Current Status of Radio Pulsar Mass Measurements and Future Prospects

Thankful Cromartie Einstein Postdoctoral Fellow | Cornell University

INT-22-2A "Neutron Rich Matter on Heaven and Earth" | July 15, 2022

SERC

North American Nanohertz Observatory for Gravitational Waves A National Science Foundation Physics Frontiers Center

Outline

- Quick introduction to millisecond pulsars & pulsar timing (basic!)
- Pulsar timing to constrain NS masses
 - Techniques and notable examples
- Recent results from NANOGrav
- Prospects for the future

Millisecond pulsars & pulsar timing basics

MSP Basics

- Pulsar: Jocelyn Bell-Burnell in 1967
- Don't pulse, lighthouse-like
- ~10 km, 1-2 M_o
- MSPs rotate rapidly (fastest <1.5 ms) and have "weak" B-fields ~10⁸-10⁹ G
 - Spun up via recycling, mostly in binaries
- ~400 MSPs known (first in 1982)
- Observations between ~few hundred MHz and ~few GHz

NHFP

MSP Basics

Pulsar Timing

- Account for each rotation
- In addition to basic parameters, models account for ISM dispersion (DM), GR effects, ephemeris, etc.
- Deviations (measurement model) = residuals
- Precision rivals atomic clocks

Pulsar mass measurement techniques

Motivation

Watts et al. 2016

Motivation

Overview: Radio Pulsar Mass Measurements

Five Keplerian parameters describe classical delay in binaries and can be measured:

- Projected semimajor axis: $x \equiv a \sin(i) / c$
- Longitude of periastron: ω
- Time of periastron passage: T_0
- Orbital period: $P_{\rm b}$
- Orbital eccentricity: *e*

$$f(m_p, m_c) = \frac{4\pi^2}{G} \frac{(a\sin i)^3}{P_b^2} = \frac{(m_c \sin i)^3}{(m_p + m_c)^2}$$

Overview: Radio Pulsar Mass Measurements

$$f(m_p, m_c) = \frac{4\pi^2}{G} \frac{(a \sin i)^3}{P_b^2} = \frac{(m_c \sin i)^3}{(m_p + m_c)^2}$$

- Still don't have $m_{c'}, m_{p'}, i \rightarrow can't$ determine masses individually
- Break by measuring post-Keplerian parameters (only possible in a subset of systems):
 - \circ Rate of periastron advance ω and Einstein delay γ (eccentric)
 - Orbital period decay $\dot{P}_{\rm b}$ (long timing baseline)
 - Shapiro delay parameters *r*, *s* (more on this later)

Thankful Cromartie | INT-22-2A | July 15, 2022

Overview: Radio Pulsar Mass Measurements

Notable PK measurements:

- B1913+16, the Hulse-Taylor DNS (1975):
 - Compact, eccentric (3 PK; GW energy loss)
- J0737-3039, the double pulsar (Burgay et al. 2003):
 - Most compact, highly inclined; seven measured parameters including M/R
 - Consistent independent of PK choice

- Shapiro delay occurs at superior conjunction in edge-on binary systems
- "Range" and "shape" PK parameters are directly measurable:

$$r = T_{\odot}m_2$$

$$s = x \left(\frac{P_{\rm b}}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{2/3} m_2^{-1}$$

$$f(m_p, m_c) = \frac{4\pi^2}{G} \frac{(a \sin i)^3}{P_b^2} = \frac{(m_c \sin i)^3}{(m_p + m_c)^2}$$

NANOGrav

hysics Frontiers Center

ति कि

NHFP

Generic Model of Shapiro Delay at Various i

Generic Model of Shapiro Delay at Various i

Generic Model of Shapiro Delay at Various i

Generic Model of Shapiro Delay at Various i

Recent radio Shapiro delay results (and more!)

Massive NS via Shapiro Delay (J1614-2230)

Demorest et al. 2010:

- Long-term timing + phase-targeted campaign
- $1.97 \pm 0.04 M_{\odot}$
- (Fonseca et al. 2016): $1.928 \pm 0.017 M_{\odot}$
- First ~2 M_{\odot} NS rules out softer EoS (hyperons, kaon condensates, etc.)

