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Overview (1)

= Approximation theory:
= We approximate differential equations to compute evolutions
» We approximate integrals to compute convolutions, ...
» We use approximate models in optimization and nonlinear solvers
= We approximate distributions with samples or other distributions for inference
» We approximate approximations to obtain reduced order models, surrogates, emulators
= ML approximates all sorts of functions used in the above

= Guiding principles: there is no single method that works efficiently for all problems
= Error estimation: understand the level of errors and help develop better numerical methods
= Stability: avoid blowups, NANs
» |nvariants’ preservation
= All of the above: fit-for-purpose
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Overview — Problem Formulation (2)

Oy

= Solve evolution equations ¥y := — = f(y) 3 y(tO) = Yo

Autonomous only

Can solve on manifolds
or PDAEs

Or integro-differential eq.
(Mori-Zwanzig, QCFs)

Discretization on nonuniform
grids in y(x) and t
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Overview — What is Modern (3)

» The Runge-Kutta 4 (RK4) method was developed between 1895-
1901, a few years before vacuum tubes were invented

The BDF-2 method was developed in 1952, one year before the first
transistor was used in a device
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Overview — Modern Numerical Methods (3)

» ‘Integrators’ are classified as explicit or implicit

= Families: multistage (Runge-Kutta), multistep (Adams, BDF), general linear methods, Nystrom,
extrapolation, exponential integrators, spectral differed correction, W-methods, ...

» Partitioned integrators: semi-explicit, semi-implicit, implicit-explicit, multirate, ...

= Adaptive integrators: time-step adaptivity, mesh adaptive (adaptive mesh refinement - AMR);
can be static or dynamic AMR

= |nvariant preservation: positivity, conservation of total “mass’, symplectic, reversible,
monotonic, ...

= Can provide error estimates, continuous interpolation/extrapolation

rgonne
S
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Runge-Kutta 4

» The Runge-Kutta 4 (RK4) method is a remarkable method

Stages:
1 1 1 1
Ynt1 = Yn + Ot (6’“ + oo+ Shs + gm) kv =f(yn)
1
ko :f(yn + §At kl)
1
kg :f(yn -+ §At k‘g)
ka4 :f(yn + At kg)
c1|an a2 ... ag 0
Co | G211 Q22 ... Q3 1/211/2
Forward Euler Backward Euler
120 1/2
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MultistageTime Stepping Basics

Multistage methods: €| 4
Runge-Kutta pT
Yns1=Yn + ALY biF(ty + ¢;ALY;)
=1
Y =yn —i—AtZa”F(t + ¢;ALY;)
Explicit (forward Euler)  Yn+1 = Yn + AtF(yn) . j=1
Stiff system
Implicit (backward Euler) Yn+1 = Yn + ALF (Y1)
explicit step: take slope F(y») and Un+1 implicit
A step forward ’

Yn
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Error and Convergence

error versus Courant number (time step size)

Convergence (error vs time step) for
numerical integrators of different orders

j: ‘\
\a

2nd Order

——RK35
—o—Al2-1D
—=—BDF2-1D
—o— ARK2-1D
—— ARK3-1D
ARK4-1D
-e-Al2-3D
-8-BDF2-3D
- ¢ -ARK2-3D
- + - ARK3-3D
ARK4-3D

10°°¢ o 4th Order

I I L L .

0.02 01 02 1 2 10 20
Courant Number
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Accuracy vs Computational Cost (exclude HPC)

error versus Courant number (time step) error versus wallclock time

! 5 BN A X N
S o S,
.| 2nd Order ,
10 [ . 10 L i
: ——RKS35
——RK35 —e— Al2-1D
——AI2-1D —s—BDF2-1D
§ 10_ —a—BDF2-1D a 10_2k —o— ARK2-1D B
I —6— ARK2-1D —— ARK3-1D
NG ——ARK3-1D ARK4-1D
ARK4-1D -e-Al2-3D
107 -e-Al2-3D | | 107*L|-®-BDF2-3D | |
-8-BDF2-3D - ¢ - ARK2-3D
- & - ARK2-3D - + - ARK3-3D
: .|~ *-ARK3-3D ARK4-3D .
107 . 4hOrder T ARERI 400 \ \ I
0.02 0.1 0.2 1 2 10 20 10" 10° 10° 10"
Courant Number Wallclock Time (seconds)
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Cost vs Accuracy

