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From low to high energies

PDF determination is twofold:  

learned from data — knowledge on low-energy dynamics and pQCD expansion

used for precision physics at higher energies


The EIC may contribute to learning unpolarized PDFs — paradigm for this talk.
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Kinematical coverage for collinear PDFs

Extrapolation regions for unpolarized PDFs


very small  — .

large :  , includes the valence region.


Both regions involve physics at the end-points —non-perturbative and more effects.

x x < 10−6

x x ≳ 0.2

[Prog.Part.Nucl.Phys.121]

A bit outdated…
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(iii) a free scenario particular to CJ, in which the parameters
in Eq. (3) for the off-shell nucleon are allowed to vary.

The dynamical deuteron corrections are natively imple-
mented in the CJ framework, and the off-shell parameters
can be simultaneously fitted with the PDFs. So far, however,
the CT code only supports deuteron corrections given in the
form of analytic interpolations, such as the one obtained from
the correction in [59]. To implement the fixed CJ15 deuteron
correction in the CT framework and render it more directly
comparable to CJ with respect to its treatment of deuteron tar-
get data, we instead multiply the experimental DIS deuteron
structure function by the F N

2 /F D
2 nucleon-to-deuteron ratio

plotted in Fig. 3:

F N
2 ≡ Fd

2,exp

(
F N

2

Fd
2

)

CJ15

, (4)

with F N
2 = F p

2 + Fn
2 . The effective isoscalar combination

of proton and neutron structure functions thus defined can
then be directly compared to uncorrected theoretical calcu-
lations of the isoscalar deuteron DIS structure function. On
this logic, the CT and CJ fits with a fixed CJ15 correction are
placed on similar theoretical footing regarding the imple-
mentation of the deuteron effects, with the main difference
being whether the correction is imposed within the theoreti-
cal structure function calculation or in the Fd

2 experimental
data – a fact which is immaterial for the sake of evaluating
the χ2-function and allows us to compare the impact of the
same fixed correction on the CJ and CT frameworks. While
a full analysis of the nuclear correction uncertainties is out-
side the scope of this article, the effect of letting the nuclear
off-shell parameters free to vary in the present analysis can
be appreciated by comparing the CJ fits in the fixed and free
nuclear corrections scenarios.

The size and x dependence of the deuteron corrections,
as quantified by the isoscalar nucleon-to-deuteron structure
function ratio F N

2 /Fd
2 , are shown in Fig. 3 for several rep-

resentative choices of Q2. One immediately notices that
deuteron corrections depend on the DIS scale and, at large x ,
increase with Q2 toward a fixed point in the Q2 →∞ Bjorken
limit; as such, deuteron corrections become effectively scale
independent for Q2 ! 50 GeV2. For each plotted value of
Q2, the figure also indicates the maximum x values below
which data are accepted in the CJ and CT fits according to
their W 2 > 3 and W 2 > 12.25 GeV2 kinematic cuts, respec-
tively. For CJ, which extends the analyzed DIS data set to the
low-Q2 and large-x values as shown in Fig. 4, it is imperative
to correctly account for the Q2 dependence of the deuteron
correction in order to avoid conflicts with the leading-twist
logarithmic Q2 evolution that constrains the fitted gluon dis-
tribution in DIS experiments. For CT, with its larger W 2 cut,

Fig. 4 Kinematics of the DIS data included in the fits discussed in this
paper. The HERA DIS collider data were taken on proton targets; the
fixed-target SLAC, JLab, BCDMS and NMC experiments include both
proton and deuterium target data at approximately the same kinematics.
The W 2 = 12.25 GeV2 and W 2 = 3 GeV2 cuts adopted, respectively,
by the CT and CJ fits are shown by dashed and dot-dashed lines, respec-
tively. The figure is taken from Ref. [60]

the deuteron corrections are small and nearly scale indepen-
dent, as seen in Fig. 4, except for the less precise BCDMS
deuteron points with x ! 0.6 (see the kinematical map in
Fig. 3), where some influence from the deuteron correction
is expected and indeed quantified in Sect. 4.

2.2 Power-suppressed effects

Due to their less conservative kinematical restrictions on
Q2 and W 2, the CJ global fits extend into a region for
which power-suppressed corrections are non-negligible, as
depicted in Fig. 4. On the one hand, dynamical higher-twist
corrections of O(Λ2/Q2) emerge because of the presence
of multi-parton correlations within the soft portion of the
factorized DIS process, for which the first subleading con-
tribution to the twist expansion for unpolarized scattering
are matrix elements of twist-4 operators [61,62]. As in CJ,
these are often determined phenomenologically using forms
like F2(x, Q2) = FLT

2 (x, Q2)
[
1 + C(x)

/
Q2], where FLT

2
represents the leading-twist structure function, and a fitted
coefficient, C(x) = αxβ(1 + γ x), parametrizes the power-
suppressed twist-4 corrections. On the other hand, target-
mass corrections ofO(M2

N/Q2) are due to the non-negligible
mass, MN , of the struck nucleon, and are implemented via the
operator product expansion of Georgi and Politzer [63,64]
or related prescriptions, as extensively reviewed in [65,66].
Both corrections are natively implemented in the CJ frame-
work.

In contrast, CT imposes more restrictive kinematical cuts
in W 2, such that the standard CT data sets lie beyond the
region for which the finite ∼1/Q2 corrections are significant.
In the past CT studies it mattered little whether the deuteron

123

Old kinematic coverage showing the impact 
of the W2 cuts on data selection.

[Owens et al, PRD87] 
[Accardi et al, EPJC81]
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[Ablat et al., 2408.04020]Renée, somewhere on the net 

See Salvatore’s talk this morning, too!

EIC

 

vs 
W2 > 12.25 GeV2

W2 > 4 GeV2

https://arxiv.org/abs/2408.04020
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Parton Distribution Functions as an inverse problem

Parton Distribution Functions:  are determined from data through an inverse problem.
SciPost Phys. Proc. 15, 028 (2024)

Z = RN

A

FG
�1A

M(X ,Y)

data space model space

z = G( f )

z
f

Figure 4: Schematic representation of an inverse problem. On the left of the figure
we see the space of data, with some dataset A. On the right we have the space
of measurable functions M(X ,Y) and the subset F that we explore with a given
parametrization.

4.1 NNPDF fits of lattice data

As explained in the previous section, lattice data are on the same footing as experimental input
into PDFs fits. In a series of papers, some of the lattice data have been incorporated in the
general fitting framework developed by the NNPDF collaboration [5, 6]. It is worthwhile to
emphasise that the lattice data are handled like any other dataset in NNPDF, with no need to
adjust the methodology. The only input needed is a robust estimate of the statistical covariance
and the systematic errors. This is modeled by considering the data, z, as stochastic variables
distributed according to a multi-dimensional Gaussian distribution, centred at the value of the
experimental measurement Z , with a covariance C , which we denote as

z ⇠N (Z , C) . (10)

Parametrization. In the NNPDF formalism, the parametrization of the function f is provided
by neural networks, see Ref. [12] for the details of the latest implementation. A sufficiently
large architecture provides a parametrization that is flexible enough to minize the functional
bias. We denote the neural net parametrization as g[✓], where ✓ is the set of parameters
(biases and weights of the neural network).

