing \mathcal{E} -field

- All spectroscopic data previously known
- State preparation and readout w/standard, robust diode & fiber lasers
- Blue-shifted fluorescence from probe laser
 ⇒no problem with backgrounds
- High beam source yield

ACME I → II upgrades to increase signal

Larger detection region + Increased angular acceptance of molecular beam

x8 Signal

ACME I \rightarrow II upgrades to increase signal

ACME I →II upgrades to increase signal

Better detection: new probe transition → green vs. red photons, better PMTs & improved optics

x4 Signal

 \bigvee

ACME III approach

- More useful molecules via molecular lens, improved beam source, etc.
- ~5x longer interaction time via improved state lifetime info
- Better detection efficiency via better detectors & collection optics
- Additional technical improvements to reduce noise & systematic errors

<u>Bottom line</u>:

~30× anticipated improvement in sensitivity

Status of ACME III

- Critical new subsystems tested at full-scale, full installation nearly complete
- Control of most important known sources of systematics demonstrated at required levels
 - Coming soon: system integration & transition to EDM data taking
 - Excellent prospects to probe electron EDM at level $d_e < 3x10^{-31} e \cdot cm$ \Rightarrow probe scales > 100 TeV in simple models
 - ~4 weeks ago: first signals from ACME III full beamline, detection rate ≥ anticipated!

CeNTREX: Cold molecule Nuclear Time-Reversal Experiment

(with T. Zelevinsky [Columbia], D. Kawall [UMass])

New molecule-based search for nuclear Schiff moment of ²⁰⁵TI

State-of-the-art Schiff moment limit from ¹⁹⁹Hg experiment (Seattle)
 Already sensitive to new physics at ~5 TeV scale

Similar to *e*-EDM, signals amplified vs atoms
 → nuclear spin precession in ²⁰⁵TIF molecules ~10⁴× larger than in ¹⁹⁹Hg atoms

²⁰⁵TI nucleus has unpaired proton

→ orthogonal sensitivity to new underlying physics vs. other current experiments (e.g. ¹⁹⁹Hg, ¹⁷¹Yb, ¹²⁹Xe have unpaired neutrons)

<u>GOAL</u>: use molecular "enhancement" for improved sensitivity to *hadronic* CP-violating interactions at >TeV scale

CeNTREX Team

Principal Investigators

David DeMille (Argonne, U Chicago)

David Kawall (UMass Amherst)

Tanya Zelevinsky (Columbia)

Postdoc

Olivier Grasdijk (Argonne)

Ph.D. students

Tristan Winnick (UMass)

Jianhui Li (Columbia)

Yuanhang Yang

(UChicago)

Perry Zhou (Columbia)

Emma McClure (UChicago)

Former Ph.D. students

Konrad Wenz (Columbia)

Oskari Timgren (Yale+UChicago)

Jakob Kastelic (Yale+UChicago)

CeNTREX "proton EDM" experiment schematic

Incorporates many methods from ACME III

(slow molecular beam, rotational cooling, adiabatic state transport, etc.)

Design nearly complete, construction of most functional modules underway or complete Conceptual details in J.O. Grasdijk et al., Quant. Sci. Technol. (2021)

Office of Science

CeNTREX under construction @ Argonne

Cryogenic beam source

Rotational cooling

Electrostatic quadrupole lens

5x tunable UV laser systems

Machined glass electrodes

Magnetic shielding

Detection Region

CeNTREX projected sensitivity vs. state of art hadronic EDMs

System	¹⁹⁹ Hg	n	²⁰⁵ TIF	
Latest result	2016	2020	Projected ~2026	<i>Projected</i> Improvement
Sens. to QCD θ param. $\partial v / \partial \theta$	0.1 Hz	300 Hz	10 ⁵ Hz	
Sens. to quark chromo-EDM $\partial v / \partial \tilde{d}_q$	1×10 ¹⁶ Hz/cm	2×10 ¹⁸ Hz/cm	2×10 ²⁰ Hz/cm	
Sens. to p/n EDM $\partial v / \partial d_{p/n}$	1×10 ¹⁵ Hz/[e⋅cm]	2×10 ¹⁸ Hz/[e·cm]	6×10 ¹⁸ Hz/[e⋅cm]	
Limit on $ heta$	< 1.5×10 ⁻¹⁰	< 1×10 ⁻¹⁰	< 1×10 ⁻¹¹	×10 (??)
Limit on $ ilde{d}_q$ (cm)	$ ilde{d}_d$ < 6×10 ⁻²⁷		$0.8 \tilde{d}_u + 0.6 \tilde{d}_d < 1 \times 10^{-27}$	×5*
Limit on d _n (e∙cm)	<1.6×10 ⁻²⁶	<1.8×10 ⁻²⁶	Not competitive	
Limit on d_p (e·cm)	<2×10 ⁻²⁵	Not competitive	<2×10 ⁻²⁶	×10

*sensitive to different linear combination of parameters vs comparisons

Cold molecules for EDMs now: \leq 10K, fairly slow, dilute

How to make ultracold molecules?