—RK35
—e—Al2-1D
—=—BDF2-1D
| | ——ARK2-1D
——ARK3-1D| -
ARK4-1D| "
-e-Al2-3D -]
| |-=-BDF2<3D|
- ¢ - ARK2-3D
- + - ARK3-3D
"~ ARK4-3D

—e—Al2-1D | N\
—=—BDF2-1D| | ¥

10 10° 10° 10

+ ARK2_‘| D Wallclock Time (seconds)
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Runge-Kutta with Local Error Estimation

C1 | a1 a2 ais
» Reuse computed stages to get another solution of a different order Coy | a21 Qa2 azs
» Runge-Kutta Fehlberg: two methods of orders 5 and 4
Cs | Qg1 Qg9 Qss
0 b1 b2 bs
1/4 |1/4 by b} b:
3/8 |[3/32 9/32
12/13|1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104
172 |-8/27 2 -3544/2565 1859/4104 -11/40
16/135 0 6656/12825 28561/56430 -9/50 2/55
25/216 0 1408/2565 2197/4104 -1/5 O
VKA INE.. (ENERGY [5siieiiiin Argonne &

11

AAAAAAAAAAAAAAAAAA



l nteg rators with Error Control ode23 [Bogacki-Shampine, 1989;Raltson 1965]

1
YO =y YO =y + §Atf(Y(1))

_ _ _ Y =y + §A1ff(Y(2))
= All integrators provide an error control mechanism: MATLAB, 4

2 1 4
Python, Julia, PETSc, Trilinos, Sundials, CVODE, ... YO =y + GALF YD) + S ALF(Y ) + SALF(YD)
Error control procedure: Yint1) = Yy + A <§f(Y(”) + %f(Y(”) + gf(Y“”))>
= A Step is taken: Atn Uint1] = Y[n) + At <274f(y(1)) + if(y@)) + %f(y(?))) + éf(y(@)
= Estimate the error with a different (often lower order) method ErrEstn = Yin] = Yl
ErrEst, = C(t,)AtPTH 4 O(AtPT?) o Error vs time step
= Aim to have g ErrEst, ;
ErrEst,e, = Tol :
ErrEstpe, = C(ty)AETL 4 O(AP12) 5 107 :
] 1
= |f tolerance is satisfied, then take a new step; if o Lj 10 == === ol it -
not, retake the step with At,,..,, = rAt, BT £t pey) I
107 |
p_(_Tol 7T . (—
ErrEst, 10 T 107
At pew At,,




Estimation Can Fail

= Local error estimators do not account for error accumulation, we need global error estimators

= Only local error estimation is present in all software libraries

Errors in time

10° ; ‘ ) Evolution of a solution component
Global ] —LTE solver
error - 10 | 17 - Exact
over time '
%10‘2; N 057 I HH |
8 § ATOL=1e-02
107} 0f |
LTE solver error '
10_4 ! L ! s O 5 10
0 2 4 6 8 10 _
time fime
i 13 Argonne &
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A 3-bus Power Grid System: Error Control Using a

2"d Order GLEE

» Strategy: two passes (disadvantage — fixed time steps) ATOL

1
p

Aty = At( e(T) >_

* In order to achieve an error of ATOL = 0.01 a time step of 0.0030823 should have been used
instead of 0.01

10 T w 10 w w
|dea: At = 0.01 At = 0.003
10° » :
1. Take one pass ‘ al
and if not happy, 4 |
modify time step to 5
. = -2 2
achieve error goal o 10 10
-
2. control local error ol
and and adjust ] - ostimated alobal 107 S :
tolerances after one T B L T soveroar 7 estmated glabal error
i | S LTE solver error
pass to achieve goal . ——actual error i —actual error
-5 ; ; ; ; = & ; ; : :
10 0 2 4 6 8 10 10 0 2 4 6 8 10

time time

* Proportionality error controller tolerance can also be used
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Recap