Posterior distribution. The posterior distribution in the space of functions – i.e. in the space
of functions that are parametrized by the neural networks – is described by a Monte Carlo set
of replicas. The replicas implement a bootstrap propagation of the statistical fluctuations of
data into the space of functions [13]. Each replica z(k) is obtained by generating a set of
pseudo-data,

z(k) = Z + "(k), k = 1, . . . Nrep , (11)

where "(k) are distributed according to N (0, C).
The set of replicas yields an ensemble of pseudo-data that reproduces the statistical dis-

tribution of the experimental data as encoded in the covariance matrix. For each replica, we

028.7

Image from: del Debbio, SciPost Phys. Proc. 15, 028 (2024) 
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Reasons for complexity of inverse problems  

direct products

convolutional problems

Hausdorff moment problem

 most common for PDF analyses 

Ill-posed problem that accepts no unique solution:

determining PDFs will involve defining a set of solutions.
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FIG. 2 The CT18 PDFs at µ2 = 10 GeV2 for the xu, xū, xd,
xd̄, xs = xs̄, and xg PDFs. Error bands correspond to the
68% confidence level. Figure from (Kovař́ık et al., 2019).

current unpolarized PDFs, are shown in Fig. 2.
The latest general-purpose PDF determination from

the MMHT collaboration is MMHT14 (Harland-
Lang et al., 2015), which was later extended to
include HERA I–II legacy measurements (Harland-Lang
et al., 2016), jet-production measurements (Harland-
Lang et al., 2018), and di↵erential measurements in top-
pair production (Bailey and Harland-Lang, 2020) from
the LHC. These intermediate updates demonstrated that
experimental correlations across systematic uncertainties
have been improperly estimated for some of the ATLAS
jet and di↵erential top data sets. The features of a new
preliminary general-purpose PDF set were presented in
Ref. (Thorne et al., 2019), which included new LHC data
sets, notably the particularly precise 7-TeV ATLAS W -
and Z-boson measurements, which increase the ratio of
strange to non-strange light sea quarks at low x, whilst
still allowing for a positive light-sea-quark asymmetry,
albeit with a maximum at slightly lower x. The MMHT
fit has also been updated with an improved and extended
parametrization based on Chebyshev polynomials.

The NNPDF collaboration released their latest
general-purpose PDF set in Ref. (Ball et al., 2017). This
was later extended to include direct photon (Campbell
et al., 2018), single-top (Nocera et al., 2019), and dijet-
production measurements (Abdul Khalek et al., 2020)
from the LHC. A reassessment of the impact of top-
pair di↵erential distributions measured by ATLAS at
8 TeV was also presented in Ref. (Amoroso et al., 2020),
which demonstrated the di↵erent impact of absolute and
normalized distributions in the fit, and the importance
of fitting charm in their description. The NNPDF
collaboration has also developed a statistical procedure
to represent theory uncertainties in PDFs (Ball and
Deshpande, 2019), and applied it to missing higher-order
corrections (MHOU) in the strong-coupling expansion of

theoretical predictions (Abdul Khalek et al., 2019b,c),
and to nuclear uncertainties in observables obtained from
scattering o↵ nuclear targets (Ball et al., 2019). The
procedure consists in supplementing the experimental
covariance matrix with a theoretical covariance matrix
estimated by way of an educated guess. In the case of
MHOU, correlated uncertainties were estimated at next-
to-leading order (NLO) by varying the factorization and
renormalization scales according to various prescriptions;
in the case of nuclear corrections, correlated uncertainties
were estimated as the di↵erence between theoretical
predictions obtained either with a free-proton or nuclear
PDF. The representation of such uncertainties in PDFs
is likely to become mandatory in the future, because
their size is comparable to that determined from
the uncertainty of the data. The inclusion of such
theoretical uncertainties was demonstrated to improve
the description of the data, while increasing PDF
uncertainties only mildly.
In Fig. 3 we compare the CT18, MMHT14 and

NNPDF3.1 PDF sets at a scale Q = µ = 2 GeV.
Specifically, we display the following PDF combinations
from top to bottom and left to right: uv + dv = u �
ū + d � d̄, u � d, ū + d̄, d̄ � ū, s + s̄, s � s̄, c + c̄
and g. Note the special scale on the x axis. While
the three global analyses produce similar total valence
distributions uv+dv for 0.05 . x . 0.5, their predictions
on other flavor combinations could di↵er by 10% or more,
as in ū � d̄, ū + d̄, s + s̄, c + c̄ and g. In particular,
the c + c̄ PDF combination is largely di↵erent between
NNPDF3.1 and the other sets, given that charm is
parametrized on the same footing as other PDFs in the
NNPDF3.1 set, while it is generated perturbatively in
the others. Finally, note that the di↵erence s � s̄ is
not displayed for CT18 because they assume s = s̄;
MMHT14 and NNPDF3.1 determine s and s̄ PDFs
independently.

Beside the three general-purpose PDF sets described
above, other unpolarized PDF determinations have been
produced or updated recently, namely ABMP, CJ, JAM
and HERAPDF. These PDF sets are based on a reduced
set of measurements and/or on peculiar theoretical
assumptions. As such, they are more limited in scope.

The ABMP16 (Alekhin et al., 2017) PDF set is
the only unpolarized PDF set determined in a schemes
with a fixed number of flavors: for 3, 4 and 5 active
flavors separately. It was recently supplemented with
an extended set of single-top and top-pair measurements
from the Tevatron and the LHC and an increasing
number of DY data, notably recent ATLAS gauge-boson–
production distributions at 5 and 7 TeV and double-
di↵erential distributions for Z-boson production from
ATLAS and CMS. More stringent kinematic cuts have
been applied, which reduce the impact of higher-twist
terms included in the analysis.

The CJ15 (Accardi et al., 2016a) analysis determined

CT18 unpolarized PDFs

CT25 in the making — stay tuned!

CT18NNLO is the general-purpose PDF set 
published in 2019. 

CT methodology is based on minimizing a  
expressed in terms of parametrizations for the PDFs, 
finding the global minimum, and providing Hessian 
error PDFs to estimate the uncertainty.

χ2

[Hou et al, Phys.Rev.D 103 (2021)]

Uncertainty Quantification in CT involves a two-tier analysis 

Fixed tolerance criterion  — beyond the  prescription

Experiment-based penalty

T2 Δχ2 = 1 } encompasses both the propagation of experimental

and methodological uncertainties
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FIG. 2 The CT18 PDFs at µ2 = 10 GeV2 for the xu, xū, xd,
xd̄, xs = xs̄, and xg PDFs. Error bands correspond to the
68% confidence level. Figure from (Kovař́ık et al., 2019).

current unpolarized PDFs, are shown in Fig. 2.
The latest general-purpose PDF determination from

the MMHT collaboration is MMHT14 (Harland-
Lang et al., 2015), which was later extended to
include HERA I–II legacy measurements (Harland-Lang
et al., 2016), jet-production measurements (Harland-
Lang et al., 2018), and di↵erential measurements in top-
pair production (Bailey and Harland-Lang, 2020) from
the LHC. These intermediate updates demonstrated that
experimental correlations across systematic uncertainties
have been improperly estimated for some of the ATLAS
jet and di↵erential top data sets. The features of a new
preliminary general-purpose PDF set were presented in
Ref. (Thorne et al., 2019), which included new LHC data
sets, notably the particularly precise 7-TeV ATLAS W -
and Z-boson measurements, which increase the ratio of
strange to non-strange light sea quarks at low x, whilst
still allowing for a positive light-sea-quark asymmetry,
albeit with a maximum at slightly lower x. The MMHT
fit has also been updated with an improved and extended
parametrization based on Chebyshev polynomials.