Chemistry (make molecules)

Slide from: Jun Ye, JILA

Chemistry (make molecules) Cooling

Rapidly advancing: direct laser cooling & trapping of molecules

Species	PI	Location
SrF/TIF	DeMille	UChicago
CaF/CaOH/YbOH/ SrOH/CaOCH ₃	Doyle	Harvard
CaF/YbF	Tarbutt	Imperial
YO	Ye	JILA
CaF	Cheuk	Princeton
BaH/CaH/CaD	Zelevinsky	Columbia
BaF	Yan	Zhejiang
CaF	Ospelkaus	Hannover
TIF	Hunter	Amherst
AICI/CH	McCarron	UConn
MgF	Chae	Korea
MgF	Yin	ECN-Shanghai
AIF	Truppe	FHI
AICI	Hemmerling	UC Riverside
BaF	Langen	Stuttgart
YbOH	Hutzler	Caltech
RaF/RaOH	Garcia-Ruiz, Hutzler, Doyle	

Status: 3 molecular species in optical traps, $T \sim 10 \mu$ K, no heavy species (yet), only open-shell species (so far)

Most advanced method: "assembly" from ultracold alkali atoms

Efficient, coherent transfer with no added entropy/heating

ultracold atom pairs \rightarrow weakly-bound molecules \rightarrow absolute ground state molecules

Most alkali+alkali pairs (closed electron shells) have been assembled: KRb, NaK, RbCs, NaRb, LiNa*, NaCs, ... (*BUT* no other polar species, e.g. open shell)

JILA, Innsbruck, Durham, MITx2, CU Hong Kong, Harvard, MPQ Garching, USTC, Hannover, Princeton, Columbia, ...

Advanced control with "assembled" polar molecules

Inherit desirable properties from ultracold atom gases:

Efficient use of atoms (~50% from trapped gas), $N_{mol} > 10^4$ typical

Optically trapped, $T \sim 100 \text{ nK} \rightarrow$

High-fidelity state preparation and readout

Dense & ultracold
Molecular species for next-gen EDM experiments?

Requirements:

- Large intrinsic sensitivity $\propto Z^3 \Rightarrow$ atom w/large Z
- Easily polarized \Rightarrow small energy splittings
- Correct electron configuration: strong s-p hybridized orbitals

 \Rightarrow for eEDM: unpaired spins, e.g. $^{2}\Sigma$ state

 \Rightarrow for NSM: paired spins e.g. $^1\Sigma$ state

• Ultracold (weaker traps \rightarrow smaller perturbations)

Molecular species for next-gen EDM experiments?

Requirements:

- Large intrinsic sensitivity $\propto Z^3 \Rightarrow$ atom w/large Z
- Easily polarized \Rightarrow small energy splittings
- Correct electron configuration: strong s-p hybridized orbitals

 \Rightarrow for eEDM: unpaired spins, e.g. $^{2}\Sigma$ state

 \Rightarrow for NSM: paired spins e.g. ¹ Σ state

• Ultracold (weaker traps \rightarrow smaller perturbations)

Proposals for e-EDM via *direct* laser cooling & trapping

- --Laser cooled beam/fountain of YbF $^2\Sigma$ for eEDM [Imperial College] $\mathcal{E}_{\rm eff}$ ~24 GV/cm
- --Stark-decelerated/laser cooled BaF $^2\Sigma$ beam for eEDM [Groningen] \mathcal{E}_{eff} ~8 GV/cm
- --Laser-cooled bent polyatomics: YbOH, YbCCCa for eEDM, YbCCAI for SM [Caltech + Harvard + Toronto] \mathcal{E}_{eff} ~24 GV/cm
- --Laser cooled RaF/RaOH $^{2}\Sigma$ [MIT, Harvard, Caltech...] \mathcal{E}_{eff} ~60 GV/cm

Molecular species for next-gen eEDM experiments?

Requirements:

Large Z, easily polarized, correct electron configuration, ultracold

Molecular species for next-gen eEDM experiments?

Requirements:

Large Z, easily polarized, correct electron configuration, ultracold

Why not "assembled molecules"?

e.g. alkali + alkaline earth $^{2}\Sigma$ species for electron EDM?

Molecular species for next-gen eEDM experiments?

Requirements:

Large Z, easily polarized, correct electron configuration, ultracold

Why not "assembled molecules"?

e.g. alkali + alkaline earth $^{2}\Sigma$ species for electron EDM?

An old tale of woe...