» Many “time” integrators beyond RK4
= Two broad classes: explicit (RK4) and implicit (for stiff systems, e.g., backward Euler)
= High-order integrators provide the best bang for the buck ...in principle

» Modern integrators adapt the step size according to an error control mechanism ...works well
most of the time
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Partitioning the Time Integrator

Avoid using a single integrator for a monolithic RHS; employ different integrators for each of the
components

We can use a separate integrator for each of the 4 blocks fit for purpose
1 1

Some components on the finer 1

11
h may b tiff ou
riesh mayheeome &1 \/ : :fll(ulaUZ):+:fl2(u1au2)
at ________ -I e e e e e e e e o
('
Some components don’t have [\ % :f21 (Ula u2)|_|_|f22 (uh UQ)
interesting dynamics ot Il

HZ/\

“‘Component partitioning” Some components Some components
Most popular players are: produce instability produce instability
« Implicit/explicit > 100 scale factor :: alleviates stiffness
* Multirate < 100 scale factor :: alleviates global restrictions/local fidelity
>
ueHIcASO e . (B ENERGY [T “Additive partitioning” Argonne &
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Partitioning the Time Integrator

Avoid using a single integrator for a monolithic RHS; employ different integrators for each of the
components

Example of a (bad) implicit-explicit method:

v=fy), f[(¥) =Ff1y) + 20); Ynt1 =yn + DtF1(Yn) + At f2(Yns1)

Modern partitioned integrators are high-order, typically required to satisfy coupling conditions.

Additive Runge-Kutta: second order, 0 0 0 0

implicit L-stable and second stage- 1 1

_ 2—-v2(2-v2 0 2—-v21-L+ 1-1L1

order (stiffly accurate) and V2 V2
conservative; low order embedded 1 |l-ag azx 0 1 s a5 13
and dense outpult. 1 1 q_ L 1 1 _ L
2v2  2V2 V2 2v2 2v2 V2
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X 10

4w - 120
Component Partitioning so 11 T
a 60 i
I
. . 30
Static or dynamic? y 2
’ — 0
8t uVy+ KVay L .
1.5 2 2.5 3 3.5 4.5 5 x 10"
3l -A-Fine
120 = -v-Single Fine
5 —AMR
90 S @ Coarse
B0 | £
\ c
30 3
0 g
120 §
90 2 10*
£
60 e
30 0 50 100 150 200 250 300 350 <l
Distance [km] ')o
n O
120 :m’-
90 <
0 | @ e
30
0
0 300 400
UCHICAGO
ARGONNE.. % 18

200 300

400

— W2

y=1
=10 GeV?

min

Qllllll

ZTait =1 — (4.7e — 4)
- Q= (s - MY
(2-’(~"xﬂl )

18

Argonne &

NATIONAL LABORATORY



Dynamic adaptive mesh refinement (AMR) in PETSc
enables runaway electron simulations (Fokker-Planck
PDE) at several orders of magnitude higher resolutions

* We developed a new parallel data management
(DM) in PETSc that interfaces AMR capabilities (via
p4est library) with physics simulations that require
adaptivity

* AMR reduces simulation errors and computational
cost by increasing the degrees of freedom only
where needed

* Dynamic AMR coarsens and refines meshes to
adapt over time as the solution evolves through a
dynamical processes

* Fully-implicit time stepping (via PETSc TS) enables
accurate solution of stiff dynamical systems

ANL: Johann Rudi, Max Heldman, Emil Constantinescu
LANL: Qi Tang, Xianzhu Tang
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ynamic AMR for a Relativistic Electron Drift-Kinetic Solver and
calable PETSc-p4est Implementation and Implicit Time Stepping

gy
kalnd - o
Tl Ll [ A v
£

Y1
Parallel octree-based AMR. Left: Forest-of-trees topology with 2 trees and

leaves are cells of the mesh. Right: Space filling curve to sequentialize cells of
edit: p4e