The NNPDF collaboration released their latest
general-purpose PDF set in Ref. (Ball et al., 2017). This
was later extended to include direct photon (Campbell
et al., 2018), single-top (Nocera et al., 2019), and dijet-
production measurements (Abdul Khalek et al., 2020)
from the LHC. A reassessment of the impact of top-
pair di↵erential distributions measured by ATLAS at
8 TeV was also presented in Ref. (Amoroso et al., 2020),
which demonstrated the di↵erent impact of absolute and
normalized distributions in the fit, and the importance
of fitting charm in their description. The NNPDF
collaboration has also developed a statistical procedure
to represent theory uncertainties in PDFs (Ball and
Deshpande, 2019), and applied it to missing higher-order
corrections (MHOU) in the strong-coupling expansion of

theoretical predictions (Abdul Khalek et al., 2019b,c),
and to nuclear uncertainties in observables obtained from
scattering o↵ nuclear targets (Ball et al., 2019). The
procedure consists in supplementing the experimental
covariance matrix with a theoretical covariance matrix
estimated by way of an educated guess. In the case of
MHOU, correlated uncertainties were estimated at next-
to-leading order (NLO) by varying the factorization and
renormalization scales according to various prescriptions;
in the case of nuclear corrections, correlated uncertainties
were estimated as the di↵erence between theoretical
predictions obtained either with a free-proton or nuclear
PDF. The representation of such uncertainties in PDFs
is likely to become mandatory in the future, because
their size is comparable to that determined from
the uncertainty of the data. The inclusion of such
theoretical uncertainties was demonstrated to improve
the description of the data, while increasing PDF
uncertainties only mildly.
In Fig. 3 we compare the CT18, MMHT14 and

NNPDF3.1 PDF sets at a scale Q = µ = 2 GeV.
Specifically, we display the following PDF combinations
from top to bottom and left to right: uv + dv = u �
ū + d � d̄, u � d, ū + d̄, d̄ � ū, s + s̄, s � s̄, c + c̄
and g. Note the special scale on the x axis. While
the three global analyses produce similar total valence
distributions uv+dv for 0.05 . x . 0.5, their predictions
on other flavor combinations could di↵er by 10% or more,
as in ū � d̄, ū + d̄, s + s̄, c + c̄ and g. In particular,
the c + c̄ PDF combination is largely di↵erent between
NNPDF3.1 and the other sets, given that charm is
parametrized on the same footing as other PDFs in the
NNPDF3.1 set, while it is generated perturbatively in
the others. Finally, note that the di↵erence s � s̄ is
not displayed for CT18 because they assume s = s̄;
MMHT14 and NNPDF3.1 determine s and s̄ PDFs
independently.

Beside the three general-purpose PDF sets described
above, other unpolarized PDF determinations have been
produced or updated recently, namely ABMP, CJ, JAM
and HERAPDF. These PDF sets are based on a reduced
set of measurements and/or on peculiar theoretical
assumptions. As such, they are more limited in scope.

The ABMP16 (Alekhin et al., 2017) PDF set is
the only unpolarized PDF set determined in a schemes
with a fixed number of flavors: for 3, 4 and 5 active
flavors separately. It was recently supplemented with
an extended set of single-top and top-pair measurements
from the Tevatron and the LHC and an increasing
number of DY data, notably recent ATLAS gauge-boson–
production distributions at 5 and 7 TeV and double-
di↵erential distributions for Z-boson production from
ATLAS and CMS. More stringent kinematic cuts have
been applied, which reduce the impact of higher-twist
terms included in the analysis.

The CJ15 (Accardi et al., 2016a) analysis determined

CT18 unpolarized PDFs

CT25 in the making — stay tuned!

CT18NNLO is the general-purpose PDF set 
published in 2019. 

CT methodology is based on minimizing a  
expressed in terms of parametrizations for the PDFs, 
finding the global minimum, and providing Hessian 
error PDFs to estimate the uncertainty.

χ2

[Hou et al, Phys.Rev.D 103 (2021)]

Uncertainty Quantification in CT involves a two-tier analysis 

Fixed tolerance criterion  — beyond the  prescription

Experiment-based penalty

T2 Δχ2 = 1 } encompasses both the propagation of experimental

and methodological uncertainties

UQ glossary 
aleatoric/statistical uncertainties — fixed once for all


epistemic/systematic uncertainties — e.g. from methodology, can be reduced
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FIG. 2 The CT18 PDFs at µ2 = 10 GeV2 for the xu, xū, xd,
xd̄, xs = xs̄, and xg PDFs. Error bands correspond to the
68% confidence level. Figure from (Kovař́ık et al., 2019).
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theoretical predictions (Abdul Khalek et al., 2019b,c),
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estimated by way of an educated guess. In the case of
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to-leading order (NLO) by varying the factorization and
renormalization scales according to various prescriptions;
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were estimated as the di↵erence between theoretical
predictions obtained either with a free-proton or nuclear
PDF. The representation of such uncertainties in PDFs
is likely to become mandatory in the future, because
their size is comparable to that determined from
the uncertainty of the data. The inclusion of such
theoretical uncertainties was demonstrated to improve
the description of the data, while increasing PDF
uncertainties only mildly.
In Fig. 3 we compare the CT18, MMHT14 and

NNPDF3.1 PDF sets at a scale Q = µ = 2 GeV.
Specifically, we display the following PDF combinations
from top to bottom and left to right: uv + dv = u �
ū + d � d̄, u � d, ū + d̄, d̄ � ū, s + s̄, s � s̄, c + c̄
and g. Note the special scale on the x axis. While
the three global analyses produce similar total valence
distributions uv+dv for 0.05 . x . 0.5, their predictions
on other flavor combinations could di↵er by 10% or more,
as in ū � d̄, ū + d̄, s + s̄, c + c̄ and g. In particular,
the c + c̄ PDF combination is largely di↵erent between
NNPDF3.1 and the other sets, given that charm is
parametrized on the same footing as other PDFs in the
NNPDF3.1 set, while it is generated perturbatively in
the others. Finally, note that the di↵erence s � s̄ is
not displayed for CT18 because they assume s = s̄;
MMHT14 and NNPDF3.1 determine s and s̄ PDFs
independently.