Electron electric-dipole-moment searches based on alkali-metal- or alkaline-earth-metal-bearing molecules

Edmund R. Meyer^{*} and John L. Bohn

PHYSICAL REVIEW A 80, 042508 (2009)

Molecule	$\mathcal{E}_{\mathrm{eff}}$ (GV/cm)	$\mathcal{E}_{\mathrm{eff}}\left(A ight)$	$\mathcal{E}_{\mathrm{eff}}$ (Yb)	d_{m}
YbRb X $^{2}\Sigma$	-0.70	0.45	-1.15	0.21
YbCs $X^{2}\Sigma$	0.54	1.42	-0.88	0.24

Yb-alkali species \Rightarrow tiny \mathcal{E}_{eff} , ~100x smaller than in ThO* \otimes

Observation 1: Best EDM/NSM sensitivity in strongly ionic molecules (*s-p* hybridized orbitals)

Observation 1: Best EDM/NSM sensitivity in strongly ionic molecules (*s-p* hybridized orbitals)

Observation 2: no laser-cooled atom has large electron affinity \rightarrow ionic bond...

Х	EA(X) [eV]
Li	0.62
Na	0.55
K	0.50
Rb	0.49
Cs	0.47

Observation 1: Best EDM/NSM sensitivity in strongly ionic molecules (*s-p* hybridized orbitals)

Observation 2: no laser-cooled atom has large electron affinity \rightarrow ionic bond... except one!

Х	EA(X) [eV]
Li	0.62
Na	0.55
K	0.50
Rb	0.49
Cs	0.47
Ag	1.30

Observation 1: Best EDM/NSM sensitivity in strongly ionic molecules (*s-p* hybridized orbitals)

Observation 2: no laser-cooled atom has large electron affinity \rightarrow ionic bond... except one!

Enhanced nuclear Schiff moment in pear-shaped nuclei

 Rotational structure of octupole-deformed nucleus analogous to rotational structure of molecules
 →large polarizability →enhanced nuclear Schiff moment

 Compared to ¹⁹⁹Hg (state of the art),
 ~1000x larger signals expected for a few heavy nuclei: ²²³Rn, ²²³Ra, ²²⁵Ra, ²²⁷Ac, ²²³Fr, ...

Assembled silver + alkaline-earth molecules for "ultimate" eEDM search?

Theoretical aspects of radium-containing molecules amenable to assembly from laser-cooled atoms for new physics searches

T. Fleig and DD 2021 New J. Phys. **23** 113039

T. Fleig, Toulouse

Existence Proof: RaAg

- Ra (alkaline earth) = heaviest laser-cooled atom (Z=90) [Argonne]
- --Long-lived ²²⁶Ra available in macroscopic quantities
- Ra⁺Ag^{- 2} Σ ground state w/valence electron on Ra⁺ (Z=90)
- \Rightarrow Large $\mathcal{E}_{\text{eff}}\text{,}$ similar to 60 GV/cm in RaF
- Large dipole moment [ionic bond] & small rotational constant [Ag is heavy] \Rightarrow Small \mathcal{E} -field sufficient for polarization

All expectations for AgRa verified: $\mathcal{E}_{eff} = 65$ GV/cm $\mu = 5.4$ D; $B_e = 630$ MHz $\Rightarrow \mathcal{E}_{pol} = 260$ V/cm

Assembled molecules for next-gen nuclear Schiff moment

223 FrAg identified as VERY promising A. Marc, M. Hubert, T. Fleig PRA 108, 062815 (2023)

- Atom cooling & molecule assembly analogous to other bi-alkalis, *N* ~ 10⁴ ALREADY TYPICAL
 - In bialkali RbCs: nuclear spin coherence time >5 s ALREADY DEMONSTRATED
- ²²³Fr ($t_{1/2}$ = 22 min) has nuclear octupole deformation \rightarrow ~300-1000x enhanced Schiff moment
 - *Efficient* collection & trapping of radioactive alkalis: established

Can get continuous ²²³Fr flux from decay of long-lived ²²⁷Ac (20 yr)

 → no online beam time needed

First magneto-optic trap of silver atoms in 20+ years @ UChicago!

NEXT: measure Ag-Ag ultracold scattering properties

Aside: Ag-alkali molecules have huge dipole moments: good for qubits, quantum simulation, etc.

Trapping Fr atoms: a solved problem(!)

a)

M. Tandecki,^{*a*} J. Zhang,^{*b*} R. Collister,^{*c*} S. Aubin,^{*d*} J.A. Behr,^{*a*} E. Gomez,^{*e*} G. Gwinner,^{*c*} L.A. Orozco ^{*b*,1} and M.R. Pearson^{*a*}

Figure 8. Fr MOT performance. a) False color CCD image of the MOT fluorescence of a cloud of about 10^5 209 Fr trapped at the FTF. The pixel size of the camera is $6.7 \times 6.7 \,\mu \text{m}^2$; an area of $0.86 \times 0.86 \,\text{mm}^2$ is shown.

