Clusters production in heavy io collisions

Dallas DeMartini, Huan Zhong Huang and Che Ming Ko

d Enhanced cluster yields have been observed.
d How can we interpret them?
d What are the confounding factors?



Light nuclei production from non-local many-body scattering

Sun, Wang, Ko, Ma & Shen, Nature Commun. 15, 1074 (2024)

Ofa P 0fa _ 1 /H d’p; d’pr  Eud’r
ot Ed OR QQdEd (27‘(‘)32E (277)32E7r my

deWd (f.a 15)

(‘Mw+n—>7r+n’2+nﬁp) |: gwfwgdde 1:|:fz (1‘|'f7r 1‘|‘fd ngfz:|

x (2m)*0% (p1 + pa + P3 — Pr — Pa) — Good description of data

F"bvopb 'ooll.s'-ons‘at 2‘ ?é fev 5 p'p'ooms:ons ;t 7 T;V

e MUSIC +RKE (0-10%)
* p(0-10%)
» d(0-10%)
‘He (0-20%)

» p+anti-p v d & ant-d
* 'He * anti-'He
t * anti-t
AMPT+RKE

= p(0-10%)
e d(0-10%)

"He (0-12%)

B AMPT+RKE
T (pont-like)




Hadronic rescattering effects on light nuclei production
Sun et al., Nature Commun. 15, 1074 (2024)
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» d/p and t/p ratios are similar in kinetic approach and coalescence model.

= Hadronic re-scatterings reduce the triton yields by about a factor of 2 as a
result of constant tp/d? = 1/2+/3 and decreasing d/p due to decay of
baryon resonances as the hadronic matter expands and cools. 3




Mechanism of deuteron production at the LHC

ALICE Collaboration, 2504.02393 [nucl-ex]
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Figure 2: Measured 7"—d (left) and 7~ —d (right) correlation functions fitted with model calculations (upper
panels) and the number of standard deviations (lower panels). The brown crosshatched bands in both panels corre-
spond to contributions by the A resonance, blue bands represent the Coulomb interactions, teal diagonally hatched
bands the residual background and the magenta bands the total fit function. The lower panels display comparisons
between the data points and the fit in terms of the number of standard deviations no, where statistically 95% of
points are expected to lie within +20.



Yield ratio of Npr/Nﬁ in Au+Au collisions at RHIC

STAR Collaboration, PRL 130, 202301 (2023)
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" Enhanced yield ratio of Nth/Né at \/Syn = 25 GeV in central
Au+Au collisions, compared to non-central collisions.




Beam-energy dependence of N;N,, /N % from theoretical models
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Neutron relative density fluctuation from yield ratio of light nuclei

Sun, Chen, Ko & Xu, PLB 774, 103 (2017)
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a: correlation factor

Tc = 144 MeV
U = 385 MeV

= Expect a similar behavior forE=

K

T T A

0 from u-quark density fluctuation.




Quark matter phase diagram in the NJL model
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Transport description of quark matter in a box based on NJL

8:f +p/E-Vf—VH-V,f =C[f] Feng&Ko, PRC 93, 035205 (16); 95, 055203 (17)

C[f] includes quark elastic scattering with cross section of 3 mb
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N,Np/Nfl Enhancement due to chiral first-order trasnsition

Sun, Ko, Li, Xu & Chen, EPJA 57, 31 (2021)

AMPT with blast-wave initial conditions with T= 70 MeV and net quark
density 1.5/fm3 and NJL based parton transport model
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Sun et al., Nuclear Techniques 46, 040012 (2023)

Conflicting results on light clusters due to spinodal instability
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Clustering in the “*He system and light nuclei production

Feed-down should be largest from 4He. 200 "
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Dallas DeMartini (INT 25-3a) 12



Correlations do remain at T ~ 100 MeV. 1
I C) _ Classical
Subtract out the ground state contribution & 0.5 Classica
and long-range tail. The remaining © - Flucton
“precluster” is assumed to statistically 0.0l T=100 MeV
populate excited states and then decay.
0.1] -
Preclustering and feed-down more important 1.2 3 4 5 6
at low VSNN - p(fm)
1.0
We see this in thermal models of light nuclei * O
ratios at HADES. (See talk of Vovchenko at g ) g .
34 EMMI conference (2019)) g, s
Non-monotonic behavior of clustering jZf 0.4
requires a modification of the interaction. 5
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Many-body forces and the critical c mode

DD and Shuryak, PRC 104 (2021)

Emin ~ 1/mys ~ 0.4 fm Emaz ~ 2 fm
Quark-meson model predicts o0 mass
decreases to 285 MeV (Tripolt, Strodthoff, von
Smekal, and Wambach, PRD 89 (2014))
For simple NN interaction, this leads to
unrealistic results.

aliire

As ¢ increases, critical fluctuations in the o field
induce 3-body and higher-order interactions. (@) (b)
These many-body forces are mostly repulsive
and will prevent the 4N system from collapsing
in on itself.

() (d)

Dallas DeMartini (INT 25-3a) 14



Consider a deformed effective potential in the

3D Ising model I
m=— = Mt"
§
Start from the effective potential on the critical
line and add a linear shift to some finite
magnetization, calculate new deformed
potential.

This gives us the correlation length and many-
body coupling strengths.

Repulsive 3- and 4-body forces grow quickly
near the critical point (t—0).

Very close to the critical point the forces
become repulsive and could suppress
clustering.

This is a qualitative sketch — The results are
dependent on the mapping of the Ising
variables onto the QCD phase diagram.
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Summary

= More data, such as that from BES Il with a larger statistics, are needed to
confirm or disapprove the enhanced yield ratio NpNt/chi observed from
BES | data at 19.6 and 27 GeV, which has a combined significance of 4.1 o.

= Further theoretical studies are required to understand the conflicting
conclusions from the studies by Sun et al. and Steinheimer et al. about the
effects of hadronic scatterings on density fluctuations induced by the
instability associated to a first-order phase transition.

= Can CP effects and modified forces be included in transport or hydrodynamic
models? Do the effects persist until kinetic freezeout?

= Can we directly identify feed-down from excited “He states by looking for d+d
or t+p resonances? Can we measure other light nuclei ratios that may be
sensitive to the same effects?

= Only with both improved experimental data on light nuclei production in heavy
ion collisions and theoretical modeling of these collisions can it be possible to
see if the yield ratios of light nuclei can be used as a probe to the QCD phase
diagram.