NHFF

MSP J0740+6620:

- Found in GBNCC survey (Stovall et al. 2014)
- $P = 2.9 \text{ ms}, P_{b} = 4.8 \text{ days}$
- NANOGrav MSP since 2014 that showed hint of Shapiro delay (2.0 \pm 0.2 M $_{\odot}$)
- GBT 6-hr supplemental campaign targeted conjunction; saw significant Shapiro delay (yielded 2.18 \pm 0.15 $\rm M_{\odot}$ combined with NANOGrav data)
- Random orbital sampling wasn't enough

- NANOGrav + targeted campaigns $\rightarrow m_p \sim 2.14 \pm 0.09$ M_{\odot} (then the most massive NS; Cromartie et al. 2020)
- Higher mass \rightarrow also in tension with "exotic" theories (quark matter, hyperons, meson condensates, etc.)
- See fully recycled MSPs < 1.4 M $_{\odot} \rightarrow$ born massive?

- Updated in Fonseca et al. 2021
- Additional 1.5 years of GBT w/NANOGrav at high cadence
- 1.5 years daily CHIME observations
- $2.08 \pm 0.07 \text{ M}_{\odot}$
- Lower limit on max. mass unchanged from Cromartie et al.
- First measurement of P_b (consistency check w/parallax d)

NHFP

cs Frontiers Center

NICER + NANOGrav + XMM:

- Riley et al. 2021:
 - R = 11.29 (+1.20, -0.81) km
- Miller et al. 2021:
 - R = 11.51 (+1.87, -1.13) km
- These analyses significantly constrain the EoS (Raaijmakers et al. 2021)

Not-So-Massive NS via Shapiro Delay (J1231-1411)

- Brightest gamma-ray MSP, NICER target
- 22 additional hours (incl. 2x6 hr conjunction) w/GBT to obtain Shapiro delay measurement; combined with Nançay and archival GBT
- emcee-based MCMC in PINT:
 - Tauris & Savonije 1999 (TS99) prior on M2
 - Flat-in-cos(i) prior on sin(i)
- Radio Shapiro delay is significant; not Fermi
- 1-sig results:
 - \circ M_c = 0.216 (-0.042, + 0.053) M_{\odot}
 - \circ sin(i) = 0.990 (-0.009, +0.005) ~82 deg

NHFF

 \circ M_p = 1.707 (-0.475, +0.661) M_{\odot}

Massive NS via Companion Observations

Antoniadis et al. 2013 (J0348+0432):

- 39-ms PSR, 2.5-hour P_b
- APO & VLT spectroscopy of WD \rightarrow folded RV \rightarrow mass ratio; WD cooling curves \rightarrow WD mass

•
$$m_p = 2.01 \pm 0.04 M_{\odot}$$

Massive NS via Companion Observations

"PSR J0952-0607: The Fastest and Heaviest Known Galactic Neutron Star" (Romani et al. 2022):

- Black widow discovered with LOFAR; fastest Galactic MSP (1.41 ms)
- Spiders likely have long accreting phases before ablation \rightarrow massive
- Optical counterpart was thought to be too faint
 - 2x two-color imaging campaigns, six spectroscopic observations
- $m_p = 2.34 \pm 0.17 M_{\odot}$ (1 σ)
- "Cleaner" BW system but complicated by large brightness drops
- 10-30 m class telescopes will help improve precision

Other New (Selected) Mass Measurements

- J0955-6150 (Serylak et al. 2022):
 - \circ Very eccentric (e = 0.11), significant ω and SD
 - Vastly improved timing precision with MeerKAT

- MeerKAT RelBin program (Kramer et al. 2021):
 - New SD measurements for several sources, ongoing observations
- Combined results for J2045+3633 (~1.251 $\rm M_{\odot}$ in McKee et al. 2020)
- New masses from FAST, CHIME, etc.
 - FAST: sensitivity, CHIME: cadence
- These are important for binary evolution, X-ray priors, population studies

Constraining the Mass Distribution

- As more masses are measured precisely, we get a better idea of what the overall NS population looks like
- ~20% with mass > 1.8 M $_{\odot}$; bimodal w/ peaks at ~1.4 and ~1.8 M $_{\odot}$ (Antoniadis et al. 2016) \rightarrow SN physics, birth masses

Recent results from NANOGrav

NANOGrav

- Characterize the nanohertz gravitational wave (GW) universe through high-precision radio timing of millisecond pulsars
 - Supermassive black hole binaries: stochastic background, continuous wave (CW) signals, bursts with memory
 - Last parsec problem, merger rates, SMBHB populations
 - Exotic sources and gravity beyond GR
- Interesting secondary science = free! (NS masses, ISM studies, profile variation, etc.)