Making ²²³Fr without accelerator beam time

Approaches to ²²³Fr⁺ beam for 1st-gen NSM search

 Demonstrated method with shorter-lived Fr and Rb isotopes: Use decay from longer-lived precursor + standard alkali-ion extraction

PHYSICAL REVIEW A

VOLUME 58, NUMBER 3

Magneto-optical trapping of radioactive ⁸²Rb atoms

R. Guckert,^{1,2} X. Zhao,¹ S. G. Crane,^{1,3} A. Hime,¹ W. A. Taylor,¹ D. Tupa,¹ D. J. Vieira,¹ and H. Wollnik^{1,2}

VOLUME 79, NUMBER 6

PHYSICAL REVIEW LETTERS

11 August 1997

Efficient Collection of ²²¹Fr into a Vapor Cell Magneto-optical Trap

Z.-T. Lu, K. L. Corwin, K. R. Vogel, and C. E. Wieman JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, and Physics Department, University of Colorado, Boulder, Colorado 80309-0440

T. P. Dinneen, J. Maddi, and Harvey Gould

~4x10⁴/s ²²¹Fr atoms/s from 50 μCi ²²⁵Ac

SEPTEMBER 1998

10⁸/s ⁸²Rb⁺ ions/s from 10 mCi ⁸²Sr

Theory: assembling ²²³FrAg molecules is ~just like other bi-alkalis

J. Klos, H. Li, **E. Tiesinga, S. Kotochigova** NJP 24, 025005 (2022)

- As anticipated, electronic state structure entirely analogous to other bi-alkalis
 - Standard Fano-Feshbach resonance structure for "magneto-association"
 - Strong "assembly" transitions with convenient laser wavelengths

• All looks fine, but experimental measurements needed to sort out details

Projected sensitivity of 1st-gen ²²³FrAg NSM search

	²²³ FrAg (Projected)	Neutron	¹⁹⁹ Hg
Energy Shift (Hz), $\delta \nu$	3×10^{-7}	2.7×10^{-8} [3]	$6.6 imes 10^{-12}$ [9]
κ_S (e fm ³ (Hz) ⁻¹) or κ_d (e cm (Hz) ⁻¹)	$2.5 imes 10^{-7}$ [57]	$4.1 imes 10^{-19}$ [60]	$1.5 imes 10^{-2}$ [59]
Θ_S (e fm ³) ⁻¹ or Θ_d (e cm) ⁻¹	6.3×10^{-1} [40]	8.3×10^{15} [60]	2×10^2 [40]
$\Lambda_S \ ({ m e \ fm^3 \ cm})^{-1} \ { m or} \ \Lambda_d \ ({ m e \ cm^2})^{-1}$	$6.3 imes 10^{-5}$ [40]	1 [60]	2×10^{-1} [40]
NSM, S (e fm ³) or EDM, d (e cm)	$7.5 imes10^{-14}$	$1.1 imes 10^{-26}$	$9.8 imes 10^{-14}$
Stat. uncert. $\delta \bar{\theta}_{\rm QCD}$	4.7×10^{-14}	$9.2 imes 10^{-11}$	2.0×10^{-11}
Stat. uncert. $\delta(\tilde{d}_u \pm \tilde{d}_d) \text{ (cm}^{-1})$	4.7×10^{-31}	1.1×10^{-26}	2.0×10^{-27}

Included in Estimate:

- --300x NSM enhancement
- --near-ideal molecular structure
- -- $\tau_{coh} \sim 10 \text{ s}$ [Cornish, Zwierlein, etc.]
- -- ~100% detection efficiency
- $-n = 10^4$ molecules

--~10% efficiency ²²³Fr atoms into trap

All these parameters ALREADY DEMONSTRATED with stable bi-alkalis (!)

ALREADY DEMONSTRATED with radioactive alkali atoms

 \Rightarrow ~4000x projected improvement vs. ¹⁹⁹Hg state of the art

What is needed to make ²²³FrAg NSM search happen?

From the AMO community:

- -- Measure & control ultracold scattering properties Ag-Ag
- -- Measure & control ultracold scattering properties Fr-Fr
- -- Measure & control ultracold scattering properties Fr-Ag
- -- Assemble excited FrAg* molecules in optical trap
- -- Transfer FrAg* molecules to absolute ground state in trap

What is needed to make ²²³FrAg NSM search happen?

From the NP/Isotopes experimental community:

-- Off-line source of ²²³Fr for development & first-generation data

- -- On-line access to Fr isotopes for initial AMO studies (TRIUMF)
- -- High-flux on-line ²²³Fr from ISOL for ultimate EDM statistics?

From the NP theory community:

--Quasi-reliable calculations of Schiff moment in ²²³Fr!

"Ultimate" Schiff moment experiment with ²²³FrAg?

