Displaced Hidden Vectors at the EIC

Hooman Davoudiasl

HET Group, Brookhaven National Laboratory

Talk at the EW and BSM Workshop at the EIC

INT, February 12-16, 2024

Based on: H.D., R. Marcarelli, E. Neil, Phys.Rev.D 108 (2023) 7, 7; 2307.00102

Displaced Hidden Vectors at the EIC

Hooman Davoudiasl

HET Group, Brookhaven National Laboratory

Talk at the EW and BSM Workshop at the EIC

INT, February 12-16, 2024

Based on: H.D., R. Marcarelli, E. Neil, Phys.Rev.D 108 (2023) 7, 7; 2307.00102

Some key developments of the recent past (incomplete list)

- Neutrino mixing parameter θ_{13} measurement (Daya Bay, Reno)
- Higgs discovery at the LHC (ATLAS, CMS)
- \bullet IceCube observation of astrophysical neutrinos up to $\sim 10^3~\text{TeV}$
- LIGO-Virgo detection of gravitational waves
- Multi-messenger astronomy (binary neutron star merger)
- Event Horizon Telescope imaging of supermassive black holes (M87*, SgrA*)
- Evidence for stochastic gravitational wave background
 - Pulsar timing measurements (NANOGrav, EPTA, Parkes, CPTA,...)

• . . .

Despite all that, the fundamental theories have not changed!

State of the art:

- Gravity: still General Relativity (> 100 years!)
- Subatomic phenomena: Standard Model

- Particles of the Standard Model
- There are some, often modest and transient, anomalies $\!\!\!\!\!^*$

Aside: "*" from last page (can be a separate talk on its own)

- Two prominent instances (also others, largely less significant)

- Muon anomalous magnetic moment (g-2)
- g = 2 (Dirac) gets quantum corrections (SM; possibly other)
- Theory (SM): T. Aoyama, et al., Phys.Rep. 887, 1 (2020)
- \bullet Muon g-2 Collaboration 2023 results: discrepancy $\sim 5\sigma$
 - Above prediction under scrutiny, can change
 - Another prediction yields a smaller discrepancy

Borsanyi et al., Nature 593 (2021) 7857, 51-55

Phys.Rev.Lett. 126 (2021) 14, 141801

ATLAS-CONF-2023-004

• W mass

• CDF II result: $\sim 7\sigma$ discrepancy! CDF Collaboration, Science 376 (2022) 6589, 170-176

- Are there unaccounted for uncertainties?
- More data from the LHC can be illuminating

Stay tuned!

The Case for New Physics

- Despite great success of SM+GR, new physics is needed
- There is strong experimental evidence for this inference:

★ Neutrino flavor oscillations $\rightarrow m_{\nu} \neq 0$

• Adding right-handed neutrinos (of a broad range of masses) can explain this

★ Cosmology

- What is accelerating cosmic expansion? (dark energy; may be vacuum energy)
- What is holding galaxies together? (dark matter; may have its own sector)
- What caused ordinary matter asymmetry? (requires more CPV)

95% of the Universe is unknown to us!

There are also theoretical hints:

- Why is gravity so weak (Higgs mass hierarchy problem)?
- Why is CP violation so suppressed in strong interactions?
- Why ...?

Dark matter (DM)

- Robust evidence from cosmology and astrophysics
- Rotation curves of galaxies, CMB, Bullet Cluster, lensing, ...

 \bullet \sim 27% of energy density

Dark Sectors

• With lack of evidence for new weak scale physics, alternatives to Weakly Interacting Massive Particles (WIMPs) have been put forth in recent years

 \bullet Example: DM could be light ($m \lesssim {\rm GeV})$ and may reside in a separate sector with its own forces

- Analogy with SM
- Maybe set by an asymmetry (not a thermal relic), like ordinary matter
- Visible and dark sectors connected by feeble interactions
- Mediators could be light, accessible to low energy experiments

