The Equation of State of Symmetric Nuclear Matter from Intermediate Energy Heavy-Ion Data

Dan Cozma

IFIN-HH Magurele-Bucharest, Romania

"Dense Nuclear Matter Equation of State from Heavy-Ion Collisions" 5-9 December 2022, INT, USA

Overview

Motivation

Model Details

dcQMD – interaction parametrization Medium modification of cross-section Threshold effects Initial/final state treatment

Study of EoS of SNM

Stopping observables Transverse flow Elliptical flow

Perspectives

Prerequisites for HIC above 1.0 GeV/nucleon Improving reaction dynamics for QMD models

Summary & Conclusions

Motivation

- latest version of the dcQMD model used to study symmetry energy with pion production
- empirical effective isoscalar mass m*=0.70
- compressibility modulus close to world average K₀=245 MeV
- in-medium modification factor adjusted to qualitatively describe nucleonic observables

possible source of discrepancy at medium p_{T} values: somewhat unrealistic dynamics

Experimental data: (FOPI) NPA 876, 1 (2012) similar quality of description of exp. data for p,d,t, α in the energy range 150-800 AMeV

Model Details

dcQMD transport model: newest version EPJA 57, 309 (2021)

an upgraded version of TuQMD, see H. Wolter et al.

Prog.Part.Nucl.Phys. 125, 103962 (2022)

Interaction (nucleonic d.o.f.)

momentum dependent potential MDI2

-generalization of MDI of

Das, Das Gupta, Gale, Li PRC67, 034611 (2003) $\frac{E}{N}(\rho,\beta,x,y) = \frac{1}{2}A_1u + \frac{1}{2}A_2(x,y)u\beta^2 + \frac{Bu^{\sigma}}{\sigma+1}(1-x\beta^2) + \frac{Du^2}{2}(1-y\beta^2)$ Fit: $\frac{+1}{u\rho_0^2} \sum_{\tau,\tau'} C_{\tau\tau'} \int \int d^3p \, d^3p \, '\frac{f_{\tau}(p,p')f_{\tau'}(p,p')}{1+(\vec{p}-\vec{p}\,')^2/\Lambda^2}$ U_,K,J_,m* -isoscalar $S(\tilde{u}),L,K_{sym},\delta m_{isv}$ -isovector

momentum dependent part: similar with that of J. Xu et al. PRC 91, 014611 (2015) (see also C. Hartnack, J. Aichelin PRC 49, 2801 (1994)) used previously to test model dependence: flow ratio PRC 88, 44912 (2013)

pion multiplicity ratio PLB 753, 166 (2016)

independent part: extra term (vary L vs. K_{svm} and also J₀ vs. K independently)

 $u = \frac{\rho}{\rho_0}$

 $A_{2}(x, y) = A_{2}^{0} + \frac{2xB}{\alpha+1}\bar{u}^{\alpha-1} + \frac{2yD}{3}\bar{u}$

Input		Parameters	
$ \begin{array}{c} \rho_0 \; [{\rm fm}^{-3}] \\ E_B \; [{\rm MeV}] \\ m_s^*/m \\ \delta_{n-p}^* \; (\rho_0, \beta = 0.5) \\ K_0 \; [{\rm MeV}] \end{array} $	$\begin{array}{c} 0.16 \\ -16.0 \\ 0.70 \\ 0.165 \\ 245.0 \end{array}$	$ \begin{array}{c} \Lambda \; [\mathrm{MeV}] \\ C_l \; [\mathrm{MeV}] \\ C_u \; [\mathrm{MeV}] \\ B \; [\mathrm{MeV}] \\ \sigma \\ \tilde{\sigma} \end{array} $	$708.001 \\ -13.183 \\ -140.405 \\ 137.305 \\ 1.2516$
$\begin{array}{c} J_0 \; [\mathrm{MeV}] \\ \tilde{\rho} \; [\mathrm{fm}^{-3}] \\ \mathrm{S}(\tilde{\rho}) \; [\mathrm{MeV}] \end{array}$	-350.0 0.10 25.4	$A_l \ [MeV]$ $A_u \ [MeV]$ $D \ [MeV]$	-130.495 -8.828 7.357

 $\overline{C}_{1}-C_{1}$

Collision Term

Elastic baryon-baryon collisions below pion production threshold: Li-Machleidt

> Li, Machleidt PRC 48, 1702 (1993), Li, Machleidt PRC 49, 566 (1994)

above pion production threshold: Cugnon in-medium modification factor

- collision criterion based on effective masses determined using EoM (consistency with the $dt \rightarrow 0$ fm/c limit)

Inelastic baryon-baryon, mesonbaryon collisions (related only to pion production)

two step process:

- resonance excitation in baryon-baryon collisions parametrization of the OBE model of S.Huber et al., NPA 573, 587 (1994)
- resonance decay: Breit-Wigner shape of the resonance spectral