BO/AUL/NEF

This is NANOGrav-centric; other PTAs are doing GW searches and NS mass constraints, too! (Including the IPTA)

NANOGrav

- Proven strategy: both J0740+6620 and J1614-2230 are NANOGrav MSPs
- Successive data releases improve measurement precision
 - Fonseca et al. 2016: 24 binaries w/ 14 significant SD measurements
 - This was for the 9-year data set

Estimates of Shapiro-delay Parameters from χ^2 -grid Analyses							
PSR	Pulsar Mass (M_{\odot})		Companion Mass (M_{\odot})		System Inclination (deg)		
	Trad	Ortho	Trad	Ortho	Trad	Ortho	
J0613-0200	$2.3^{+2.7}_{-1.1}$	$2.1^{+2.1}_{-1.0}$	$0.21^{+0.23}_{-0.10}$	$0.19\substack{+0.15 \\ -0.07}$	66 ⁺⁸ ₋₁₂	68^{+7}_{-10}	
J1600-3053 ^a	$2.4^{+1.5}_{-0.9}$	$2.4^{+1.3}_{-0.8}$	$0.33_{-0.10}^{+0.14}$	$0.33\substack{+0.13 \\ -0.08}$	63^{+5}_{-5}	64^{+4}_{-5}	
J1614-2230	$1.928\substack{+0.017\\-0.017}$	$1.928\substack{+0.017\\-0.017}$	$0.493\substack{+0.003\\-0.003}$	$0.493\substack{+0.003\\-0.003}$	$89.189\substack{+0.014\\-0.014}$	$89.188\substack{+0.014\\-0.014}$	
J1640+2224	$4.4^{+2.9}_{-2.0}$	$5.2^{+2.6}_{-2.0}$	$0.6^{+0.4}_{-0.2}$	$0.7\substack{+0.3 \\ -0.2}$	60^{+6}_{-6}	58^{+6}_{-6}	
J1713+0747 ^{a,b}	$1.31\substack{+0.11 \\ -0.11}$	$1.31_{-0.11}^{+0.11}$	$0.286\substack{+0.012\\-0.012}$	$0.286\substack{+0.012\\-0.012}$	$71.9^{+0.7}_{-0.7}$	$71.9_{-0.7}^{+0.7}$	
J1741+1351 ^a	$1.87^{+1.26}_{-0.69}$	$1.78^{1.08}_{-0.63}$	$0.32\substack{+0.15 \\ -0.09}$	$0.31\substack{+0.13 \\ -0.08}$	66^{+5}_{-6}	66^{+5}_{-6}	
B1855+09	$1.30\substack{+0.11\\-0.10}$	$1.31\substack{+0.12 \\ -0.10}$	$0.236\substack{+0.013\\-0.011}$	$0.238\substack{+0.013\\-0.012}$	$88.0^{+0.3}_{-0.4}$	$88.0^{+0.3}_{-0.4}$	
J1903+0327 ^a	$1.65\substack{+0.02 \\ -0.02}$	$1.65\substack{+0.02\\-0.03}$	$1.06\substack{+0.02\\-0.02}$	$1.06\substack{+0.02\\-0.02}$	72^{+2}_{-3}	72^{+2}_{-3}	
J1909-3744	$1.55\substack{+0.03 \\ -0.03}$	$1.55\substack{+0.03 \\ -0.03}$	$0.214\substack{+0.003\\-0.003}$	$0.214\substack{+0.003\\-0.003}$	$86.33_{-0.10}^{+0.09}$	$86.33_{-0.10}^{+0.09}$	
J1918-0642	$1.18\substack{+0.10 \\ -0.09}$	$1.19\substack{+0.10 \\ -0.09}$	$0.219\substack{+0.012\\-0.011}$	$0.219\substack{+0.012\\-0.011}$	$85.0^{+0.5}_{-0.5}$	$85.0\substack{+0.5\\-0.5}$	
J1949+3106	$4.0^{+3.6}_{-2.5}$	$4.0^{+3.4}_{-2.3}$	$2.1^{+1.6}_{-1.0}$	$1.9^{+1.5}_{-0.9}$	67^{+9}_{-8}	68^{+8}_{-8}	
J2017+0603	$2.4^{+3.4}_{-1.4}$	$2.0^{+2.8}_{-1.1}$	$0.32^{+0.44}_{-0.16}$	$0.27\substack{+0.30 \\ -0.12}$	62^{+9}_{-12}	65^{+7}_{-11}	
J2043+1711	$1.41_{-0.18}^{+0.20}$	$1.43_{-0.18}^{+0.21}$	$0.175\substack{+0.016\\-0.015}$	$0.177^{+0.017}_{-0.015}$	$83.2_{-0.9}^{+0.8}$	$83.1_{-0.9}^{+0.8}$	
J2302+4442	$5.3^{+3.2}_{-3.6}$	$5.5^{+3.0}_{-3.2}$	$2.3^{+1.7}_{-1.3}$	$1.8^{+1.6}_{-1.0}$	54 ⁺¹²	57^{+11}_{-9}	
J2317+1439	$4.7^{+3.4}_{-2.8}$	$4.1^{+3.5}_{-2.4}$	$0.7^{+0.5}_{-0.4}$	$0.5^{+0.5}_{-0.3}$	47^{+10}_{-7}	51^{+10}_{10}	