REDRUM COLLABORATORS

- UChicago
 - Mohit Verma
 - Shaozhen Yang
 - Wesley Cassidy
 - Dr. Thomas Langin
- Univ. of Waterloo
 - Prof. Alan Jamison

- TRIUMF+
 - Gerald Gwinner
 - (U. Manitoba)
 - John Behr
 - Stephan Malbrunot
 - Andrea Teigelhofer
 - Luis Orozco (U. Maryland)
 - Kirk Madison (UBC)

- Univ. of Utah
 - Tara Mastren
- Temple U./NIST
 - Svetlana Kotochigova

REDRUM Collaboration Pls:

- TRIUMF: Fr trapping & spectroscopy
 Stephan Malbrunot-Ettenauer,
 John Behr
- Univ. of British Columbia
 --Kirk Madison
- Univ. of Manitoba:
 --Gerald Gwinner
- Univ. of Maryland
 -Luis Orozco
- Univ. of Utah: Actinide electrochemistry
 --Tara Mastren
- Univ. of Waterloo: Fr & Ag & FrAg spectroscopy
 --Alan Jamison
- Temple U./NIST: Theory of molecular structure
 --Svetlana Kotochigova
- Univ. of Chicago: all aspects
 -Dave DeMille

"Ultimate" Schiff moment experiment with ²²³FrAg?

1st Generation ²²³FrAg: ~4000x projected improvement vs. state of the art assuming only demonstrated performance parameters from other bi-alkali species → sufficient to probe >100 TeV

+Long-term potential for dramatic further improvements: Longer τ_{coh} , larger N, ...

Trajectory: probing >1000 TeV with chromo-EDMs

ZOMBIES: nuclear spin-dependent parity violation in molecules*

- Underlying physics of NSD-PV
- ZOMBIES approach & projected sensitivity
- Long term outlook

Postdoc Mangesh Bhattarai

*stable

Mechanisms for NSD-PV in atoms and molecules

Iree-level NSD-PV from suppressed $V_e A_N$ term: C_2 subject to QCD renormalization similar to g_A

HPV interactions inside nucleus induce nuclear "anapole moment": couples to electron magnetically

Coherent sum of weak charge Q_W and electromagnetic hyperfine interaction

 $H_{NSD-PV} \propto \left(\kappa_2' + \kappa_a' + \kappa_Q'\right) G_F \left(\vec{\sigma} \cdot \vec{I}\right) \left(\vec{\sigma} \cdot \vec{p}\right) \delta^3(\vec{r})$

3 contributions to NSD-PV: scaling with Z & A

$$H_{NSD-PV} \propto \left(\kappa_{2}' + \kappa_{a}' + \kappa_{Q}'\right) G_{F} \left(\vec{\sigma} \cdot \vec{I}\right) \left(\vec{\sigma} \cdot \vec{p}\right) \delta^{3}(\vec{r})$$

$$\kappa_{2P}'^{2} = -\kappa_{2N}'^{2} \approx -.05 \qquad \kappa_{a}' \approx .05 g_{eff} \left(\frac{A}{50}\right)^{2/3} \qquad \text{Overall } Z^{2}$$

$$\left(g_{eff,P} \cong 4, g_{eff,N} \lesssim 1\right)$$

$$\left|\kappa_{Q}'^{2}\right| << \left|\kappa_{2}^{2} + \kappa_{a}'^{2}\right|$$

$$\left(\text{Well understood, calculable, and small: ignore } \kappa_{Q}'^{2}\right)$$
Heavy atoms: anapole term dominates:
$$\left|\kappa_{a}'^{2}\right| > \left|\kappa_{2}'^{2}\right|$$

$$\left(\text{Collective enhancement causes radiative correction > tree level...!}\right)$$

Light atoms: tree-level Z exchange term dominates: $|\kappa'_a| > |\kappa'_2|$ $|\kappa_a| \approx |\kappa_2|$ for $A \approx 10$ (odd proton) $A \approx 100$ (odd neutron)

3 contributions to NSD-PV: scaling with Z & A

$$\begin{split} H_{NSD-PV} \propto & \left(\kappa_{2} + \kappa_{a} + \kappa_{Q}\right) G_{F} \left(\vec{\sigma} \cdot \vec{I}\right) \underbrace{\vec{\sigma} \cdot \vec{p}}_{0} \delta^{3}(\vec{r}) \\ \kappa_{2P}^{'} = -\kappa_{2N}^{'} \approx -.05 \qquad \kappa_{a}^{'} \approx .05 g_{eff} \left(\frac{A}{50}\right)^{2/3} \qquad \text{Overall } Z^{2} \\ & \left(g_{eff,P} \cong 4, \; g_{eff,N} \lesssim 1\right) \end{split}$$