- in-medium modification of elastic cross-sections function J. Weil et al, PRC 94, 054905 (2016)

 $\sigma^{med} = f(\rho, \delta,) \sigma^{vac}_{mod}$ $f(\rho, \delta) = \exp[\alpha \rho / \rho_0 + \beta_1 \delta \rho / \rho_0 + \beta_2 (\tau_1 + \tau_2) \delta \rho / \rho_0]$

σ^{vac}_{mod} – flux and phase-space factors computed using effective masses B.A. Li et al. PRC72, 064611 (2005)

 $f(\rho, \delta)$ – accounts for medium modifications of transition matrix due to departure from the quasi-particle picture

C. Fuchs et al. PRC 64, 024003 (2001)

 $\beta_1=0$ and $\beta_2=0$ in this study

- charge exchange reactions: NR->NR'

pion absorption:

-resonance model (all 4* resonances below 2 GeV) K. Shekhter, PRC 68, 014904 (2003)

inelastic channels: mass scaling formula

 $\sigma_{N\Delta}(\rho,\beta,p) = \sigma_{N\Delta}^{vac}(p) \frac{\mu_{ini}(\rho,p)}{\mu_{ini}^{vac}(p)} \frac{\mu_{fin}(\rho,p)}{\mu_{fin}^{vac}(p)}$

See also Larionov et al., NPA 728, 135 (2003)

Threshold Effects (dcQMD)

- direct consequence of imposing (total) energy conservation in the medium

$\sqrt{p_1^2 + m_1^2} + U(p_1) + \sqrt{p_2^2 + m_2^2} + U(p_2) = \sqrt{p'_1^2 + m'_1^2} + U(p'_1) + \sqrt{p'_2^2 + m'_2^2} + U(p'_2)$

- rarely considered in transport models below 1 AGeV, with a few exceptions: RBUU: G. Ferini et al. PRL 97, 202301 (2006), RVUU: T. Song, C.M. Ko PRC 91, 014901 (2015); χBUU: Z. Zhang et al, PRC 98, 054614 (2018)
- required for thermodynamical consistency of the model

Z.Zhang et al, PRC 97, 014610 (2018)

- reactions: NN \leftrightarrow NR, R \leftrightarrow N π (R \leftrightarrow N $\pi\pi$ not corrected)

- assumptions (dcQMD): - two-body collisions are part of N-body one

- in-medium two-body collisions modeled as a succession of bare (vacuum-like) collisions followed/preceded by energy exchanges with the fireball, while momentum is conserved
- reaction with highest probability: corresponds to the one which included the bare collision of highest probability

Example: NN->N Δ

$$\sigma_{NN \to N\Delta}^{(med)}(s^*) = \frac{\mu^{(ini)*}}{\mu^{(ini)}} \frac{\mu^{(fin)*}}{\mu^{(fin)}} \sigma_{NN \to N\Delta}^{(vac)}(s^*)$$

s*=Max{sⁱⁿⁱ,s^{fin}}

Introduced in TuQMD/dcQMD in DC, PLB 753, 166 (2016)

Initial/Final State

Initial state density profile of nuclei

- nuclei initialized with realistic charge radii and neutron skins

- larger L^2_{N} leads to stronger tails and consequently lower reduced impact parameter (flow at projectile/target rapidities affected most visibly)

this study: L_{N}^{2} =5.0 fm²

Minimum spanning tree (MST) algorithm all clusters with A \leq 15, 23 additional

A>15 (B,C,N,O)

Stable : lifetime > 1ms Unstable : decay into stable using known decay channels

Au+Au @ 400 AmeV b< 2.0 fm

this study: δr=4.0 fm, δp=0.2 GeV/c

Study EoS of SMN

stopping and flow observables for protons and light clusters in AuAu collisions of impact energy 0.15-0.80 GeV/nucleon (FOPI Coll)

Rapidy Spectra

- used in the past to fix in-medium modification factor of elastic cross-sections see e.g. P. Danielewicz et al., Science 298, 1592 (2002)
- varxz (H) and constrained transverse CI rapidity spectra for AuAu used in this study
 FOPI exp data: W. Reisdorf et al. NPA 848, 366 (2010)

ratio of transverse-to-longitudinal variances of rapidy spectra

weaker correlation between α and K₀ also evidenced

Rapidity Spectra

- sizable sensitivity of varxz observables to EoS has been previously evidenced

W. Reisdorf et al. NPA 848, 366 (2010)

- current model reproduces impact energy dependence of varxz observables EPJA 57, 309 (2021)

- different (α,m*) values depending on choice of observable(s)

- medium modification factor of cross-sections at $\rho_{_0}$ and $p_{_F}$ is similar (~0.65)