Beside the three general-purpose PDF sets described
above, other unpolarized PDF determinations have been
produced or updated recently, namely ABMP, CJ, JAM
and HERAPDF. These PDF sets are based on a reduced
set of measurements and/or on peculiar theoretical
assumptions. As such, they are more limited in scope.

The ABMP16 (Alekhin et al., 2017) PDF set is
the only unpolarized PDF set determined in a schemes
with a fixed number of flavors: for 3, 4 and 5 active
flavors separately. It was recently supplemented with
an extended set of single-top and top-pair measurements
from the Tevatron and the LHC and an increasing
number of DY data, notably recent ATLAS gauge-boson–
production distributions at 5 and 7 TeV and double-
di↵erential distributions for Z-boson production from
ATLAS and CMS. More stringent kinematic cuts have
been applied, which reduce the impact of higher-twist
terms included in the analysis.

The CJ15 (Accardi et al., 2016a) analysis determined

CT18 unpolarized PDFs

[Hou et al, Phys.Rev.D 103 (2021)]

Uncertainty Quantification in CT involves a two-tier analysis 

Fixed tolerance criterion  — beyond the  prescription

Experiment-based penalty

T2 Δχ2 = 1

Acceptable 
 functions

Tests  
of PDFs

Epistemic uncertainty is central  
to the CT fitting’s philosophy.
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Tools to explore and understand the spread 
of uncertainties in PDF analyses

The Hessian formalism allows for unique tools to visualize pulls 
from various experiments.


[Wang et al, PRD98] 
[Hobbs et al., PRD100] 

      Comparative analysis for ATLASpdfs, CT18 and MSHT20 (+aN3LO)


[Jing et al., PRD108] 

The CT formalism also allows to explore the space of

    PDF solutions and reliably estimate PDF uncertainties.


[Courtoy et al, PRD107]
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Parametrizations to tackle inverse problems

Two main approaches to parametrization in global analyses:  
 
I.  use an explicit functional form — 20-50 parameters

II. use neural networks —20-50 hyperparameters

e.g., CT

e.g., NNPDF
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Parametrizations to tackle inverse problems

Two main approaches to parametrization in global analyses:  
 
I.  use an explicit functional form — 20-50 parameters

II. use neural networks —20-50 hyperparameters

e.g., CT

e.g., NNPDF

The rôle of parametrization form in global analyses can be quantified 
 
Fantômas4QCD 

A new c++ code automates series of fits using multiple functional forms, called metamorph. 

Just like neural networks,  
these polynomial functional forms can approximate any arbitrary PDF shape. 

[Kotz, AC, Nadolsky, Olness, Ponce-Chavez, PRD109] 
[Kotz, AC, Nadolsky, Ponce-Chavez, 2505.13594] 

[Kotz, AC, Hobbs, Nadolsky, Olness, Ponce-Chavez, Purohit, in progress]
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Tolerance and parametrization studies

Fantômas unlocks the concept of tolerance:  

multiple parametrizations with respective  uncertainty can be bundled into a  error band.

separation of constraints’contributions

Δχ2 = 1 Δχ2 > 1

We (CT) are looking into information criteria to quantify the tolerance encompassing multiple 
sources of uncertainties.

Uncertainty band reproduced, in part, 

by the spread of possible solutions


→ epistemic uncertainty

→ builds the  criterionT2 = Δχ2 > 1
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Regression for data-based analyses

Monte Carlo fits, with the mean and variance in Figs. 5–7
computed as in Eqs. (18).
The comparison with the Drell-Yan cross sections

d2σDY=d
ffiffiffi
τ

p
dxF in Fig. 5 indicates that the data can be

well described by the fitted pion PDFs within the frame-
work of the perturbative QCD calculation at next-to-
leading order (NLO) in αs. The data-to-theory ratios are
shown as a function of xF in various bins of

ffiffiffi
τ

p
for both the

Fermilab E615 [5] and CERN NA10 [4] datasets, with the
latter separated into the two pion beam energies, Eπ ¼ 194
and 286 GeV. The ratios are generally consistent with
unity, within the uncertainties of the data, across the entire
range of xF and

ffiffiffi
τ

p
shown, with χ2dat values ≲1 for both

experiments. The experimental uncertainties on the NA10
data are somewhat smaller than the uncertainties on the

E615 data, although the E615 data extended to larger values
of xF. The theory uncertainty bands indicated in the ratios
reflect the uncertainties on the PDFs, which increase at the
highest values of xF.
For the comparisons with the LN data from HERA,

in Fig. 6 we show the data-to-theory ratios of the FLN
2

structure function [Eq. (8)] from H1 [6] and the ratio r
[Eq. (13)] of the leading neutron to inclusive proton cross
sections from ZEUS [7]. The ratios are shown as a function
of xπ over a large range of Q2 bins, ranging from Q2 ¼
7 GeV2 to Q2 ¼ 1000 GeV2, for two bins of momentum
fraction x̄L carried by the exchanged charged particle
(pion), restricted to x̄L < 0.1 and 0.1 < x̄L < 0.2 to ensure
pion exchange dominance [3,36]. Within the quoted
uncertainties, the H1 data can be well described by our

FIG. 5. Data-to-theory ratios for the xF dependence of the Drell-Yan cross section d2σDY=d
ffiffiffi
τ

p
dxF at fixed values of

ffiffiffi
τ

p
from the

E615 [5] (top) and NA10 [4] (bottom) experiments. The NA10 data are separated for the two pion beam energies of 194 GeV (bottom
left) and 286 GeV (bottom right), and the yellow bands represent the uncertainty on the theory calculations.

TOWARDS THE THREE-DIMENSIONAL PARTON STRUCTURE OF … PHYS. REV. D 103, 114014 (2021)

114014-9

Global analyses involve searching for extrema of a (log-)likelihood function.


(Very) simplified: 

χ2 =
Nexp

∑
i

(Di − ⟨T({x, a})⟩i)2

σ2
i

+penalty terms

discrete data point
theory prediction averaged,  

as a function of the variables {x} and free parameters {a}

[JAM21] 

The theory input depends on the PDFs, whose parametrization is an input to the minimization procedure.

The comparison to data for various parametrizations can lead to equally good  values.χ2
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(Very) simplified: 
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Nexp

∑
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(Di − ⟨T({x, a})⟩i)2

σ2
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+penalty terms
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theory prediction averaged,  
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[JAM21] 

The theory input depends on the PDFs, whose parametrization is an input to the minimization procedure.

The comparison to data for various parametrizations can lead to equally good  values.χ2

That’s fine in the data region,  
but the results may vary greatly outside 
— extrapolation region. 

Why not adopt more than one form?

[Fantômas] 
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Generation of parametrizations
metamorph is based on Bézier curves — polynomial on a Bernstein basis

8

III. TESTING LARGE-x PDFS IN EXPERIMENTAL MEASUREMENTS

A. Bézier curves as polynomial interpolations of discrete data

Models of the hadron structure make concrete predictions for the x dependence of the structure functions and
PDFs. One can straightforwardly check the agreement of a given model with an experimental observation within
the uncertainties. A stronger assertion, that the experiment demands the 1� x dependence of the PDFs to follow a
specific power law, is di�cult to demonstrate since the functional forms of the PDFs are not known exactly. This is
clearly not possible in the presence of local or resonant structures that disagree with the global trend. Even when the
PDF functional forms are restricted to be polynomial, the discrete experimental data can be compatible with multiple
functional forms.