Challenge for atomic/molecular approaches: Signals easiest to detect with high Z & A BUT Much easier to interpret with lowest Z & A

Purely hadronic PV in nucleus induces nuclear spin helix = anapole moment

Microscopic physics of nuclear anapole moment

Nucleon-nucleon HPV interactions perturb nuclear structure:

Hamiltonian for unpaired nucleon interacting with paired core gives spin-momentum correlation

$$\begin{split} H_{HPV} \sim G_F \left(\vec{\sigma}_N \cdot \vec{p}_N \right) &\sum_i g_{\mathrm{eff},i} F_i(\vec{r},\vec{\tau}) \\ & 5 \text{ terms in principle at low } q^2 \\ \textit{linear combinations estimated important for anapole} \end{split}$$

2

HPNC measurements including anapole moments (past & future)

NOTE: new data (NPDGamma, *n* spin rotation in ⁴He) + theory advances (EFT, large N_c) \rightarrow Hope for convergence in HPV parameters Enhanced NSD-PV mixing in simple molecules [${}^{2}\Sigma$, *s-p* hybridized orbital]

Naturally small rotational splitting (~10⁻⁴ eV vs. ~1 eV in atoms)

Enhanced NSD-PV mixing in simple molecules [${}^{2}\Sigma$, *s-p* hybridized orbital]

Naturally small rotational splitting (~10⁻⁴ eV vs. ~1 eV in atoms) can be bridged w/Zeeman shift:

 \gtrsim 10¹¹ enhanced PV mixing vs. classic experiments with atoms

$$\begin{array}{c} | & \\ | - > \underbrace{\circ \circ \circ \circ \circ \circ \circ}_{\Delta(B)} \\ | + > \end{array}^{\omega} \qquad H = \begin{pmatrix} 0 & iW + d\mathcal{E}(t) \\ -iW + d\mathcal{E}(t) & \Delta \end{pmatrix}$$

D.D., S.B. Cahn, et al. PRL **100,** 023003 (2008)

D.D., S.B. Cahn, et al. PRL **100,** 023003 (2008)

Apply oscillating \mathcal{E} -field, 1 cycle:

$$\mathcal{E}(t) = \mathcal{E}_0 \sin(\omega t) \qquad \begin{bmatrix} \omega \gg \Delta, \ d\mathcal{E}_0; \\ T = 2\pi \ / \ \omega \end{bmatrix}$$

D.D., S.B. Cahn, et al. PRL **100,** 023003 (2008)

 $\mathcal{E}_0 \sin(\omega t)$

|+>

Apply oscillating \mathcal{E} -field, 1 cycle:

$$\mathcal{E}(t) = \mathcal{E}_0 \sin(\omega t) \qquad \begin{bmatrix} \omega \gg \Delta, \ d\mathcal{E}_0; \\ T = 2\pi \ / \ \omega \end{bmatrix}$$

D.D., S.B. Cahn, et al. PRL **100,** 023003 (2008)

 $\frac{\mathbf{0} \ \mathbf{0} \ \mathbf{0}}{\mathcal{E}_0 \sin(\omega t)}$

0

|+>
Detecting PV in near-degenerate levels: AC Stark shift

Apply oscillating \mathcal{E} -field, 1 cycle:

$$\mathcal{E}(t) = \mathcal{E}_0 \sin(\omega t) \qquad \begin{bmatrix} \omega \gg \Delta, \ d\mathcal{E}_0; \\ T = 2\pi \ / \ \omega \end{bmatrix}$$

$$\mathbf{V} = \left| \left\langle + \left| \psi(T) \right\rangle \right|^2 = 4 \sin^2 \left(\frac{\Delta T}{2} \right) \left[\left(\frac{d\mathcal{E}_0}{\omega} \right)^2 + 2 \frac{W}{\Delta} \frac{d\mathcal{E}_0}{\omega} \right]$$

D.D., S.B. Cahn, et al. PRL **100**, 023003 (2008)

000

 $\mathcal{E}_0\sin(\omega t)$

0

+>

Nguyen, DD, ... D. Budker, PRA **56**, 3453 (1997)

Detecting PV in near-degenerate levels: AC Stark shift

Apply oscillating \mathcal{E} -field, 1 cycle:

$$\mathcal{E}(t) = \mathcal{E}_0 \sin(\omega t)$$
 $\begin{bmatrix} \omega \gg \Delta, \ d\mathcal{E}_0; \\ T = 2\pi \ / \ \omega \end{bmatrix}$

$$S = \left| \left\langle + \left| \psi(T) \right\rangle \right|^{2} = 4 \sin^{2} \left(\frac{\Delta T}{2} \right) \left[\left(\frac{d\mathcal{E}_{0}}{\omega} \right)^{2} + 2 \frac{W}{\Delta} \frac{d\mathcal{E}_{0}}{\omega} \right]$$
D.D., S.B. Cahn, et al.
PRL 100, 023003 (2008)
Iguyen, DD, ... D. Budker,
PRA 56, 3453 (1997)

$$Stark Term Even in \mathcal{E}_{0}$$

$$Stark Cahn Characteric conditions of the second stark of t$$

Ngu PRA 56, 3453 (1997)