AMR Level

The aggressive adaptivity required by the application results in 12 levels of
difference in refinement, which corresponds to 3 orders of magnitude
difference in cell size.
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Scalable Implicit Solvers with Dynamic Mesh Adaptation for a
Relativistic Drift-Kinetic Fokker-Planck- Boltzmann Model

evolve evolve

FA@E FBI(2) — FBY (& + At) nterp, FON(t + At) (—:)f(c)(t+2At)
implici implici
Algorithm for dynamic AMR with prediction. The evolution of an auxiliary i h
. . . . . . . mesh A mesh B
function x is evolved in time separately, indicating where to adapt the mesh
xﬁ,")da) Xt + At
XM () ——————— wvolve (o) XM (t+At)  xB)(t+ At) m xB)(t 4 2At)
Without prediction With AMR prediction
Refinement levels of the dynamically adapted mesh (white lines) without prediction vs. AMR with prediction. Note the
refined mesh ahead of the flow G ideal“ —
327 o RF256 e
o169 —— RF128 -
£ sf = RFos B S e
& 4] —* RF32 = i‘f::' 3 % be = ‘j
) = !
11 ¥ ! ! ! } !
. . . 448 896 1792 3584 7168 14336 28672
ANL: Johann Rudi, Max Heldman, Emil Constantinescu AL L L
LANL: Qi Tang’ Xianzhu Tang Frontera strong scaling — preliminary results
VAR NE.. (TENERGY (IEEE L
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0.08

——NDF

Error control and stage predictors

o
o
o)

= Error control: level of confidence in the numerical solution
accuracy: extrapolation & embedded methods (reuse of internal
stages)

i) = Yl + ALY bif(V) + AL > big(Yiy) 0.02/4

Time step
o
o
N

= Stage predictors provide “hot-starts” for the solver and reduce

the number of iterations Time
) Method | Predictor| Newton
= Develop predictors based on dense output: order | order | iterations
Y(tp) + OAL) = y(t) + At Z b (0)F(YD) +05(0)g(YD) 2 63 K
38 K
= Example: stiff van der Pol oscillator: 4 2 31K
3 26 K
Y1 _ 0 Y2 5 25 K
{yz} 6{(1—y%)y2—y1]+{0}5:1oﬁ 3 20 K
UCHRSNE.. (T ENERGY (I5nis St Argonne &
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Time Integration for Atmospheric Flows
Results with NUMA — PETSc Interface

Test problem: Rising thermal bubble (benchmark atmospheric flow test case)

3D RTB: 5° elements, 11th order polynomial (Tfinal = 10.0)

/7 T 0.0001
£ 1.1159
P Tiore
” o] | i
AT 1.0953 1e-05 -
000 WA\ o
”% - S\ 1o
o i i
\ !m‘ Ty 16-06 |
o @k‘ bt 10624
N { nl B
405 S ) 1.0500 - ARKIMEX 2E ---{3---
B 1e-07 ARKIMEX 2A ---@--- 4
20 N\ A& ARKIMEX 2L -~
- ARKIMEX 3 -+~
ARKIMEX 4 ----&--~
Rosenbrock-W 2M [} |
A . ) ) Te-08 « Rosenbrock-W 3PW &
" 00 40 800 80 100 Rosenbrock-W 34PW2 A
o Y Rosenbrock-W RODAS3 @
e Rosenbrock-W ASSP3P3S1C A
16-09 :
0.01 0.1 1

Reduce computational cost by stage prediction for nonlinear implicit solves

Meth Function calls Nonlinear iter. Linear iter. Error

ARK || W/ pred | W/o pred || W/ pred | W/o pred | W/ pred | W/o pred W/ pred | W/o pred
2A 27,156 32,894 801 1,200 24,755 29,684 || 3.371e-06 | 3.371e-06
2E 17,427 49,110 1,601 2,396 13,423 42,721 || 1.677e-06 | 1.677e-06
3 29,834 84,585 2,402 3,599 23,827 74,987 || 1.864e-07 | 1.865e-07
4 36,429 85,503 4,000 4,706 26,426 73,379 || 9.592e-09 | 9.593e-09
5 32,349 90,737 4,138 5,998 28,109 75,536 || 2.399e-09 | 2.399¢-09