To illustrate why, consider an idealized example, in which we seek a polynomial function f
(n)(x) of degree n to

interpolate k + 1 data points {x0, p0}, {x1, p1},..., {xk, pk} that have no uncertainty. Our points satisfy 0  xi  1.
From mathematics, we know that the existence and number of the interpolating solutions depend on the degree n of
the polynomial.

If n = k, the unisolvence theorem guarantees that there exists a unique interpolating polynomial going through
all points: f

(n)(xi) = pi. Two equivalent closed-form solutions for the interpolating polynomial are given by the
Lagrange polynomial,

L
(n)(x) ⌘

kX

i=0

pi

kY

m=1
m 6=i

x� xm

xi � xm
for n = k, (14)

and by a Bézier curve of degree n,

B
(n)(x) =

nX

l=0

cl Bn,l(x), (15)

constructed from Bernstein basis polynomials

Bn,l(x) ⌘

✓
l

n

◆
x
l(1� x)n�l

. (16)

Denote the vector B(n)(xi) as B. This vector can be written in a matrix form [50, 51],

B = T ·M · C, (17)

where C ⌘ kclk;

M ⌘ kmlpk with mlp =

8
><

>:
(�1)p�l

 
l

n

! 
n� p

n� l

!
, l  p

0, l > p

; (18)

and T ⌘ ktipk with tip = x
p
i . Here i runs from 0 to k, and l, p run from 0 to n.

Given the matrix P ⌘ kpik of data values, the matrix C for the Bézier curve B
(n)(x) going through all points

satisfies [51]

C = M
�1

· T
�1

· P for n = k. (19)

This equation shows that k+1 data points uniquely determine the polynomial of order n = k, assuming no experimental
errors.

If n < k, an interpolating solution that goes through all points may not exist. Rather, there is a Bézier curve that
minimizes the total squared distance to pi,

�
2(P,B) =

kX

i=0

⇣
B
(n)(xi)� pi

⌘2
= (P � T ·M · C)T · (P � T ·M · C). (20)

The matrix of the coe�cients of this Bézier curve is

C = M
�1

· (TT
T )�1

· T
T
· P for n < k. (21)

Bn,l(x) ⌘
✓
n
l

◆
xl(1� x)n�l

<latexit sha1_base64="/mQIJ9bG+BzTTQOFwxG+FhmcfcA="></latexit>

The Bézier curve can be expressed 
as a product of matrices:

vector of coefficients cl

matrix of binomial coefficients vector of  xl
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2(P,B) =

kX
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B
(n)(xi)� pi
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= (P � T ·M · C)T · (P � T ·M · C). (20)
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C = M
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· (TT
T )�1
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T
· P for n < k. (21)

Bn,l(x) ⌘
✓
n
l

◆
xl(1� x)n�l

<latexit sha1_base64="/mQIJ9bG+BzTTQOFwxG+FhmcfcA="></latexit>

The Bézier curve can be expressed 
as a product of matrices:

vector of coefficients cl

matrix of binomial coefficients vector of  xl

[AC & Nadolsky, PRD103] 
 

[Kotz, et al. PRD109]
Bézier curve characterized by control 

points, vector of  :ℬ → P
matrix of  at xl {xCP}
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The Bézier curve can be expressed 
as a product of matrices:

vector of coefficients cl

matrix of binomial coefficients vector of  xl

Bézier curve characterized by control 

points, vector of  :ℬ → P
matrix of  at xl {xCP}

[AC & Nadolsky, PRD103] 
 

[Kotz, et al. PRD109]

PDF shape: 
⇨ asymptotics usually ensured by a carrier function

⇨ sum rules imposed through normalization

x q(x,Q2
0) = A0

q x
Bq (1� x)Cq ⇥

⇣
1 + B(Nm)(x↵x , Q2

0; v)
⌘

<latexit sha1_base64="/6rCdF+4u5MpuJS8jPucjvQ5FPw="></latexit>

for PDF type  
(flavor, combination or gluon)

q =
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FIG. 1. Illustration of the metamorph routine. Upper plot:
set-up – a truth (solid ocher curve) can be extracted from a
distribution of pseudodata (blue points). Lower plot: starting
point – a given carrier function (thick blue curve) sets the
magnitude of the control points (blue crosses for “fixed” and
yellow arrows for “free”). See text.
[NOTE: FO] To think about: Fig.1+2 send a strong message,
but this is spread across 2 figures, so the impact is diminished.
Maybe (optional) combine Fig.1 a+b into a single figure, and then
display Fig.1 and Fig.2 in a single side-by-side figure. This would
really highlight the ability of the carrier function to adjust, allowing
flexibility of metamorph. Optional.

points, such that

Pi = B(xi) ! P 0
i = B(xi) + �B(xi)

! P 0 = (B0(x1) + �D,B0(x2) + �E, · · · ) ,
(13)

with i running from 1 to the length of the vector P for

�

�
�
���
�

����

�
�

�
�
��������

X

X

X

↕

↕

� Pseudodata

Truth

Carrier

Metamorph

0.0 0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

x

x1
.5
f(x

) X, ↕: Control points

Nm = 4, αx = 0.45

FIG. 2. Illustration of the Fantômas routine. After minimiza-
tion, the carrier function (short-dashed red curve) has varied
and the position of all control points has been shifted, helped
by the modulator, i.e., the Bézier curve. The “fixed” CPs
(blue crosses) lay on the updated carrier function. The final
result is the long-dashed cyan curves, labeled “Metamorph.”
This example is given for Nm = 4, ↵x = 0.45.

examples with square T matrices (see [30, 31] for the360

rectangular matrix case). In this paper, we will consider
examples with square matrices, only.
The Mathematica notebook based on the Bézier for-

malism was extended to allow for minimization. In
Figs. 1 & 2, we illustrate the Fantômas methodology365

for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.

Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
at small- and large-x values, we obtain a metamorph
curve (long-dashed cyan curve in Fig. 1), that is the
product of the updated carrier function (short-dashed red

6

curve) and a Bézier curve of degree Nm obtained through390

Eq. (12) with the control points as in Eq. (13), minimiz-
ing an objective function by pulling the control points.
The latter can enhance the potential of the Fantômas

method further by distinguishing two categories: CPs
that are fixed to stay on the carrier function (blue crosses395

in Fig. 1) and CPs that are free to depart from the
updated carrier (yellow arrows).
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)

Nm = 4, αx = 0.45, Nrep = 50

FIG. 3. The Fantômas technique illustrated by applying the
bootstrap (or importance) sampling on the data (upper plot)
or the Fântomas methodology, that consists in sampling over
representative choices for the CPs and the scaling factor ↵x

(lower plot). The resulting uncertainties are displayed in cyan
(bootstrap) and green (parameter-space sampling).