 $\frac{\mathbf{0} \mathbf{0} \mathbf{0}}{\mathcal{E}_0 \sin(\omega t)}$

О

0

+>

Signal, Asymmetry, Sensitivity

--Measure signal
$$S \ \mathcal{E}_0 \approx 4N_0 \sin^2 \left(\frac{\Delta T}{2}\right) \left[\left(\frac{d\mathcal{E}_0}{\omega}\right)^2 + 2\frac{W}{\Delta} \frac{d\mathcal{E}_0}{\omega} \right]$$

with opposite-sign \mathcal{E} -fields $+\mathcal{E}_0, -\mathcal{E}_0$

- - Form asymmetry to extract W in terms of known quantities :

$$\mathcal{A} = \frac{S(+\mathcal{E}_{_{0}}) - S(-\mathcal{E}_{_{0}})}{S(+\mathcal{E}_{_{0}}) + S(-\mathcal{E}_{_{0}})} \approx 2\frac{W}{\Delta}\frac{\omega}{d\mathcal{E}_{_{0}}}$$

Dispersion-like function of detuning Δ

Statistical Uncertainty

$$\delta W = \frac{1}{2\sqrt{2}} \frac{1}{\sqrt{N_0}} \frac{1}{T} \qquad \qquad \text{Best sensitivity from} \\ \text{large interaction time } T$$

Equivalent to measuring *W* as generic energy shift at Standard Quantum Limit N. Fortson, PRL **70**, 2383 (1993)

ZOMBIES experimental schematic

ZOMBIES: general-purpose technique, applicable to many isotopes

PRL 100, 023003 (2008)

PHYSICAL REVIEW LETTERS

week ending 18 JANUARY 2008

Using Molecules to Measure Nuclear Spin-Dependent Parity Violation

D. DeMille,¹ S. B. Cahn,¹ D. Murphree,¹ D. A. Rahmlow,¹ and M. G. Kozlov²

Nucleus	Ι	ν	l	n.a. (%)	$100\kappa'_a$	$100\kappa'_2$	Species	B_e (MHz)	$\mathcal{B}_0^{(m)}\left(\mathrm{T}\right)$	W_P (Hz)	$ ilde{C}^{(m)}$	$W^{(m)}$ (Hz)	f (%)	D (Debye)	$d^{(m)}$ (kHz · cm/V)
⁸⁷ Sr ₃₈	9/2	N	4	7.0	-3.6	-5.0	SrF	7515	0.62	65	-0.40	2.2	0.2	3.5	-4.6
$^{91}Zr_{40}$	5/2	N	2	11.2	-3.5	-5.0	ZrN	14468	1.20	99	-0.40	3.4	0.3	≈ 4	≈1
¹³⁷ Ba ₅₆	3/2	Ν	2	11.2	+4.2	+3.0	BaF	6480	0.32	164	-0.44	-5.2	0.7	3.2	-3.0
¹⁷¹ Yb ₇₀	1/2	N	1	14.3	+4.1	+1.7	YbF	7246	0.33	729	-0.52		1.8	3.9	1.5
$^{27}Al_{13}$	5/2	Р	2	100	-11.2	+5.0	AlS	8369	0.52	10	-0.42	0.3	8	3.6	2.5
⁶⁹ Ga ₃₁	3/2	Р	1	60.1	-19.6	+5.0	GaO	8217	0.49	61	-0.43	3.8	8	≈4	≈ -30
$^{81}Br_{35}$	3/2	Р	1	49.3	-21.8	+5.0	MgBr	4944	0.34	18	-0.42	1.3	6	≈ 4	≈ -6
¹³⁹ La ₅₇	7/2	Р	4	99.9	+34.7	-3.9	LaO	10578	0.25	222	-0.43	-29	6	3.2	0.6

Improved understanding of molecular structure since 2008 → many more viable molecule species to study many different isotopes

ZOMBIES I: NSD-PV with BaF

Initial physics goal: NSD-PV with ¹³⁷BaF

- Odd neutron (vs. ¹³³Cs w/odd proton)
- Heavy \rightarrow large effect, anapole largest term
- Large enough natural abundance (barely)
- Required lasers = simple, cheap diodes

Recently completed: proof of principle using ¹³⁸Ba¹⁹F

- Larger natural abundance (~75% vs ~11% for ¹³⁷Ba)
- Uses same beam source, lasers, magnet, etc. as ¹³⁷BaF
- $W(^{138}Ba) = 0$ Hz (no unpaired nucleons = no NSD-PV) $W(^{19}F) \approx 0.002$ Hz ≈ 0 (light, small electron spin density in BaF)
- Test for practical sensitivity& systematics with known answer

