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Beta decay
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VCKMV†
CKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

V*ud V*cd V*td
V*us V*cs V*ts
V*ub V*cb V*tb

= 1 ,
Unitarity

ΔCKM ≡ |Vud |2 + |Vus |2 − 1 ≈ 0

Discrepancy with SM


• Underestimated SM uncertainties? 
• BSM physics?

Global fit


  

 

ΔCKM = − 1.48(53) × 10−3

Vud = 0.973670(25)

Vus = 0.22422(36)
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The Cabibbo–Kobayashi–Maskawa matrix
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ΔCKM = − 1.48(53) × 10−3

Vud = 0.973670(25)

Vus = 0.22422(36)

The Cabibbo–Kobayashi–Maskawa matrix

Scrutinizing CKM unitarity with a new measurement of the  branching fraction 
V. Cirigliano et al. (arXiv: 2208.11707)

Kμ3/Kμ2
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ΔCKM = − 1.48(53) × 10−3

Vud = 0.973670(25)

Vus = 0.22422(36)

Probing physics beyond Standard Model

Improving precision of SM calculations

Advancing theory for BSM physics 

Enhancing the accuracy of experiments

Work on three different fronts:

Standard Model Effective Field Theory 

The Cabibbo–Kobayashi–Maskawa matrix
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Standard Model EFT
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 - Wilson coefficients 
 - local interaction terms (operators)

C
Q

The EFT constructed with Standard Model fields & symmetries 

The Standard Model is a part of the leading order of SMEFT

Example of EFT: Fermi Theory

−gμν + qμqν /M2
W

q2 − M2
W

q2<<M2
W

gμν

M2
W

ℒSMEFT = ℒSM +
1
v

C(5)Q(5) +
1
v2 ∑

k

C(6)
k Q(6)

k + 𝒪(
1
v3

) + . . .

With Ck ∼ v2/Λ2



Standard Model EFT
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 - Wilson coefficients 
 - local interaction terms (operators)

C
Q

The EFT constructed with Standard Model fields & symmetries 

6-dim operators

ℒSMEFT = ℒSM +
1
v

C(5)Q(5) +
1
v2 ∑

k

C(6)
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1
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Standard Model EFT
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 - Wilson coefficients 
 - local interaction terms (operators)

C
Q

The EFT constructed with Standard Model fields & symmetries 

The Standard Model is a part of the leading order of SMEFT

Goal of the work: identify leading contributions to beta decay at a one-loop level.   

SMEFT contributions to beta decay are well-known at a tree level 
What about quantum fluctuations?

With Ci
k ∼ vi−4/Λi−4

Operators that contain particles 
directly involved in a process
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GeV scale effective Lagrangian

 

     

    

    

     

  ℒ𝐿𝐸𝐹𝑇 = −
𝐺0

𝐹𝑉𝑢𝑑

2
 [(1 + 𝜖𝐿) 𝑒̄ 𝛾𝜇(1 − 𝛾5)𝜈𝑙 𝑢̄𝛾𝜇(1 − 𝛾5)𝑑  

+ 𝜖𝑅 𝑒̄𝛾𝜇(1 − 𝛾5)𝜈𝑙 𝑢̄𝛾𝜇(1 + 𝛾5)𝑑  

+ 𝜖𝑆 𝑒̄ (1 − 𝛾5)𝜈𝑙 𝑢̄𝑑  

− 𝜖𝑃 𝑒̄(1 − 𝛾5)𝜈𝑙 𝑢̄𝛾5𝑑 

+ 𝜖𝑇 𝑒̄𝜎𝜇𝜈 (1 − 𝛾5)𝜈𝑙 𝑢̄𝜎𝜇𝜈 (1 − 𝛾5)𝑑 ]

left quarks 

right quarks 

scalar

pseudo-scalar

tensor

𝒅 → 𝒖 𝒍− 𝝂̄𝒍 

u
d
d

u
d
u

e−

ν̄e

ϵL = ϵβ
L − ϵμ

L

 SMEFT correction to GF as extracted from muon decayϵμ
L

From muon decay



Global Fit

• Drell-Yan collider processes (‘C’) 

• Low-energy charged current processes (‘L’) 

— Neutron and nuclear β decays 
— Kaon and pion decays ( ,  
                                                           ,  
                                                           ,  
                                                            ) 

• electroweak precision observables (‘EW’) 

— observables measured at the Z pole (decay widths, asymmetries, hadronic cross section obtained 
from , W mass