The ultimate purpose for designing the metamorph
methodology concerns the quantification of uncertainty.
Once a central fit has been determined, say, the long-400

dashed cyan curve of Fig. 1, its full statistical meaning

is obtained through the propagation of the two classes
of uncertainties, namely the aleatory and epistemic un-
certainties REF. The aleatory class consists of statistical
uncertainties that propagate the experimental errors. In405

Fig. 3, we illustrate them using the bootstrap method,
one of the possible error propagation technique. Also
called resampling or importance sampling, it consists in
generating N replicas of the data set according to a
probability distribution. Each set of fluctuated data is410

fitted through metamorph (light cyan curves in the upper
plot of Fig. 3); their (unweighted) average is illustrated
here in green. The curves obtained after bootstrapping
all correspond to the same metamorph settings (here
(Nm = 4,↵x = 0.45), unvaried CPs). To account for the415

epistemic uncertainties, it is necessary to sample over
the space of solutions, which in the case of Fantômas

means sampling over the settings to investigate a broad
representation of polynomials [8]. [NOTE: FO] OK?

The control points are a crucial aspect of metamorph:420

their position xi can leverage the space of solutions by
spanning more possible functional forms. Still, their
distribution should be chosen strategically to avoid
ill-conditioned problems, i.e. the Runge phenomenon,
arising from equidistant spacing of control points and425

high polynomial degrees, which may not be suitable to
improve accuracy on the fits. To measure and assess
how the input in matrix T impacts the sensitivity of
the output coe�cient vector C, the condition number is
computed along with the fits, following the Frobenius430

matrix norm. Users should seek to minimize this metric
by setting up a well behaved T matrix. This is achieved
by taking advantage of the metamorph parameters, e.g.
power stretching (↵x). [NOTE: FO] OK??? (↵x).

435

The Fantômas environment has been properly imple-
mented on the xFitter fitting package [32]2. The xFitter

framework incorporates various standard parameteriza-
tions in their library. Just like the other parameteriza-
tions included in xFitter, the metamorph functions can be440

used for any flavor of choice by including the metamorph
parameterization in pdfparams.
The metamorph parameterization requires several pa-

rameters to be used. Unlike other parameterization, the
parameters passed into xFitter are the shifts from the445

initial value. The initial values are defined within a card
file labeled as steering fantomas.txt.
Several options have been integrated into the Fantômas

module inside of xFitter. These options are designed to
allow the user to control the flexibility of the metamorphs450

used. One of the options is to allow the carrier function,
Eq. (5), to be fixed (�Bq = �Cq = 0) or to vary during the
minimization process. This ensures the overall function
will fluctuate around the carrier function. An initial
guess for the carrier parameters need to be provided.455

2 https://www.xfitter.org/xFitter/

6

curve) and a Bézier curve of degree Nm obtained through390

Eq. (12) with the control points as in Eq. (13), minimiz-
ing an objective function by pulling the control points.
The latter can enhance the potential of the Fantômas

method further by distinguishing two categories: CPs
that are fixed to stay on the carrier function (blue crosses395

in Fig. 1) and CPs that are free to depart from the
updated carrier (yellow arrows).
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FIG. 3. The Fantômas technique illustrated by applying the
bootstrap (or importance) sampling on the data (upper plot)
or the Fântomas methodology, that consists in sampling over
representative choices for the CPs and the scaling factor ↵x

(lower plot). The resulting uncertainties are displayed in cyan
(bootstrap) and green (parameter-space sampling).

The ultimate purpose for designing the metamorph
methodology concerns the quantification of uncertainty.
Once a central fit has been determined, say, the long-400

dashed cyan curve of Fig. 1, its full statistical meaning

is obtained through the propagation of the two classes
of uncertainties, namely the aleatory and epistemic un-
certainties REF. The aleatory class consists of statistical
uncertainties that propagate the experimental errors. In405

Fig. 3, we illustrate them using the bootstrap method,
one of the possible error propagation technique. Also
called resampling or importance sampling, it consists in
generating N replicas of the data set according to a
probability distribution. Each set of fluctuated data is410

fitted through metamorph (light cyan curves in the upper
plot of Fig. 3); their (unweighted) average is illustrated
here in green. The curves obtained after bootstrapping
all correspond to the same metamorph settings (here
(Nm = 4,↵x = 0.45), unvaried CPs). To account for the415

epistemic uncertainties, it is necessary to sample over
the space of solutions, which in the case of Fantômas

means sampling over the settings to investigate a broad
representation of polynomials [8]. [NOTE: FO] OK?

The control points are a crucial aspect of metamorph:420

their position xi can leverage the space of solutions by
spanning more possible functional forms. Still, their
distribution should be chosen strategically to avoid
ill-conditioned problems, i.e. the Runge phenomenon,
arising from equidistant spacing of control points and425

high polynomial degrees, which may not be suitable to
improve accuracy on the fits. To measure and assess
how the input in matrix T impacts the sensitivity of
the output coe�cient vector C, the condition number is
computed along with the fits, following the Frobenius430

matrix norm. Users should seek to minimize this metric
by setting up a well behaved T matrix. This is achieved
by taking advantage of the metamorph parameters, e.g.
power stretching (↵x). [NOTE: FO] OK??? (↵x).

435

The Fantômas environment has been properly imple-
mented on the xFitter fitting package [32]2. The xFitter

framework incorporates various standard parameteriza-
tions in their library. Just like the other parameteriza-
tions included in xFitter, the metamorph functions can be440

used for any flavor of choice by including the metamorph
parameterization in pdfparams.
The metamorph parameterization requires several pa-

rameters to be used. Unlike other parameterization, the
parameters passed into xFitter are the shifts from the445

initial value. The initial values are defined within a card
file labeled as steering fantomas.txt.
Several options have been integrated into the Fantômas

module inside of xFitter. These options are designed to
allow the user to control the flexibility of the metamorphs450

used. One of the options is to allow the carrier function,
Eq. (5), to be fixed (�Bq = �Cq = 0) or to vary during the
minimization process. This ensures the overall function
will fluctuate around the carrier function. An initial
guess for the carrier parameters need to be provided.455

2 https://www.xfitter.org/xFitter/

if bootstrapped

if sampled over metamorph settings

sampling on the distribution of data 
uncertainties

sampling over parametrizations

Bézier-curve methodology— toy model

Main idea behind Fantômas4QCD:  
to facilitate unbiased estimates of parametrization dependence.
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Sandbox studies ….with awesome physics!

Small(er) scale problems to develop and test the methodology, and learn more physics  

pion PDFs: Fanto𝝅 PDFs — including model combination and UQ from nPDFs

now released: Fantômas1.0 PDFs — soon on LHAPDF

developping: beta-testing the code for release

developping: information-ish criteria for model selection  

twist-3 collinear PDF — integral constraints and interpolation

developping: information-ish criteria for model selection
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WW Scenario, overall best L2 no repetition

WW Scenario, Renyi + L2

CLAS12
Moments: ETM19, mq=300 MeV

αx=0.1

metric+L2

 [E. López-Rosa. et al, in progress]

 [Kotz, et al., 2505.13594]



A. Courtoy—IFUNAM________________UQ for pheno PDFs____________________BNL-INT Workshop 2025

Classification of solutions
Fantômas PDFs 


⇨ We generated  fits corresponding to  sets for .


