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Motivation: Hybrid Stars (?)

> The size of nucleons (uncertain as it may be) implies that deconfined quark
matter can exist in the cores of NSs.
> However, such a possibility lacks observational and theoretical support:

P Measurements of M, R, A cannot differentiate normal and hybrid stars.

> LQCD and PQCD not applicable to NS conditions.

> Possible solution: identify an observable with strong dependence on composition.
(Here: g-modes)
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Hybrid Matter: 1st Order Transitions

> Maxwell (“strong”, “stiff’, ...) H Q
P Infinite interface tension
> No phase mixing
P Local charge neutrality
> e =x(en +een) + (1 — X)(eQ + €eq)

> Gibbs (“weak”, “soft”, ...)

Mixed
P Zero surface tension
P Complete phase mixing
P Global charge neutrality
P e=xen+(l—x)eq +eem
> Intermediate case " . 0

P> Some phase mixing

P Charge neutrality is partially local
and partially global

> e =x(en +neen) + (1= x)(eq +1eeq)
+ (1 —n)eem
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Hybrid Matter: 1st Order Transitions (cont'd)

» Constraints

1.0F 9=1.0 (My]
P Baryon number conservation 3 060 1
1= X(yn+}/p)+(1_X)(yu +yd+}’s)/3 0'8:_ :g?g _:
P Lepton number conservation )30'6:' —~00(©) ]
0= ye = xnyer — (1 = x)nyeq = (1 = n)yem 0af ]
P Local charge neutrality 0.2:_ E
0= (yp — Yerr) = (2vu — ¥a — ¥5)/3 = veq o ]
= L L
> Global charge neutrality 0.5 1015 2.0
0=xyp+ (L= x)2vu —ya — y5)/3 — Yem na(fm™)
> Equilibrium (= minimization of € wrt x, yi, 1)

P Mechanical, P + nPey = Pq + nPeq Lo —n=10 (M)?
> Quark weak, d = Hs 0'8;_ B
= 0.65 1
P Neutral strong, (, = pty + 2pd S r ]
Z 0.4F 3

> Charged strong, p1p = 2 + pg — M(pen — He@) = [ ]
> Beta td = fu + pteq + (1 — 0) e ‘ ]
-or- Hp = pn — Nptert — (1 — 1) ttem o .. e

> 1 optimization, ey = Xeen + (1 — X)ceq ng(fm)

C. Constantinou First-order nucleon-to-quark phase transi Thermodynamically-consiste



Equation of State

» Nucleons: Zhao - Lattimer

1 krn
g= ﬁ/o K/ M2 + k2 dk + ngV/(u, x)

h=n,p [
1000F
V = 4x(1 — x)(agu + bou”) o

7 800
+ (1 — 2x)%(ayu + bru™) § soof-
: 400
» Quarks: vMIT 2005

L= 37 [Fa(if=mg=B)vi+ L] © =gt

q=u,d,s € (MeV fm™)
Line = =Gy )y VF + (my/2) V V*
q L Legred et al.
F { — n=050-1.0
LGN, i
Eo—zeFG,qug (Tv) ng + - | i o0
q 2 50 i ]
=
[ {
> Leptons: noninteracting, relativistic fermions ol \ ]
1
1

€ = E 1o k%*y/m? + k2 dk 10 4 6
w2 Jo L R (km)

I=e,p
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Finite Temperature

v kR 2, v oo g2 i
> Yige o Kei dk— X5 ok exp[i(e“kri“")]ﬂ dk

C = (k? 2\1/26e 4 1 be
where ¢ = (k7 + m?) 5=t g 5

> For ZL and vMIT, e = (K2 + m2)*/2 + U(ng, {yi})

= Thermal effects of an ideal gas with m = (k2 4+ m?)'/2

» ¢ — F (inclusive of antiparticle contributions)

Minimization leads to the same equilibrium conditions as in the T = 0 case
(except for n optimization where ¢ — F).

Additionally, p; = —p; .
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Finite Temperature: Some Results

01 T =10 MeV T =50 MeV

Yo= 0.1 T =50 MeV.
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> Increasing T shifts the phase coexistence
region to lower densities; width decreases.