Γ(K → μνμ)
Rπ = Γ(π → eνe)/Γ(π → μνμ)
RK = Γ(K → eνe)/Γ(K → μνμ)
Rμ = Γ(K → μνμ)/Γ(π → μνμ)

e + e− → Z → q̄q

Anomalies in global SMEFT analyses. A case study of first-row CKM unitarity 
V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, T. Tong 
(arXiv:2311.00021)

flavor-assumption-independent analysis

 put constraints on ’s→ ϵi

𝜖(𝜇)
𝐿 ,   𝜖(𝑐)

𝐿 ,   𝜖(𝑣)
𝐿 ≈ − 8.3 ± 2.5 × 10−4

Other fit: 
A. Falkowski, M. González-Alonso, O. Naviliat-Cuncic 
(arXiv:2010.1379))  TeV→ 20

∼ v2/Λ2



Global Fit

Isovector and flavor diagonal charges of the nucleon from 2+1+1 flavor QCD 
Rajan Gupta et al. (arXiv:1812.03573)

• Current and projected 90% C.L. constraints on  and  defined 
at 2 GeV in the MS bar scheme 

• Beta decay: 

• The current analysis includes all existing neutron and 
nuclear decay measurements,  

• Future projection assumes measurements of the various 
decay correlations with uncertainty of 0.1% 

• LHC: 

• Obtained from  

• ATLAS results at  TeV 

•  The projected future LHC bounds are obtained by 
assuming that no events are observed at transverse mass 
greater than 3 TeV 

• LHC cannot constrain , and 

ϵS ϵT

pp → e + MET + X

s = 13

ϵL ϵR
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Beta Decay at the Tree Level
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We work in the weak eigenstate basis
 

 are flavor indices  
here all 1

p , r , s, t

   



)

 

Muon Decay

17

   

 arises from the SMEFT correction to the Fermi constant extracted  
from muon decay and is given by

𝜖(𝜇)
𝐿

𝑄(3)
𝐻𝑙 = (𝐻†𝑖𝐷⃡

𝐼
𝜇𝐻)(𝑙̄𝑝 𝜏𝐼𝛾𝜇𝑙𝑟)

𝑄𝑙𝑙 = (𝑙̄𝑝𝛾𝜇𝑙𝑟)(𝑙̄𝑠𝛾𝜇𝑙𝑡)
flavour indices: 

(1,2,2,1) 

𝜖(𝜇)
𝐿 = (𝐶 𝑙𝑙1221 

+ 𝐶 𝑙𝑙2112 ) − 2(𝐶(3)
𝐻𝑙11

+ 𝐶(3)
𝐻𝑙22



Matching at the Electro-Weak Scale

Vector interactions for left quarks:

•

• ,

• ,

• )

𝜖𝐿 = 𝜖(𝑣)
𝐿 + 𝜖(𝑐)

𝐿   − 𝜖(𝜇)
𝐿

𝜖(𝑣)
𝐿 = 2 𝐶(3)

𝐻𝑙 + 2
[𝑉 𝐶(3)

𝐻𝑞]11

𝑉𝑢𝑑
+ 4

[𝑉 𝐶(3)
𝐻𝑙]11

𝑉𝑢𝑑

𝜖(𝑐)
𝐿 = − 2

[𝑉 𝐶(3)
𝑙𝑞 ]11

𝑉𝑢𝑑

𝜖(𝜇)
𝐿 = (𝐶 𝑙𝑙1221 

+ 𝐶 𝑙𝑙2112 ) − 2(𝐶(3)
𝐻𝑙11

+ 𝐶(3)
𝐻𝑙22

 - vertex correction 
 - contact correction  
 - correction to muon decay

𝜖(𝑣)
𝐿

𝜖(𝑐)
𝐿

𝜖(𝜇)
𝐿

,

,

,

.

𝜖𝑅 = −
[𝑉 𝐶(3)

𝐻𝑢𝑑]11

𝑉𝑢𝑑

𝜖𝑠 − 𝜖𝑃 = − 2
[𝑉 𝐶(3)

𝑙𝑒𝑑𝑞]11

𝑉𝑢𝑑

𝜖𝑠 + 𝜖𝑃 = − 2
[𝑉𝐶(1)

𝑙𝑒𝑞𝑢 ]11

𝑉𝑢𝑑

𝜖𝑇 = −
𝐶(3)

𝑙𝑒𝑞𝑢 

𝑉𝑢𝑑
 

[𝑉 𝐶(3)
𝐻𝑞]11

= 𝐶(3)
𝐻𝑞𝑉11 + 𝐶(3)