Proton Transverse Flow

Experimental data set: proton rapidity dependent v_1 ut0 > 0.8 – 150, 250 AuAu 0.25<b_0<0.45 ut0 > 0.4 – 400, 600, 800 AuAu 0.25<b_0<0.45

W. Reisdorf et al., NPA 876, 1 (2012)

68% CL Result

α=0.040-0.051+0.067 m*=0.936-0.032+0.022 K₀=200-22+31 MeV

stronger in-medium modification factor at lower impact energies possibly connected to an insufficient Pauli blocking of final state of two-body collisions

Proton Elliptic Flow

Experimental data set: proton rapidity dependent v_2 ut0= $p_T/p_P > 0.8 - 150-800$ AuAu 0.25< b_0 <0.45

W. Reisdorf et al., NPA 876, 1 (2012)

IQMD protons v_{2n} : K_0 =232±30 MeV (light cluster soften the reported combined result) A.Le Fevre et al., NPA 945, 112 (2016)

P_{T} dependent Elliptic Flow

Experimental data set: p,d,t transverse momentum dependent v_2 |y|<0.4 – 150-800 AuAu 0.25<b_0<0.45

W. Reisdorf et al., NPA 876, 1 (2012)

68% CL Result

PRELIMINARY

α=0.192-0.048+0.049 m*=0.621-0.008+0.008 K_o=250-8+8 MeV

model dependence due to coalescence afterburner not accounted !

IQMD full result v_{2n} : K_0 =190±30 MeV (light clusters: p,d,t, α) A.Le Fevre et al., NPA 945, 112 (2016)

Elliptic Flow (Combined Result)

Experimental data set: p rapidity dependent v_2

p,d,t transverse momentum dependent v_2

inclusion of v₁ data leads to a sub-optimal fit (χ^2 /dof~2)

68% CL Result

 α =0.287 ± 0.036 m*=0.624 ± 0.009 K_o=236 ± 6 MeV

IQMD result:

A.Le Fevre et al., NPA 945, 112 (2016)

Microscopic calculations:

 A. Ekstrom et al., PRC 91, 051301 (2015)
 C. Drischler et al., PRC 102, 054315 (2020)
 A. Carbone, PRR 2, 023227 (2020)
 D. Logoteta, PRC 94, 064001 (2016)

Perspectives

R.M.

Pion production in AuAu at 1.23 AGeV

J. Adamczewski-Musch et al. (HADES), EPJA 56, 259 (2020)

Note: HADES pion total yield are larger then FOPI yields at 1.2 GeV by about 30% very preliminary calculation addressing the feasibility of studying the symmetry energy

-alternative approach to a systematic description of HADES rapidity and transverse mass spectra: K. Godbey et al. PLB 829, 137134 (2022)

Sensitivity to Resonance Meanfield

chosen impact energy: 1.0 GeV/nucleon (AuAu) about 20% of nucleons excited into $\Delta(1232)$ at the highest density for central collisions

compressibility modulus: extracted from $v_2(y)$ imp impact of $\Delta(1232)$ potential on proton $v_2(y)$: ~ 15% (1.5 σ) omission equivalent to δK_0 =-30 MeV

Momentum dependence

elliptic flow constraint for effective mass: $m^*=0.624 \pm 0.009$

possible reasons: compensate for unrealistic density evolution; high density dependence of optical potential deviates from the assumed linear

for a comparison to BUU models, see M. Colonna et al. (TMEP Coll), PRC 104, 024603 (2021)

Proposed Approximation

 zero range two-body+ zero range density dependent two-body interaction operators

$$V = \sum_{j>i} t_1 \,\delta(\vec{R}_i - \vec{R}_j) + \sum_{j>i} t_2 \rho^{\gamma-1}(\frac{\vec{R}_i - \vec{R}_j}{2}) \,\delta(\vec{R}_i - \vec{R}_j)$$

- perform Weyl transform and use the Ansatz for the total wave function of the system as a product of Gaussian wave-packets

$$V = t'_{1} \sum_{i} \rho_{int}(\vec{r}_{i}) + \frac{t_{2}}{(\pi L^{2})^{3/2}} \sum_{j>i} e^{\frac{-(\vec{r}_{i} - \vec{r}_{j})^{2}}{L^{2}}} I(\gamma; L^{2}; \frac{\vec{r}_{i} + \vec{r}_{j}}{2})$$
$$\rho_{int}(\vec{r}_{i}) = \frac{1}{(\pi L^{2})^{3/2}} \sum_{j\neq i} e^{\frac{-(\vec{r}_{i} - \vec{r}_{j})^{2}}{L^{2}}}$$
$$I(\gamma; L^{2}; \vec{r}_{0}) = \frac{1}{(\pi L^{2}/4)^{3/2}} \int d^{3}r \rho^{\gamma-1}(\vec{r}) e^{-4(\vec{r} - \vec{r}_{0})^{2}/L^{2}}$$

