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Some key developments of the recent past (incomplete list)

• Neutrino mixing parameter θ13 measurement (Daya Bay, Reno)

• Higgs discovery at the LHC (ATLAS, CMS)

• IceCube observation of astrophysical neutrinos up to ∼ 103 TeV

• LIGO-Virgo detection of gravitational waves

• Multi-messenger astronomy (binary neutron star merger)

• Event Horizon Telescope imaging of supermassive black holes (M87*, SgrA*)

• Evidence for stochastic gravitational wave background

- Pulsar timing measurements (NANOGrav, EPTA, Parkes, CPTA,...)

• . . .
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Despite all that, the

fundamental theories

have not changed!

State of the art:

• Gravity: still General Relativity (> 100 years!)

• Subatomic phenomena: Standard Model

- There are some, often modest and transient, anomalies∗

3



Aside: “*” from last page (can be a separate talk on its own)

- Two prominent instances (also others, largely less significant)

• Muon anomalous magnetic moment (g − 2)
• g = 2 (Dirac) gets quantum corrections (SM; possibly other)

• Theory (SM): T. Aoyama, et al., Phys.Rep. 887, 1 (2020)

• Muon g-2 Collaboration 2023 results: discrepancy ∼ 5σ

- Above prediction under scrutiny, can change

- Another prediction yields a smaller discrepancy

Borsanyi et al., Nature 593 (2021) 7857, 51-55 Phys.Rev.Lett. 126 (2021) 14, 141801

• W mass
• CDF II result: ∼ 7σ discrepancy!
CDF Collaboration, Science 376 (2022) 6589, 170-176

• Are there unaccounted for uncertainties?

• More data from the LHC can be illuminating

ATLAS-CONF-2023-004

Stay tuned!
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The Case for New Physics

• Despite great success of SM+GR, new physics is needed

• There is strong experimental evidence for this inference:

⋆ Neutrino flavor oscillations → mν ̸= 0

• Adding right-handed neutrinos (of a broad range of masses) can explain this

⋆ Cosmology

• What is accelerating cosmic expansion? (dark energy; may be vacuum energy)

• What is holding galaxies together? (dark matter; may have its own sector)

• What caused ordinary matter asymmetry? (requires more CPV)

95% of the Universe is unknown to us! Planck

There are also theoretical hints:

- Why is gravity so weak (Higgs mass hierarchy problem)?

- Why is CP violation so suppressed in strong interactions?

- Why . . . ?
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Dark matter (DM)
• Robust evidence from cosmology and astrophysics

• Rotation curves of galaxies, CMB, Bullet Cluster, lensing, . . .

Mario De Leo, CC BY-SA 4.0, via Wikimedia Commons

• ∼ 27% of energy density

Planck Collaboration; 1807.06209
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Dark Sectors

• With lack of evidence for new weak scale physics, alternatives to Weakly Inter-
acting Massive Particles (WIMPs) have been put forth in recent years

• Example: DM could be light (m <∼ GeV) and may reside in a separate sector with
its own forces

• Analogy with SM

• Maybe set by an asymmetry (not a thermal relic), like ordinary matter

• Visible and dark sectors connected by feeble interactions

• Mediators could be light, accessible to low energy experiments
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Examples of GeV Scale Dark Bosons

• Dark vector bosons

• Simplest case: dark U(1)d, analogue of visible electromagnetism

• Dark photon (kinetic mixing) and dark Z (mass mixing)

• Very weakly interacting gauge bosons: B − L, Le − Lτ ,. . . (anomaly free)

• Dark scalars

• Axion-like particles (ALPs), analogues of QCD pions (pseudo-scalars)

- Like pions, manifestations of spontaneously broken approximate global symmetries

- QCD pions: broken chiral symmetry (approximate due to small quark masses)

- Can arise in a variety of models, naturally “light” (massless for exact symmetries)

Hongkai Liu’s talk on Monday; Ethan Neil’s talk on Thursday
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Dark Photon

• Kinetic mixing: Zdµ of U(1)d and Bµ of SM U(1)Y Holdom, 1986

Lgauge = −1

4
BµνB

µν +
1

2

ε

cos θW
BµνZ

µν
d − 1

4
ZdµνZ

µν
d

• Xµν = ∂µXν − ∂νXµ (field strength tensor)

• tan θW ≡ g′

g
with g′ and g gauge couplings of U(1)Y and SU(2), respectively

• Can be loop induced: ε ∼ egd/(4π)2 <∼ 10−3

γ Zd

F

• F charged under both U(1)Y and U(1)d

Lint = −e ε Jµ
emZdµ

Jµ
em =

∑
f Qf f̄γ

µf + · · · (electromagnetic current)
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• Active experimental program to search for hidden vector bosons
- Pioneering early work by Bjorken, Essig, Schuster, Toro, 2009

From Batell, Blinov,
Hearty, McGehee,
2207.06905,
visibly decaying dark photon

From Ilten, Soreq,
Williams, Xue,
1801.04847, JHEP 06 (2018) 004
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Other U(1) Gauge Interactions

• B − L; anomaly free with the addition of three right-handed neutrinos

- Also what is needed to provide Dirac neutrino masses

• Leptophilic interactions: Li − Lj, with i, j = e, µ, τ , i ̸= j

- Gauge one at a time

- Anomaly free

• We will consider mA′ at or below GeV scale

• Direct coupling to SM: gauge coupling must be tiny gA′ ≪ 1

• Various experimental probes, akin to dark photons

• Light and feebly interacting states can be long-lived

- Displaced vertex signals in collider experiments

- Good prospects for suppressing SM backgrounds
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The Electron Ion Collider (EIC)

2103.05419, EIC Yellow Report

• New frontier in studying structure of hadronic matter, to be built
at BNL

- E.g., spin composition of nucleons,....