> Increasing Ye leads to weaker sensitivity
T N T
on - Ym0 T dosier
> Nonmonotonic behavior of S as a function
of ng in the mixed phase. Similar traits
exhibited by Cy and Cp.
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Fast vs

Slow conversion

v

The conversion rate between hadronic and quark matter in the mixed phase is
unknown.

If it is sufficiently fast such that no type of reaction can reach equilibrium, then
all Y; are free variables and must be held constant when taking derivatives
(equilibrium conditions imposed afterwards).

If it is slow enough then only B-reactions can be out of equilibrium and thus the
only independent particle fraction to be held constant is Ye (equilibrium
conditions imposed before taking the derivative).

1st derivatives (e.g. P, S, ...) are not affected by this distinction. This is not the
case for 2nd derivatives (c,q, Cy, Cp, ...) and higher.

. Yo=01 T=10MeV Y.=01 T=50MeV
Example: c,q |
o
o
< 0.4]
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Application: g-modes

> Global, long-lived, nonradial fluid oscillations resulting from fluid-element
perturbations in a stratified environment.

> Slow chemical equilibration generates buoyancy forces to oppose dispacement.

> In stably-stratified systems the opposing force sets up oscillations with a
characteristic frequency [Brunt-Viisils, N2 = g2 A(c~2)e”~*] which depends on
both the equilibrium and the adiabatic sound speeds [ A(c™2) = c:e_q2 — a_dz].

2 _ap _ dPg (deg\T?

P ociqyne) = & = dng (dnB)
mechanical equilibrium restored instantaneously.
2

> caalns, x) = (32 dng dng

) -1
2 2 x
ca,p(nB) = calms, xs(mB)]
slow restoration of chemical equilibrium because 75 > Toscillation-

aP)X: op ‘X( oe

» g-mode oscillations couple to tidal forces; they can be excited in a NS merger and
provide information on the interior composition.

> Detection remains a challenge; but within sensitivity of 3rd generation detectors.
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g-mode Signals

> A(c?) = co — c;dz drives the restoring

force for g-mode oscillations. In npe matter, 50 T
—-1
8;7, 2 8ﬂ 10 e
2 _ 2 S sk E
Cha = € +{n3(—)} Mn |\ = o
a eq ong / 0% /) pg g, 1
—eq. N'go.so El
/:‘L:He‘i'#p—ﬂnﬁ—cgo §o1o
P> g-modes in 1st-order hybrid matter have larger 0.05 E

frequency range compared to pure nucleon matter
= the behavior of A(c2) in the mixed phase.

> Dramatic changes in vg require new DOFs not
just a smooth change in composition.

» Discontinuity g-modes 800l - 3

> Generated by the flatness of P(ng) 600k

in a Maxwell mixed phase that leads to 0
a density jump in the core of a hybrid star. = 400 ]
X . . ~ n=1.0 (M)—0.10
> Characterized by discontinuous g-mode 200 —090  —00(G)]

frequencies. 73.28 —ZLA
. . 0 1 1 LS 1
P A special case of a compositional g-mode 0 100 200 300 400 500 600
. - . =3
in the limit n — 1. P (MeV fm™%)
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v

Construction of a thermodynamically-consistent framework for the treatment of
1st-order phase transitions intermediate to Maxwell and Gibbs at zero and finite
temperature.

Beware of the Maxwell construction!

The assumption of slow or fast conversion between hadronic and quark matter in
the mixed phase, affects second derivatives of the free energy (e.g. caq. Cv, Cp)
at the ~ 10 % level.

g-modes can detect nonnucleonic matter in the cores of NS; assuming quark
matter (by some other means), g-modes can distinguish between a first-order
phase transition and a crossover.

Discontinuity g-modes as a special case of compositional g-modes in the Maxwell
limit.
(Near) Future:

> Applications to protoneutron stars (cooling, superfluidity) and binary mergers.

P Construct EOS that uses the same underlying description for quarks and hadrons.
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