Uncertainties in proof-of-principle with ¹³⁸BaF

Strategy

- Deliberately exaggerate imperfection by known, large factor
- Measure effect on the NSD-PV matrix element *W* from coupling to ambient imperfections in the experiment

Parameter	Shift	Systematic	Uncertainty
		$\delta W_{\rm sys}$ (Hz)	
Bipolar \mathcal{E}_{nr} Pulses		0.12	
Unipolar \mathcal{E}_{nr} Pulses		0.16	
$\mathcal{B} ext{-}\operatorname{Field}$ Inhomogeneities		0.24	
$\delta \nu_{L2}$ and \mathcal{E}_{nr} at and near Gap 22	-0.04	0.21	
Total Systematic	-0.04	0.38	

Final Error Budget with ¹³⁸Ba¹⁹F

Crossing	$W/(2\pi)~({ m Hz})$	C	d (Hz/(V/cm))	$W_{\rm mol} = \kappa' W_P / (2\pi) ~({\rm Hz})$
А	$0.28\pm0.49_{\rm stat}\pm0.38_{\rm sys}$	-0.41	3360	$-0.68 \pm 1.20_{\rm stat} \pm 0.93_{\rm sys}$
${ m F}$	$0.01\pm0.51_{\rm stat}\pm0.38_{\rm sys}$	+0.39	3530	$0.03\pm1.30_{\rm stat}\pm0.97_{\rm sys}$
Weighted Average	-	-	-	$-0.36 \pm 0.88_{\rm stat} \pm 0.95_{\rm sys}$

 $W_{mol} = 2\pi \times (-0.36 \pm 1.29)$

Hz

~170 h data ~6x10⁷ molecules total

What does the ¹³⁸Ba¹⁹F result mean?

$$W_{mol} \equiv \left(\kappa_2' + \kappa_a'\right) W_P = 2\pi \times \left(-0.36 \pm 1.29\right) \text{ Hz}$$

Most useful comparison:
$$W_P \left(^{137} \text{ Ba in BaF}\right) = 2\pi \times 160 \text{ Hz}$$

Same experimental uncertainty in ¹³⁷BaF would mean

$$\delta \kappa' (^{137} \text{Ba}) = 0.008 \text{ vs. } \kappa' (^{137} \text{Ba}) [\text{shell model}] \approx 0.07$$

~10% of predicted value

Compares favorably to JILA ¹³³Cs result: $\kappa' (^{133}Cs) = 0.39 \pm 0.06$ C.S. Wood *et al.*, Science **275**, 1759 (1997)

- Unprecedented sensitivity to NSD-PV
- General technique enables measurements in broad range of nuclei

E. Altuntas, J. Ammon, S.B. Cahn, DD PRL 120, 142501 (2018); PRA 97, 042101 (2018)

Viable nuclei for anapole/NSD-PV measurement with ZOMBIES

	 Requires systematics ~2-10x better 																
1	• Statistics likely OK, will require systematics = 100x better													1	2		
H	•	Stati	STICS	пке	IY UI	K, WI	li re	quire	e sys	tema	atics	~10	UX D	ette	Γ	Η	He
3															8	9	10
Li	Be B C N O													F	Ne		
11	12 13 14 15 16													17	18		
Na	Mg Al Si P S												Cl	Ar			
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	3 9	4 0	41	42	43	44	45	46	47	48	4 9 •	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
55	56	5 7		73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Questions/requests for theorists

--Anapole moment calculations with new HPV χ EFT parameterization

--Calculate anapole moments & weak axial coupling for mid-mass nuclei

--Quantitative uncertainties on calculations!

--Could C₂ values be extracted reliably from mid-mass nuclei with existing HPV data & understanding?

--Is consistency check between isotopes in heavier nuclei useful?

--Are there special cases of particular interest/particularly easy to calculate?

--Can anapole measurements (with known HPV inputs) shed light on other related calculations e.g. Schiff moment, $0\nu\beta\beta$ decay, ...?

--Generally: modern theory perspective on anapole moments URGENTLY needed (>10 years since last dedicated nuclear theory paper)

--"quick and dirty" calculations of molecular sensitivities for "new" species (e.g. ¹³³CsMg, Xe¹⁹F, ...)

ZOMBIES: Summary & Outlook

--New era in NSD-PV = anapole + $V_e A_N$ measurements beginning

--Sensitivity & accuracy of molecular systems likely to enable measurements on many nuclei, including light-ish species, with <10% uncertainty

--Complementary to SoLID/PVDIS @ JLab & other hadronic PV experiments

--long term vision: unify understanding of hadronic & semileptonic PV interactions in strongly-interacting environment, across wide range of scales