⇨ Well-behaved (convergence + fixed soft constraints) fits are kept.


⇨ Fits within  are kept.

π

N ∼ 100 N {Nm, P, αx}

χ2 + δχ2 = χ2 + 2(Npts − Npar)
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π+ (MC) PDFs at Q=1.4 GeV, 68% c.l. (band)

xV

xS

xg/2The final bundle is generated from the 5 most diverse 
shapes at .Q0
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Classification of solutions
Fantômas PDFs 


⇨ We generated  fits corresponding to  sets for .


⇨ Well-behaved (convergence + fixed soft constraints) fits are kept.


⇨ Fits within  are kept.

π

N ∼ 100 N {Nm, P, αx}

χ2 + δχ2 = χ2 + 2(Npts − Npar)
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π+ (MC) PDFs at Q=1.4 GeV, 68% c.l. (band)

xV
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xg/2

 exchangeable final independent 
solutions, from which we generate identically 
distributed MC distributions


— they can be interpreted as being drawn from 
a common distribution, characterized by a 
latent parameter .


Ñ = 5

θ

Statistical justification of our model combination by de Finetti’s theorem.

The final bundle is generated from the 5 most diverse 
shapes at .Q0
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Likelihood-ratio test

P (a|D) / P (D|a)P (a)

, exp(��2
tot) / exp(��2) exp(��2

prior)
<latexit sha1_base64="5UXH7xmeiOXtaCKzMDVlokoiYO4="></latexit>

�2
tot = �2 + �2

prior
<latexit sha1_base64="6WdaWxpAw64yz63b1mNly1uYJ6c=">AAACNHicfVDLSgMxFM34rPU16tJNsCiCUGaqoBuh6EZwU8E+oFNLJk3b0MxkSO6IdZiPcuOHuBHBhSJu/QbTx0Jb8UDgcM653NzjR4JrcJwXa2Z2bn5hMbOUXV5ZXVu3NzYrWsaKsjKVQqqaTzQTPGRl4CBYLVKMBL5gVb93PvCrt0xpLsNr6EesEZBOyNucEjBS0770aJffFJoJ9gJf3iWepopHoPk9wyAhTfdOR4mDf4KR4lKladPOOXlnCDxN3DHJoTFKTfvJa0kaBywEKojWddeJoJEQBZwKlma9WLOI0B7psLqhIQmYbiTDo1O8a5QWbktlXgh4qP6cSEigdT/wTTIg0NWT3kD8y6vH0D5pJDyMYmAhHS1qx8LUgQcN4hZXjILoG0JMB+avmHaJIhRMz1lTgjt58jSpFPLuYb5wdZQrno3ryKBttIP2kYuOURFdoBIqI4oe0DN6Q+/Wo/VqfVifo+iMNZ7ZQr9gfX0DmGKsqA==</latexit>

Independent contributions to uncertainty:   
the parametrization contributes to the (log)-likelihood but constraints on the parameters, …, 
contribute to the prior.

On which basis are PDFs accepted or rejected?

Likelihood ratios: 

two replicas can be ordered according to their relative likelihood or relative prior.
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 criterion Δχ2 = 1 For   PDFs, 
,

π+

q = V = 2(u − ū)
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Bundled models

Models combined using METAPDF


Update of the mp4lhc and mcgen codes 
in the context of Fantômas

[Kotz et al, very soon]

 [Gao & Nadolsky, JHEP07]

Model combination
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Criterion for shape selection
So far, we’ve used an ad hoc criterion for the selection of the most diverse shapes.


In progress: automatize the selection based on shapes and use of information criteria — likelihood-ratio 
test and quantititative criteria


0.005 0.010 0.050 0.100 0.500 1
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x

xf
π
(x
)

Large-x tweaked Gaussian points, Renyi entropy
futher filtered by Renyi+Wasserstein

 [UNAM’s group— AC, A. Vargas-Rosas]

Published Fanto𝜋 PDFs

Preliminary one-flavor selection of the Fanto𝜋 
solutions based on information criteria
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Third-party uncertainty propagation

For processes with more than one unknown function:   

SIDIS — fragmentation and PDF

Drell-Yan — PDF and nuclear PDF

…


Prescription to propagate the uncertainty for Hessian-based input. It uses mcgen, model combination and 
selection criteria.


Here:

nCTEQ15 nuclear uncertainties on DY is propagated.

Small effect.

 [Kotz, et al., 2505.13594]
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Pion momentum fractions 
 [Kotz, et al., 2505.13594]

“Our selection of the” data supports a zero-gluon solution, while it has a hard time finding solutions 
leading to higher gluon momentum fractions.


Data sets: Drell-Yan (~65%) + prompt-photon (~25%) and leading-neutron DIS (~10%) — entanglement/
anticorrelation between sea and gluon distributions. Differs from JAM’s pool.
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[Gao et al., PRD102]

[Meyer et al., PRD77]

[MSU, 2310.12034]

[Shanahan et al., PRD99]

[Martinelli et al., PLB196]

Moments from the lattice

Lattice can access either quarks or gluons 
— only the recent ETM coll. results have both.


Variations in ensemble settings among lattice results.

 [Kotz, et al., PRD109]
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[Gao et al., PRD102]

[Meyer et al., PRD77]

[MSU, 2310.12034]

[Shanahan et al., PRD99]

[Martinelli et al., PLB196]

Moments from the lattice

Lattice can access either quarks or gluons 
— only the recent ETM coll. results have both.


Variations in ensemble settings among lattice results.

Gluon momentum fraction varies greatly!

 [Kotz, et al., PRD109]
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EIC: what is the gluon content of the pion?

[Arrington et al. J. Phys. G 48]

While COMPASS++ is confirming NA10’s results,  
we need the EIC: leading-neutron DIS 

pulls from future data in specific kinematics?

correlations of PDFs with observables?

disentaglement of sea and gluon PDF?

model dependence?

Yellow Report
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Interpolation with constraints — scalar PDF

[AC et al., PRD106]

Decomposition of the scalar PDF eq(x) = eqloc(x) + eqgen(x) + eqmass(x)
<latexit sha1_base64="k8geA4z4VMlATNMp1hWOpOidHMg="></latexit>

 termsσ quark mass
CLAS12 data on beam-spin asymmetry


Point-by-point extraction through DiFF at LO 

= Mellin moment

Set-up:
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Interpolation with constraints — scalar PDF

[AC et al., PRD106]

Problem that would allow a unique solution, were 
it not for integral constraints.   

The Bézier curve system can be solved exactly for 

specific dimensions in interpolation mode.

Caveats: the method leads to a large number of models!
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WW Scenario, overall best L2 no repetition

WW Scenario, Renyi + L2

CLAS12
Moments: ETM19, mq=300 MeV

αx=0.1

metric+L2

 [E. López Rosa, Master thesis, UNAM]
 [E. López-Rosa. et al, in progress]

⇨ developing metrics to be used in penalties in loss function.

⇨ developing methodologies to impose moments.