- the expression I(...) can be evaluated analytically for $\gamma=2$ (besides the trivial case $\gamma=1$)

$$I(\gamma=2; L^{2}; \vec{r_{0}}) = \frac{1}{(3/4 \pi L^{2})^{3/2}} \sum_{k} e^{\frac{-(r_{k}-r_{0})^{2}}{3/4 L^{2}}} = \rho_{3b}(\vec{r_{0}}; \alpha L^{2})$$

make the approximation: $I(\gamma; L^2; \vec{r_0}) = \rho_{3b}^{\gamma-1}(\vec{r_0}; \alpha L^2)$

 $V = t'_{1} \sum_{i} \rho_{int}(\vec{r}_{i}) + \frac{t_{2}}{(\pi L^{2})^{3/2}} \sum_{j>i} e^{\frac{-(\vec{r}_{i}-\vec{r}_{j})^{2}}{L^{2}}} \rho_{3b}^{\gamma-1}(\frac{\vec{r}_{i}+\vec{r}_{j}}{2};\alpha L^{2}) \quad \alpha = 3/4 \text{ good approximation}$

$$\begin{split} &N^{2} approximation QMD: the above \\ &N approximation QMD: \rho_{3b}^{\gamma-1}(\frac{\vec{r}_{i} + \vec{r}_{j}}{2}; \alpha L^{2}) \approx \frac{1}{2} [\rho_{3b}^{\gamma-1}(\vec{r}_{i}; \alpha L^{2}) + \rho_{3b}^{\gamma-1}(\vec{r}_{j}; \alpha L^{2})] \\ &traditional QMD: \qquad \rho_{3b}^{\gamma-1}(\frac{\vec{r}_{i} + \vec{r}_{j}}{2}; \alpha L^{2}) \approx \frac{1}{2} [\rho_{\text{int}}^{\gamma-1}(\vec{r}_{i}) + \rho_{\text{int}}^{\gamma-1}(\vec{r}_{j})] \end{split}$$

Required/Desired Future Developments

Theoretical side: - improve time evolution of the reaction using more accurate approximations for 3-body terms of the interaction

- does description of experimental data require a density dependence of the optical potential that deviates from the assumed linear one ?
- improve model to be used for a robust & accurate study of the EoS using reactions above 1 GeV/nucleon (relevance of nucleonic resonances for the evolution of the system)
- relativistic dynamics

Experimental side:

- coalescence invariant (H+He at minimum) observables to avoid model dependence on determining final state spectra

- understanding of the observed discrepancy between FOPI and HADES pion multiplicities in AuAu collisions at 1.2 GeV/nucleon (of utermost importance for extracting accurate Information on the EoS in the vicinity of $2\rho_0$ and above)

Summary & Conclusions

- **Study of SNM EoS using nucleonic observables** in AuAu collision of intermediate impact energy (0.15-0.80 GeV/nucleon)

- transverse rapidity spectra: mostly constrain the in-medium modification factor of elastic NN cross-sections

rapidity dependent transverse flow: moderately accurate value for K₀, points towards stronger
 in-medium modification of cs at low impact energy
 rapidity dependent elliptic flow: moderately accurate value for K₀, compatible with other
 similar studies (IQMD+FOPI)

transverse momentum dependent elliptic flow:
 very accurate constraint for K₀, some tension with
 momentum dependence of the empirical optical pot.
 probing higher densities: impact of nucleonic

- probing higher densities: impact of nucleonic resonances has to be accounted accurately

Perspectives: - improve description of reaction dynamics using more accurate estimation of the 3-body term

- extend the model to accurately study EoS above $2\rho_0$ using

HIC of impact energy above 1.0 GeV/nucleon (multi-pion decay channels of resonances)

Stopping: Theory vs. Experiment

10 systems (FOPI experiment, see W.Reisdorf et al. NPA 848, 366 (2010)

Best fit achieved for: α =0.33, β=-0.60 Quality of the fit: m*=0.705, Δ m*_{np}=0.250 δ χ^2_{min} /d.o.f.=4.2

Fitting each specie (p, d or t) separately/alone does improve the quality of the fit

Correlations between parameters

Contours – limits of allowed parameter space at 1σ CL

Medium modification factor of cross-sections at saturation varies from 0.65 to 0.90 for the shown range of isoscalar effective mass

Flows – α and m* are correlated (rather than anti-correlated as observed for varxz)

no statistically significant correlation between isovector parameters

Stopping

Model dependence

System size dependence

light cluster experimental stopping underestimated: deuterons (moderately), tritons (severely)

Experimental data: W. Reisdorf et al. (FOPI) NPA 848, 366 (2010)