Examples of GeV Scale Dark Bosons

- Dark vector bosons
- Simplest case: dark $U(1)_d$, analogue of visible electromagnetism
- Dark photon (kinetic mixing) and dark Z (mass mixing)
- Very weakly interacting gauge bosons: B L, $L_e L_{\tau}$,... (anomaly free)
- Dark scalars
- Axion-like particles (ALPs), analogues of QCD pions (pseudo-scalars)
- Like pions, manifestations of spontaneously broken approximate global symmetries
- QCD pions: broken chiral symmetry (approximate due to small quark masses)
- Can arise in a variety of models, naturally "light" (massless for exact symmetries)

Hongkai Liu's talk on Monday; Ethan Neil's talk on Thursday

Dark Photon

• Kinetic mixing: $Z_{d\mu}$ of $U(1)_d$ and B_μ of SM $U(1)_Y$ Holdom, 1986

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \frac{\varepsilon}{\cos \theta_W} B_{\mu\nu} Z_d^{\mu\nu} - \frac{1}{4} Z_{d\mu\nu} Z_d^{\mu\nu}$$

•
$$X_{\mu\nu} = \partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu}$$
 (field strength tensor)

- $\tan \theta_W \equiv \frac{g'}{g}$ with g' and g gauge couplings of $U(1)_Y$ and SU(2), respectively
- Can be loop induced: $\varepsilon \sim eg_d/(4\pi)^2 \lesssim 10^{-3}$

• F charged under both $U(1)_Y$ and $U(1)_d$

 $J_{em}^{\mu} = \sum_{f} Q_{f} \overline{f} \gamma^{\mu} f + \cdots$

$$\mathcal{L}_{\rm int} = -e \varepsilon J^{\mu}_{em} Z_{d\mu}$$

(electromagnetic current)

- Active experimental program to search for hidden vector bosons
- Pioneering early work by Bjorken, Essig, Schuster, Toro, 2009

From Batell, Blinov, Hearty, McGehee, 2207.06905, visibly decaying dark photon

From Ilten, Soreq, Williams, Xue, 1801.04847, JHEP 06 (2018) 004

Other U(1) Gauge Interactions

- B L; anomaly free with the addition of three right-handed neutrinos
- Also what is needed to provide Dirac neutrino masses
- Leptophilic interactions: $L_i L_j$, with $i, j = e, \mu, \tau$, $i \neq j$
- Gauge one at a time
- Anomaly free
- We will consider $m_{A'}$ at or below GeV scale
- Direct coupling to SM: gauge coupling must be tiny $g_{A'} \ll 1$
- Various experimental probes, akin to dark photons
- Light and feebly interacting states can be long-lived
- Displaced vertex signals in collider experiments
- Good prospects for suppressing SM backgrounds

The Electron Ion Collider (EIC)

2103.05419, EIC Yellow Report

- New frontier in studying structure of hadronic matter, to be built at BNL
- *E.g.*, spin composition of nucleons,....
- Large \sqrt{s} , luminosity
- Up to $E_e = 18$ GeV and 110 GeV per nucleon (e-Au)
- Fixed target equivalent of \sim 4 TeV $\mathit{e}\text{-beam}$
- $\sim 100~{
 m fb^{-1}}$ per A (atomic mass)
- Polarization: \sim 70% for e and p beams
- Large nuclei (high Z): *e.g.* gold, lead

Displaced Hidden Vectors at the EIC

H.D., Marcarelli, Neil, Phys.Rev.D 108 (2023) 7, 075017, 2307.00102

- Coherent production from gold ion, Z = 79: $eA_Z \rightarrow eA_Z A'$ $(Z_d \leftrightarrow A')$
- $q^2 \lesssim \mathcal{O}(10 \text{ MeV})$
- Large Z^2 enhancement of electromagnetic scattering

- \bullet Consider only emission from e^-
- Suppressed emission from ion (form factor) except for well constrained low m_{A^\prime}

• Form factor: approximate Fourier transform of the Woods-Saxon distribution applied to Au ion

Klein, Nystrand, 1999

$$F(q^2) = \frac{3}{q^3 R_A^3} \left(\sin q R_A - q R_A \cos q R_A \right) \frac{1}{1 + a_0^2 q^2}$$

 $a_0 = 0.79$ fm and $R_A = (1.1 \text{ fm})A^{1/3}$.