VeSS (B ENERGY T Argonne &
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Recap

= Many “time” integrators beyond RK4
» Two broad classes: explicit (RK4) and implicit (for stiff systems, e.g., backward Euler)
» High-order integrators provide the best bang for the buck ...in principle

= Modern integrators adapt the step size according to an error control mechanism ...works well
most of the time

» Modern integrators handle adaptivity in time and in “space”

= Computational advantages result from partitioning systems and integration of each partition with
different custom methods

= \We can reuse the calculated stages to form continuous high-order interpolators
» |nterpolators can be used to seed the next step solution when using implicit integrators
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Properties We May Like to Have

1. Preservation of linear or quadratic invariants => Conservation

— Require all methods to be conservative: w ' y(t) = const., Vt = w 'y, = w 'y(0), Vn

2. SSP (strong stability preserving): CFL-like condition il HEY
N1 T
|u(t, z)||Tv = 7;) u(t, zpi1) — ult, )] o sep

The higher the order, the worse results

3. Entropy-stable and entropy-preserving

0.6

O.I2 0.4
— Support entropy-preserving and entropy-stability properties at discrete level

— The relaxation method applied to IMEX and multirate

UCHICAGO <, % U,S DEPARTMENT OF ' Argonne National Laboratory is a
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Properties We May Like to Have

1.

Preservation of linear invariants => Conservation

— Require all methods to be conservative: w ' y(t) = const., Vt = w 'y, = w 'y(0), Vn

SSP (strong stability preserving): CFL-like condition |

N-1

lu(t, 2)llvv = D lult, zas1) = ult, )|

n=0

Entropy-stable and entropy-preserving

—y<05]]
——y>05

— Support entropy-preserving and entropy-stability properties at discrete level

— By the relaxation method applied to IMEX and multirate

UCHICAGO
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Symplecticity:

Stormer-Verlet as Runge-Kutta

= Condition: biaij + bjaji = bib; of 0 o 1/2[1/2 0 the power of abstraction

. . 11/2 1/2  1/2|1/2 0
Problem: i=f(q) / ‘1/2 0 s

B At
Stérmer-Verlet;  Pr+1/2 = Pnt 5 f(4n)
Gn+1 = qn + Alppiyyo

At
Pn+l = Pny1/2 + Tf((bwl) \

1 1
{q’p}[n+1] = ezAtf(')eAtp(!?Atf(‘){q?p}[n]

UCHICAGO
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= ETRS4

ilhils . s - RK1FE
Reversibility: N © nron
. . . ] -
Time-reversible schemes (time-reversal symmetry) ) P
. . . . . 8 - RK4
TD-DFT — invariant wrt the direction of time £ SRR
& © RK5DP
- RK5F
S - ETRS4
Eﬁ -# SSP(6,2)
3 # SSP(10,2)
2 - SSP(15,2)
8 +# SSP(4,3)
3 “# SSP(9,3)
& 4 SSP(16,3)
# SSP(25,3)
& - SSP(5,4)
e - SSP(10,4)
2
= -+ ETRS3
< - ETRS4
8 -+ ETRS5
5] -+ ETRS6
& -+ CN
0 50 100 150 200
wall time / simulation time (s/at.u.)
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Recap

= Many “time” integrators beyond RK4
» Two broad classes: explicit (RK4) and implicit (for stiff systems, e.g., backward Euler)
» High-order integrators provide the best bang for the buck ...in principle

= Modern integrators adapt the step size according to an error control mechanism ...works well
most of the time

» Modern integrators handle adaptivity in time and in “space”

= Computational advantages result from partitioning systems and integration of each partition with
different custom methods

= \We can reuse the calculated stages to form continuous high-order interpolators
» Interpolators can be used to seed the next step solution when using implicit integrators
= Some integrators preserve symplecticity, monotonicity, and positivity in addition to the above

UCHICAGO ;».:n, U.S. DEPARTMENT OF _ Argonne National Labmﬂio;‘/ isa
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Solvers’ Ecosystems