Decomposition of the scalar PDF eq(x) = eqloc(x) + eqgen(x) + eqmass(x)
<latexit sha1_base64="k8geA4z4VMlATNMp1hWOpOidHMg="></latexit>

 termsσ quark mass
CLAS12 data on beam-spin asymmetry


Point-by-point extraction through DiFF at LO 

= Mellin moment

Set-up:
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EIC: studies of multiparton dynamics

Large range of Q2 values, includes smallish x regions 

Complementary to fixed-target experiments (HERMES, CLAS,…)
Sandbox for factorization and evolution studies

Golden channel 

fully inclusive DIS, access to gT

Silver channel 

semi-inclusive DIS, access to e(x)

90 7.1. GLOBAL PROPERTIES AND PARTON STRUCTURE OF HADRONS
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Figure 7.28: Beam-spin asymmetry in semi-inclusive di-hadron production. Predictions cor-
responding to Q2 = 1 GeV2 based on the di-hadron fragmentation functions of Ref. [266],
low-energy models for the twist-3 PDF eq(x) and unpolarized PDFs from MSTW08 at lead-
ing order [270] (see also text). The upper and lower panels show two different energy
configuration. The left (blue) and right (green) plots correspond, respectively, to the frag-
mentation kinematics of (0.2 < z < 0.3, 0.7 GeV < Mh < 0.8 GeV) and (0.6 < z < 0.7,
0.9 GeV < Mh < 1.2 GeV), where z is the longitudinal momentum fraction of the di-hadron
pair and Mh its invariant mass. The bands give the envelope of the model projections dis-
cussed in the text, folded with the uncertainty of the interference fragmentation function.
The projected statistical uncertainties are plotted at zero.

where Y+ = 1 + (1 � y)2.

The standard pQCD approach to inclusive diffraction is based on the collinear
factorization [273–275]. The cross section is computed by the convolution of the
perturbative partonic cross section and the diffractive parton distribution func-
tions (DPDFs). The DPDFs are evolved using the DGLAP evolution equations
with appropriately chosen initial conditions at some initial scale. At HERA fits to
the diffractive structure functions were performed by H1 [276] and ZEUS [277].
They both parametrize the DPDFs in a two-component model, containing contri-
butions from Pomeron and Reggeon exchange. In both cases the proton-vertex
factorization is assumed, meaning that the diffractive exchange can be interpreted
as colourless objects called a “Pomeron” or a “Reggeon”, with an appropriate par-

Yellow Report
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Thanks to the sandbox studies, we can move on to our main goal:  
 


sampling bias and model combination for the unpolarized PDF.
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Unpolarized PDFs, EIC and precision physics

[2203.13923]

CT18
MSHT20
NNPDF3.1
ABMP16
ATLASpdf21
PDF4LHC15
PDF4LHC21
NNPDF4.0

750 800 850 900

50

52

54

56

58

60

62

Uncertainties differ among various global analyses collaborations 

Near future:  
study of the building of the tolerance criterion for CT25, enhanced parametrization study,…


Not-so-near future:  
complementarity of data, especially at large-  values and for the sea sector, will matter ⇨ EIC?x

p
s = 14 mX

1�

yX

|yX | < 2.5

x x

0 0

x

PDF4LHC21 [J.Phys.G 49]
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Credit:  
Daniel de Florian (DIS2023) 

[PDF4LHC21, J.Phys.G 49]

Large invariant mass in parton luminosity related to large-  
values. Precision on LHC observables may rely on our 

knowledge of large-  PDFs.


Uncertainties on large-  PDFs hamper the searches for new 
physics. 


Looking for New Physics in the tails of Drell-Yan like processes 
involves PDFs at large  and  : .

x

x

x

x Q (x1x2 ≥ 0.3, Q = 8 TeV)

 [Fu et al., PhysRevD109,  
 Ball et al., EPJC82]

Unpolarized PDFs, EIC and precision physics
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Conclusions

Rôle of the parametrization in the sampling accuracy: we make use of Bézier-curve methodology

⇨  the EIC will contribute to learning PDFs in complementary kinematical ranges

⇨  Uncertainty quantifcation requires going beyond the  prescription  

⇨  Posterior means likelihood + priors — use of information-like criteria to select solutions

⇨  The model combination also stems from a distribution — de Finetti 

        
⇨  Sandbox studies         

Δχ2 = 1

Global QCD analyses are important to access hadron-structure information.
Inverse problems, which sets of solutions are evolving. 

Our take today: moving towards epistemic PDF uncertainties with polynomial 
approximators — Bézier curves. 

Pion PDFs: Fantomas1.0 available
metamorph can be used to study many functions
Reliable uncertainty on the PDF analysis (to NLO)
re: larger where no data constrains qπ(x, Q2)

Collinear twist-3 PDF
Playground for my group 
Integration of constraints from moments
Development of metrics for shape selection
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Fantômas standalone code

1 Introduction

This manual provides a short description of the xFitter program which can be used to determine un-
polarised proton parton distribution functions (PDFs). The parton distribution functions are needed to
calculate cross sections for ep, pp, and pp colliders and thus they are required for interpretation of the
data collected at the LHC and future colliders.

A schematic structure of the xFitter is illustrated in Fig. 1 which encapsulates all the current
functionality of the platform.

Initialisation

Data
– Collider, Fixed Target:

ep, µ p
– Collider: pp, pp̄

Theory
– PDF Parametrisation
– QCD Evolution:

DGLAP (QCDNUM),
non-DGLAP (CCFM, dipole)

– Cross Section Calculation

QCD Analysis
– Treatment of the Uncertainties
– Fast c2 Computation
– Minimisation (MINUIT)

Results
– PDFs, LHAPDF, TMDlib Grids
– as, mC , . . .
– Data vs. Predictions
– c2, Pulls, Shifts

Figure 1: Schematic structure of the xFitter program.

This manual is structured such that it first describes briefly the theoretical input (section 2), followed
by a description of the PDF parameterisation (section 3.1) and various �2 functions used in the minimisa-
tion (section 3.2). The minimisation is based on the standard MINUIT program [1] which is not discussed
here. Section 5 is dedicated to program installation instructions for di↵erent fit scenarios (section 5.1)
and provides a description of the program steering cards, with the output options given in section 5.2.

2 Theoretical Input

The main features of QCD theory are confinement (at short ranges the quarks are strongly bound inside
protons) and asymptotic freedom (at large scales the coupling constant of the strong force decreases and
quarks become quasi-free partons). The factorisation theorem exploits these features by separating short
and long distances processes, such that structure functions can be written as a convolution between calcu-
lable parts (hard scattering coe�cients) and non-calculable parts (parton distribution functions (PDFs)),
which are therefore parametrised and determined from data.

4

xFitter embedded in “PDF Parametrization” Companion standalone to be plugged 
wherever the user decides to

C++ module

MetamorphCollection class object

reads steering cards

check sum rules

shuffles

Fantomas1.0:

https://cteq-tea.gitlab.io/project/00pdfs/#mesonPDFs

https://cteq-tea.gitlab.io/project/00pdfs/#mesonPDFs
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