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Motivation: Hybrid Stars (?)

> The size of nucleons (uncertain as it may be) implies that deconfined quark
matter can exist in the cores of NSs.

> However, such a possibility lacks observational and theoretical support:

P Measurements of M, R, A cannot differentiate normal and hybrid stars.

P> LQCD and PQCD not applicable to NS conditions.

> Possible solution: identify an observable with strong dependence on composition.

> Enter g-modes!

C. Constantinou



> Global, long-lived, nonradial fluid oscillations resulting from fluid-element
perturbations in a stratified environment.

» Slow chemical equilibration generates buoyancy forces to oppose dispacement.

> In stably-stratified systems the opposing force sets up oscillations with a

characteristic frequency [Brunt-Viisild, N? = g2A(c~2)e”~*] which depends on

both the equilibrium and the adiabatic sound speeds [ A(c™2) = ce_q2 — c;f .

> g-mode oscillations couple to tidal forces; they can be excited in a NS merger and
provide information on the interior composition.

> Detection remains a challenge; but within sensitivity of 3rd generation detectors.
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Equation of State

» Nucleons: Zhao - Lattimer

1 [ken
€g = Z ﬁ/o k2,/M§+k2 dk + ngV(u, x)

[ 1 Legred et al.
h=n,p sol [ f/:g.rgo—i.g 1
V = 4x(1 — x)(aou + bou™) [ X — 5%
—_ k | —
+ (1 —2x)%(a1u + but) T ! e ]
s T
¥ {
» Quarks: vMIT 10l \\ b
L= Z [thg (id — mq — B) ¥ + Line] © 1;, ' SETEE 16
gmnds R (km)
Lint = —Gy Z’l/_)’y“ Vi + (m3,/2) Vi V- S T Drisdnibr etal 16 |
P r----- Drischler et al. 20 A
1/6G6,\°,

> Leptons: noninteracting, relativistic fermions
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Hybrid Matter: 1st Order Transitions

> Maxwell (“strong”, “stiff’, ...)
> Infinite interface tension
P No phase mixing
P Local charge neutrality
P e ="f(en+eem)+ (1 —F)eq + ceq)

> Gibbs (“weak”, “soft”, ...)
Mixed
P Zero surface tension

P Complete phase mixing
> Global charge neutrality
> E:sz+(1—f)SQ+EeM

> Intermediate case
Mixed
P Some phase mixing

P Charge neutrality is partially local
and partially global

P e =flen+tmneen) +(1—f)leq +nce)
+(1 - n)seM
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Hybrid Matter: 1st Order Transitions (cont'd)

» Constraints
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Sound Speeds
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ode Signals
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> Calculation of g-mode properties for 1st-order phase transitions and for crossovers
(both with the Cowling approximation as well as linearized GR).

> Construction of a thermodynamically-consistent framework for the treatment of
1st-order phase transitions intermediate to Maxwell and Gibbs.

> g-modes can detect nonnucleonic matter in the cores of NS; assuming quark
matter (by some other means), g-modes can distinguish between a first-order
phase transition and a crossover.

> Discontinuity g-modes as a special case of compositional g-modes in the Maxwell
limit.

v

(Near) Future:

P Extend lst-order phase transition scheme to finite T.
> Applications to protoneutron stars (cooling, superfluidity) and binary mergers.

> Construct EOS that uses the same underlying description for quarks and hadrons.
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