Solvers available in small packages addons (Python, Jax, ...) are limited/not sophisticated
Matlab/Julia solvers are well-tested and developed but do not scale
DOE software libraries can be used for prototyping and scaling
= PETSc — Argonne solver library provides a hundreds of solvers; scale to HPC
= Trilinos (developed at Sandia)
= SUNDIALS (and extensions) developed at Livermore
= All provide access to many sophisticated methods
Adaptive meshing:
= P4est (Parallel AMR on Forests of Octrees)
» ParMETIS (Parallel Graph Partitioning and Fill-reducing Matrix Ordering)
» FLASH <- Paramesh (see Anshu’s talk)

UCHICAGO @’"E‘% U.S. DEPARTMENT OF _ Argonne National Laboratory is a
ARGONNE..c @g’\gj ENERGY US, Depariment of Encroy laboratory
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Portable Extensible Toolkit for Scientific Computation

Open-source numerical library for large-scale parallel computation
Portability

—Unix, Linux, MacOS, Windows, GPUs

—32/64 bit, real/complex, ...

—C, C++, Fortran, Python, Julia, Matlab
Extensibility

—ParMETIS, SuperLU_Dist, MUMPS, hypre, UMFPACK,

Sundials, Elemental, ScaLAPACK, UMFPack, ...

Toolkit

—lterative solvers and preconditioners

—Parallel nonlinear solvers

—Time-stepping (ODE and DAE) solvers

—Adjoint sensitivity analysis _

Time stepping

Ceuppon v R~ il
—Support for network data structures
—Optimization

UCHA%AGGOONNEI“ 5‘ L3 pERATIEM 07 Argonne Nations! Laboratory s o Argggngokg
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Scalable Solver Suite for

ODEs/DAEs/PDEs

theta*

Ell

theta-method

bdf Di

Backward
ifferentiation
Formulas
pha-method
[JWHO00]

one-step implicit

one-step implicit

one-step implicit

TS Name Reference Class Type Order
euler forward Euler one-step explicit 1
multistage SSP .
ssp Runge-Kutta explicit <4
[Ket08]
rk* multiscale Runge-Kutta explicit >1
beuler backward Euler one-step implicit 1
cn Crank-Nicolson one-step implicit 2

Stages  Order
Name Reference IM SA Embed DO Remarks

Kutta

general linear multistep- A“ (IM) (Stage)
gl ) implicit <3
[BJWO7] multistage based on A-
trapolated a2 2(1 2(2 es es (1 es (2
eimex ISMX;';F)[(;;Z] one-step IMEX > 1, adaptive CN M (2) Stable y y ) y ( )
diagonally SSP2(2,2,2) SSP
dirk DIRK implicit Runge- implicit >1 12 [PRO5] 2(2) A0 eeEER s el W

UCHICAGO
ARGONNE..c

U.S. DEPARTMENT OF _ Argonne National Laboratory is a

ENERG

U.S. Department of Energy laboratory
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ARS122 A-
. See IMEX Runge- IMEX Runge- _ ars122 211 3(1 es es (1 es (2
arkimex Kutta schemes Kutta IMEX L [AR597] ( ) ( ) Stable v v ( ) v ( )
rosw Se\:io;eol:iCk Rosenbrock-W linearly implicit 1-4 2c [GKC13] 3(2) YAV)) L-Stable yes yes (1) yes (2) SDIRK
S L s _ B 2d [GKC13] 3(2) 2(2) L-Stable yes yes (1) yes (2) SDIRK
i ) GL with global explicit and
glee with gv\obaf error error implicit 1-3 2e [GKC13] 3(2) 2 (2) L-Stable yes yes (1) yes(2) SDIRK
estimation PRS(3 ) 2)
Multirate prssp2 i 3(3) 3(1) L-Stable yes no no SSP
mprk Partitioned multirate explicit 2-3 [PRO5]
Runge-Kutta g [KCO03] 4 (3) 3(2) L-Stable yes yes (2) vyes(2) SDIRK
Basic symplectic .
integrator for semi-implicit bpr3 [BPR11] 5 (4) 3(2) L-Stable yes no no SDIRK
basi lecti Euler and lici 1-2
asicsymplectic oparable Vel;'c;;f/”erlet explict ars443  [ARS97] 5 (4) 3(1) L-Stable vyes no no SDIRK
:*:”‘{'””lfa: 4 [KCO03] 6 (5) 4(2) L-Stable yes yes (3) yes SDIRK
. ully implici L
i R s S LCIAEE fncich &z 5 [KCO03] 8(7) 5(2) L-Stable yes vyes(4) vyes(3) SDIRK
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Unconstrained Bound Constrained