𝐻𝑞𝑉21 + 𝐶(3)
𝐻𝑞𝑉31

11 12 13

Bounds from beta decay (CKM unitarity) 
+   

, 
Δ𝐶𝐾𝑀 = 2 𝑉𝑢𝑑

2
𝜖𝑑

𝐿 2 𝑉𝑢𝑠
2
𝜖𝑠

𝐿
𝜖(𝜇)

𝐿 ,   𝜖(𝑐)
𝐿 ,   𝜖(𝑣)

𝐿 ≈ − 8.3 ± 2.5 × 10−4

[𝒯LEFT = 𝒯SMEFT]μW
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Mixing Procedure
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Q(3)
Hq = (H†iDI

μH)(q̄pτIγμqr) Q(3)
qq = (q̄pγμτIqr)(q̄sγμτIqt)

2 quarks and boson 4 quarks

Triplet 
𝑄(3)

𝐻𝑞

𝑊 − 

𝑊 − 

𝑡𝑙

𝑡𝑅

𝑏𝑙

𝑏𝑙

𝑄(3)
𝑞𝑞   →  𝑄(3)

𝐻𝑞11 1133 11

- SMEFT operator

H

H

H H

u ud d



More Examples
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- SMEFT operator



Renormalization Group Equations
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(
·Cβ
·Cx) = (γββ γβx

γxβ γxx) (
Cβ

Cx)
RGE

Mixing of operators 

Cβj(μW) = ∑
k

Ujk(μW, Λ)Cxk(Λ)

|ϵ | = |κi Ci | ≤ ϵ̄L

mixing parameter 

from RGE’s
bound from  

the experiment

Example of solutions of RGE’s for C(3)
Hq, C(3)

Hl  and C(3)
lq

Initial conditions for  TeV 
 

Λ = 5
Cβ(Λ) = 0
Cx(Λ) = 1

Tree level

Loop level



RH, Scalar, Pseudoscalar, and Tensor Terms
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This class of couplings are suppressed by  𝑦𝑏

Example: 

𝐶̇𝐻𝑢𝑑 ⊂ 4(𝐶(1)
𝑢𝑑 +

4
3

𝐶(8)
𝑢𝑑 )[Y𝑢𝑌 †

𝑑]3311 1331 1331

Solving RGE
bounds of 𝒪(1)

 
 

 

 

𝜖𝑅 = 0.950 𝑪𝑯𝒖𝒅  − 0.001 𝐶(1)
𝑢𝑑 − 0.0011 𝐶(8)

𝑢𝑑  ,  
𝜖𝑃 = 0.603 𝑪(𝟏)

𝒍𝒆𝒒𝒖  − 0.600 𝑪𝒍𝒆𝒅𝒒 + 0.143 𝐶(3)
𝑙𝑒𝑞𝑢

𝜖𝑆 = − 0.603 𝑪(𝟏)
𝒍𝒆𝒒𝒖  − 0.600𝑪𝒍𝒆𝒅𝒒 + 0.143 𝐶(3)

𝑙𝑒𝑞𝑢
𝜖𝑇 = 0.003 𝐶(1)

𝑙𝑒𝑞𝑢  − 0465 𝑪(𝟑)
𝒍𝒆𝒒𝒖

Coefficienents in blue are matched to a given  at a tree level  𝜖𝑖

Results for  at  GeV in terms of  and  at  Tev𝜖𝑖 𝜇𝑊 = 246 𝐶𝛽 𝐶𝑥 Λ = 5
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The largest contribution to  at a loop level ( ): 𝜖𝑖 𝜅𝑖𝑗 > 10−2

𝑄𝛽𝐿
:{𝑄𝑙𝑙, 𝑄(3)

𝑙𝑞 , 𝑄(3)
𝐻𝑙, 𝑄(3)

𝐻𝑞,  𝑄(1)
𝑞𝑞 , 𝑄(3)

𝑞𝑞 , 𝑄𝐻□}  

𝑄(1)
𝑞𝑞 = (𝑞̄𝑝𝛾𝜇𝑞𝑟) (𝑞̄𝑠𝛾

𝜇𝑞𝑡)
𝑄(3)

𝑞𝑞 = (𝑞̄𝑝𝛾𝜇𝜏𝐼𝑞𝑟) (𝑞̄𝑠𝛾
𝜇𝜏𝐼𝑞𝑡) 

𝑄𝐻□ = (𝐻†𝐻) □ (𝐻†𝐻)

Results for  at  GeV in terms of  and  at  Tev𝜖𝐿 𝜇𝑊 = 246 𝐶𝛽 𝐶𝑥 Λ = 5

Beta decay

Kaon decay

LH Currents



Results
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M.D, V. Cirigliano, W. Dekens 
ArXiv: (2402.06723)

q̄

q t

t̄

(1) indicates that the fit was performed assuming  symmetry 

(2) indicates that the constraint would disappear if one used the weak basis in which the down-type quark mass matrix  is diagonal. 