• Probability of detection of displaced decay:

$$P_{\mathsf{disp}} = e^{-d_{\mathsf{min}}/(\gamma_k v_k au)} - e^{-d_{\mathsf{max}}/(\gamma_k v_k au)}$$

- d_{\min} from detector resolution, d_{\max} from geometry
- A' boost γ_k , velocity v_k , lifetime au
- Kinematic variables: laboratory frame
- Signal cross section:

$$\sigma_{\rm sig}(g_{A'}) = \int P_{\rm disp} \frac{d\sigma}{d\gamma_k \, d\eta_k} d\gamma_k \, d\eta_k \, \mathcal{B}(A' \to e^+e^-)$$

Pseudo-rapidity $|\eta| < 3.5$ (Ecce tracking)

• Focus on $A' \rightarrow e^+e^-$ (EIC: good electron tracking)

Signal Selection:

• Based on EIC Comprehensive Chromodynamics Experiment (ECCE) detector Adkins *et al.*, 2209.02580

- Now the ePIC Collaboration detector
- Signal requires both e^+ and e^- from vector decay
- $\mu^+\mu^-$ also available for much of the parameter space
- We estimated: $d_{\min} \approx \gamma_k (\mathsf{DCA}_{2\mathsf{D}}^{\min}) / (v_k \cos \theta_k^{\mathsf{lab}})$
- \bullet For pions: $\text{DCA}_{\text{2D}}^{\text{min}} \lesssim 100~\mu\text{m}$
- \Rightarrow $d_{\min} \gg$ 0.1 mm, $d_{\max} =$ 1 m

DCA: distance of closest approach

- ECCE tracking: $|\eta| < 3.5$
- We also considered a detector at z = -5 m
- Assumed: $DCA_{2D}^{min} = 200 \,\mu m$, $d_{max} = 5 \,m$
- Covering far backwards (FB): $-6 < \eta < -4$
- Coupling limits: $\mathcal{L}\sigma(g_{A'}) \geq n_{\max}$
- $n_{\rm max} = 3.09$, upper limit of the 95% confidence interval on the mean number of signal events for zero expected background

- FB capability well-motivated for these searches

- Generic for light satates emitted from the $e\mbox{-}b\mbox{eam}$ at low Q^2

Background considerations

- We assumed zero background
- Photon conversion: sparse backwards detector systems Adkins et al., 2209.02580
- Si disks separated by ~ 25 cm: cut out thin regions from signal

- Misidentified pions as electrons: electron end cap fake rate $\sim 10^{-4}$
- Requiring both e^+ and e^-
- Additional signals if muon detectors added
- Losing signal events down the beam pipe: our estimate \sim (20-30) %, manageable
- These are (theorist) projections, using rough approximations
- Detailed and more realistic simulations required for definitive results

Recently, also Balkin et al., 2310.08827

• $eN \rightarrow eNA'$, coherent scattering from Pb

 $m_{A'}$ [GeV]

- Dark photon decay $A' \rightarrow \mu^+ \mu^-$ (to reduce background)
- Decay volume $\Delta = 500$ m long (shielded) at L = 35 m from interaction point
- Does not exceed current bounds
 - Our work assumed much smaller (\gtrsim mm) displacement
 - Worthwhile to determine efficiency of our suggested background suppression

Concluding Remarks

- EIC: a frontier machine for studying hadronic structure
- Given its relatively large center of mass energy and luminosity one can leverage its capabilities to search for new physics
- "Hidden" weakly coupled vectors below the GeV scale can be produced in coherent electromagnetic scattering from large Z ions
 - \bullet Large effective luminosity $\sim Z^2$
 - Displaced "backwards" decays
 - Background may be suppressed (photon conversion) due to sparse backwards detector structure
- We examined a variety of such models and found competitive or better reach compared to other projections
- Future realistic detector simulations necessary for definitive projections
- A "far backward" (~ -5 m) detector can significantly enhance the reach
 - \bullet Muon detection capabilities can also help enlarge signal sample by $\mathcal{O}(1)$ factors