3 Associated L X . . ) . Associated L. . ., . . Constraint
Algorithm Objective Gradient Hessian Constraints Jacobian Algorithm Objective Gradient Hessian Constraints Jacobian
Type Type Type
Nelder-Mead TAONM Bounded 3
0X
Conjugate Gradient TAOCG Conjugate TAOBNCG X X .
. constraints
Limited Memory Gradient
Variable Metric TAOLMVM Bounded
(quasi-Newton) Limited
Orthant-wise Limited Memory B
. ) 0X
Memory (quasi- TAOOWLQN Variable TAOBLMVM X X 5
. constraints
Newton) Metric
Bundle Method for [(eDESHE
Regularized Risk TAOBMRM Newton)
Minimization Bounded
Newton Line Search TAONLS Quasi-
Box
Newton Trust Region TAONTR X X Newton TAOBQNLS X X )
. constraints
Line
Search
Bounded
Newton Box
. TAOBNLS X X X
Line constraints
Search
Bounded
Newton Box
TAOBNTR X X .
Trust- constraints
Optimization in PETSc
Gradient
Projection Box
X TAOGPCG X X .
Conjugate constraints
Gradient
Bounded
Quadratic Box
. TAOBQPIP X X X
Interior constraints
Point
UCHICAGO SNEREGY 0 & Dorarment of tnory faborato
ARGONNE..c ENERGY 3.5ty ety T T X X X Box

constraints



Complementarity

Optimization in PETSc

. Associated N . . . - Ao
Algorithm T Objective Gradient Hessian Constraints Jacobian Constraint
ype
Constrained Active-Set
. Associated L . . ) . Constraint Feasible TAOASFLS X X Complemen
Algorithm Objective Gradient Hessian Constraints Jacobian .
Type Type Line Search
Inte.rior cene] Active-Set
Point TAOIPM ] .
Constraints Infeasible TAOASILS X X Complemen
Method
- Line Search
Barrier-
Based Semismooth
Primal- General Feasible TAOSSFLS X X Complemen
TAOPDIPM
Dual Constraints Line Search
Interior .
) Semismooth
Point .
Infeasible
. TAOSSILS X X Complemen
Line
Searchx

Nonlinear Least Squares

. Associated L. i ) . . Constraint
Algorithm Objective Gradient Hessian Constraints Jacobian T
ype
Box
POUNDERS TAOPOUNDERS X

Constraints

PDE-Constrained

. Associated L ) . . . Constraint
Algorithm Objective Gradient Hessian Constraints Jacobian
Type Type
Linearly e
1.5, DEPARTHENT 07 Argonne Natlonel Laboratory ls & Constrained TAOLCL X X X X X .
UCHA%AGGOONNELLC NERG ﬁg Depa’\:(r:lem L)\;Elnerg(\./ gbova!ory Constra]nts

managed by UChicago Argonne, LLC. o
Lagrangian




Summary

Many “time” integrators beyond RK4
Two broad classes: explicit (RK4) and implicit (for stiff systems, e.g., backward Euler)
High-order integrators provide the best bang for the buck ...in principle

Modern integrators adapt the step size according to an error control mechanism ...works well
most of the time

Modern integrators handle adaptivity in time and in “space”

Computational advantages result from partitioning systems and integration of each partition with
different custom methods

We can reuse the calculated stages to form continuous high-order interpolators
Interpolators can be used to seed the next step solution when using implicit integrators
Some integrators preserve symplecticity, monotonicity, and positivity in addition to the above
Open-source software that implements these algorithms+ is available from DOE
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