• Large
√
s, luminosity

- Up to Ee = 18 GeV and 110 GeV per nucleon (e-Au)

- Fixed target equivalent of ∼ 4 TeV e-beam

- ∼ 100 fb−1 per A (atomic mass)

• Polarization: ∼ 70% for e and p beams

• Large nuclei (high Z): e.g. gold, lead
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Displaced Hidden Vectors at the EIC
H.D., Marcarelli, Neil, Phys.Rev.D 108 (2023) 7, 075017, 2307.00102

• Coherent production from gold ion, Z = 79: eAZ → eAZA
′ (Zd ↔ A′)

• q2 <∼ O(10 MeV)

• Large Z2 enhancement of electromagnetic scattering
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• Consider only emission from e−

- Suppressed emission from ion (form factor) except for well constrained low mA′
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• Form factor: approximate Fourier transform of the Woods-Saxon distribution
applied to Au ion

Klein, Nystrand, 1999

F (q2) =
3

q3R3
A

(sin qRA − qRA cos qRA)
1

1 + a20q
2

a0 = 0.79 fm and RA = (1.1 fm)A1/3.

• Probability of detection of displaced decay:

Pdisp = e−dmin/(γkvkτ) − e−dmax/(γkvkτ)

• dmin from detector resolution, dmax from geometry

• A′ boost γk, velocity vk, lifetime τ

• Kinematic variables: laboratory frame

• Signal cross section:

σsig(gA′) =
∫
Pdisp

dσ
dγk dηk

dγk dηk B(A′ → e+e−)

Pseudo-rapidity |η| < 3.5 (Ecce tracking)

• Focus on A′ → e+e− (EIC: good electron tracking)
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Signal Selection:

• Based on EIC Comprehensive Chromodynamics Experiment (ECCE) detector
Adkins et al., 2209.02580

• Now the ePIC Collaboration detector

• Signal requires both e+ and e− from vector decay

- µ+µ− also available for much of the parameter space

• We estimated: dmin ≈ γk(DCAmin
2D )/(vk cos θlabk )

• For pions: DCAmin
2D

<∼ 100 µm

• ⇒ dmin ≫ 0.1 mm, dmax = 1 m

DCA: distance of closest approach

θlab

d

DCA
D
C
A

2
D

∼1
2 θℓℓ

1
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• ECCE tracking: |η| < 3.5

• We also considered a detector at z = −5 m

• Assumed: DCAmin
2D = 200µm, dmax = 5 m

• Covering far backwards (FB): −6 < η < −4

• Coupling limits: Lσ(gA′) ≥ nmax

• nmax = 3.09, upper limit of the 95% confidence interval on the mean number of
signal events for zero expected background
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From H.D., Marcarelli, Neil, 2307.00102- FB capability well-motivated for these searches

- Generic for light satates emitted from the e-beam at low Q2
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Background considerations

• We assumed zero background

• Photon conversion: sparse backwards detector systems Adkins et al., 2209.02580

- Si disks separated by ∼ 25 cm: cut out thin regions from signal

• Misidentified pions as electrons: electron end cap fake rate ∼ 10−4

- Requiring both e+ and e−

- Additional signals if muon detectors added

• Losing signal events down the beam pipe: our estimate ∼ (20-30) %, manageable

• These are (theorist) projections, using rough approximations

- Detailed and more realistic simulations required for definitive results
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Recently, also Balkin et al., 2310.08827

• eN → eNA′, coherent scattering from Pb

• Dark photon decay A′ → µ+µ− (to reduce background)

• Decay volume ∆ = 500 m long (shielded) at L = 35 m from interaction point

• Does not exceed current bounds

- Our work assumed much smaller (>∼ mm) displacement

- Worthwhile to determine efficiency of our suggested background suppression
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Concluding Remarks

• EIC: a frontier machine for studying hadronic structure

• Given its relatively large center of mass energy and luminosity one can leverage
its capabilities to search for new physics

• “Hidden” weakly coupled vectors below the GeV scale can be produced in coherent
electromagnetic scattering from large Z ions

• Large effective luminosity ∼ Z2

• Displaced “backwards” decays

• Background may be suppressed (photon conversion) due to sparse backwards detector structure

• We examined a variety of such models and found competitive or better reach
compared to other projections

• Future realistic detector simulations necessary for definitive projections

• A “far backward” (∼ −5 m) detector can significantly enhance the reach

• Muon detection capabilities can also help enlarge signal sample by O(1) factors
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