Table 3

Note. — All uncertainties reflect 68.3% credible intervals. "Trad" refers to estimates made with the traditional $(m_c, \sin i)$ Shapiro-delay model, while "Ortho" refers to those made with the orthometric (h_3, ς) model. Difference in median values and credible intervals reflect the consequence in choosing uniform prior PDFs on the $(m_c, \sin i)$ or (h_3, ς) parameters for weak measurements of Δ_s .

^a The observed secular variations in this system were used to constrain the Shapiro-delay parameters.

^b The Shapiro-delay estimates for PSR J1713+0747 were taken from Zhu et al. (2015), which used the NANOGrav nine-year data set as well as historical TOAs collected for previous studies.

NANOGrav 12.5-Year Data Set

- Narrowband and wideband data releases (Alam et al. 2021a, b) for 47 MSPs over ~13 years
- Wideband = data volume reduction by >30x!

Advertisement: NANOGrav 12.5-Year GW Results

Arzoumanian et al. 2018 (top), 2020 (bottom)

- GWB analysis (Arzoumanian+21) finds:
 - Strong evidence for $\gamma = 13/3$ common red process
 - No strong evidence for HD correlations; evidence against monopolar and dipolar correlations
- Findings from other PTAs and the IPTA in agreement

NANOGrav 15-Year Data Set

- 15-year data set adds 21 MSPs and ~3 years; GWB analysis is underway
- PINT-based timing in new pipeline
 - Transparency and accessibility
- VLA data and J0437-4715
- NB and WB timing, but WB issues under investigation

Comparing the 12.5 and 15-Year Data Sets

Comparing the 12.5 and 15-Year Data Sets

Thankful Cromartie | INT-22-2A | July 15, 2022

Physics Frontiers Center

NHFP

Comparing the 12.5 and 15-Year Data Sets

Advanced Techniques

- Bayesian radio timing:
 - Uncertainty: parameters and correlations; model non-linear dependence
 - Priors: use physical information
 - Model comparison: compare models with different parameters (Vigeland & Vallisneri 2014)
- Implemented in PINT as MCMCFitter
- For now, χ^2 gridding (Fonseca et al. 2016) in TEMPO(2) / PINT helps; implementing in pipeline
- WB data set makes Bayesian timing feasible

Selected Gridding Results

- Incomplete and preliminary!
- All 15yr pulsar masses (so far; vast majority done) consistent with 12.5-year results
- Some interesting new results: J1630+3734: low Cl (2-sigma) > 2.1 M_{\odot} :

New for 15-year: J1312+0051, J1012-4235, and more

Significant improvements, like J2017+0603: 1.7718 + 1.8218 - 0.8208 $\rm M_{\odot}$

Selected Gridding Results

Currently combining recent targeted results with NANOGrav 15-year data set

Incomplete and preliminary!

NHFF

Looking forward

The Future of SD Mass Measurements

- Targeted campaigns help constrain masses
- Some systems simply show weak SD, or don't time "well"
 - Proven limit to improving constraint
- Improving TOA precision can happen in a number of ways:
 - Increasing sensitivity (new & planned facilities)
 - Increasing bandwidth (Parkes, GBT)
- Long-term and high-cadence observing projects are great for orbital phase coverage (CHIME/NANOGrav, MeerKAT timing projects, other PTAs, etc.)
- Searches! Better telescopes, better algorithms / compute power

Near Future for This Work

- NANOGrav 15-year data set (WB+NB), GWB search, noise budget, astrophysics will be released together in early 2023
 - Full binary analysis
- WB Bayesian constraints, PINT-based gridding for all binaries
- "SD masses over time" assessment
- GBT UWB receiver, DSA-2000, SKA, etc.
- Continuing to collaborate with NICER folks!

Summary

- Measurements of post-Keplerian parameters for radio MSPs has been and remains one of the best ways to precisely measure NS masses
 - Carefully planned observational campaigns improve constraints
- New facilities (MeerKAT, FAST, CHIME, etc.) are key for these observations
- Optical observations of a WD companion have (very) recently revealed a high (>2.35 $\rm M_{\odot}$) mass NS, but improved precision is important
- NANOGrav's growing data set brings newly significant NS masses