U(3)l × U(3)e × U(3)d × U(2)u × U(2)q

Md

Example of tree level  
process,  production at the LHC tt̄

Result: Stronger constraints on BSM operators from 
loop-level processes than those achievable in other 
channels at tree level.

With Ck ∼ v2/Λ2



Results vs LHC
 Transverse mass distributions for events satisfying all selection criteria in the electron channels.

q

q̄

t

t̄

+

𝒯 = 𝒯𝑆𝑀 + 𝒯𝑆𝑀𝐸𝐹𝑇Scattering amplitude
Cross-section 𝜎 = 𝒯𝑆𝑀

2
+ 2𝑅𝑒[𝒯𝑆𝑀 × 𝒯𝑆𝑀𝐸𝐹𝑇] + 𝒯𝑆𝑀𝐸𝐹𝑇

2

q̄

q t

t̄

+

q

q̄

t

t̄

SMEFTSM

∼
1
s

∼
1
s

∼ 1𝒯



Search for a new heavy gauge boson resonance decaying into a lepton and missing  
transverse momentum in 36 fb  of pp collisions at √s = 13 TeV with the ATLAS experiment−1

 Transverse mass distributions for events satisfying all selection criteria in the electron channels.

Results vs LHC
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Result: Beta decay at loop level can probe higher energies (that correspond to masses of BSM          
particles) than other processes, e.g., from LHC

M.D, V. Cirigliano, W. Dekens 
ArXiv: (2402.06723)

Λ ∼ 8 TeV

C ∼
v2

Λ2

Results
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Beyond the SM: a model above the high-energy scale

Assumption of BSM above the scale 
1.  is invariant under linearly-realized . 
2.  containts only particles of spin  
3. Adding one new particle at a time.

Λ 
ℒ𝐵𝑆𝑀 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌
ℒ𝐵𝑆𝑀 ≤ 1.

J. De Blas, J.C. Criado at al. 
(1711.10391)



Summary

•The CKM unitarity test is important for constraining  and  

•Beta decay probes BSM physics at a tree-level  at  TeV (needs 
experimental and theoretical scrutiny!) 

•We put constraints on New Physics operators that include top quarks  
 at  TeV at a loop-level, which exceeds the LHC results! 

•We connect these operators to the BSM model

ϵL ϵR

∼ 20

∼ 8



FLAVOR-CHANGING NEUTRAL CURRENT OPERATORS

𝐶̇𝛽 = 𝛾𝛽𝑥𝐶𝑥,

𝐶̇𝐹𝐶𝑁𝐶 = 𝛾𝐹𝐶𝑁𝐶 𝐶𝑥

• At a loop level : 

• Rotation to the mass basis

(Δ𝐹 = 2)

The strongest constraints arise from the rare  
	  proces   
 

Δ𝑆 = 1 𝐾 → 𝜋𝜈𝜈̄  TeV[L𝜈𝑑
𝑉𝐿𝐿] < 0.97 × 10−5

𝑣2[L𝜈𝑑
𝑉𝐿𝐿] = ~𝐶𝑙𝑙12 + 𝜆(~𝐶𝑙𝑙11 − ~𝐶𝑙𝑙22) +  

~𝐶𝑙𝑙𝑖𝑗 = 𝐶(1)
𝑙𝑞 − 𝐶(3)

𝑙𝑞 + 𝛿𝑙𝑙𝐶(1)
𝐻𝑞 + 𝛿𝑙𝑙𝐶(3)

𝐻𝑞
llij llij ij ij

𝐶(1)
𝑙𝑞 < 2.0 × 10−5,

𝐶(3)
𝑙𝑞 < 2.0 × 10−5, 𝐶(3)

𝑞𝑞 < 0.37 × 10−4

𝐶(1)
𝑞𝑞 < 0.57 × 10−3

1133

1133

1331

1331

With Ck ∼ v2/Λ2


