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• Introduction:  beta decays in the SM and beyond

• The “Cabibbo universality test” (a.k.a. 1st row CKM unitarity test) 

• Summary of current status 

• Recent progress in SM predictions 

• Implications for new physics & connection to other observables

• Conclusion and outlook 
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β decays in the SM and beyond

• Nowadays: precision measurements provide a tool to challenge the SM & probe possible new physics

• Beta decays have played a central role in the development of the Standard Model 
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β decays in the SM and beyond

Cabibbo-Kobayashi-Maskawa Lepton Flavor Universality (LFU)

Cabibbo Universality 

• In the SM,  mediated by W exchange  ⇒  only “V-A”;   Cabibbo universality;   lepton universality
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β decays in the SM and beyond

WR, H+,  
leptoquarks,  

Vector-Like quarks, 
Z’, SUSY,…

• In the SM,  mediated by W exchange  ⇒  only “V-A”;   Cabibbo universality;   lepton universality
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β decays in the SM and beyond

• In the SM,  mediated by W exchange  ⇒  only “V-A”;   Cabibbo universality;   lepton universality

Ten effective couplings

E << Λ εΓ ~ εΓ ~ (v/Λ)2   ~

• Precision of 0.1-0.01% probes Λ > 10 TeV.   Several precision tests are possible….



Searches for ‘non V-A’ currents

Lee-Yang, 1956      Jackson-Treiman-Wyld 1957

5

 b (gSεS,  gTεT):                                                 
distortion of beta spectrum  

Measure differential decay distributions  (mostly sensitive to εS,T)

a(gA),   A(gA) ,  B(gA, gαεα), …                                                  
isolated via suitable experimental asymmetries  

Bounds on εS,T at the 0.1% level,  Λ~5-10 TeV
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Cabibbo universality test

6

Radiative corrections:
(α/π)~ 2.⨉ 10-3  and other effects 

Extract Vud=cosθC and  Vus=sinθC  from total decay rates

Channel-dependent effective CKM element 
(Contaminated by the BSM ε’s)

Hadronic / nuclear 
 matrix element
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Radiative corrections:
(α/π)~ 2.⨉ 10-3  and other effects 

Extract Vud=cosθC and  Vus=sinθC  from total decay rates

Channel-dependent effective CKM element 
(Contaminated by the BSM ε’s)

Hadronic / nuclear 
 matrix element

Unitarity test 
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2GFVud ē�µPL⌫e N̄ (gV vµ � 2gASµ) ⌧

+N + ...

gV / 1 +⇤V

Had + ...

gV (µe) = U(µe,⇤�)


1 +⇤V

Had +
↵(⇤�)

⇡


�
U(⇤�, µW ) C�(µW )

gA(µe) = gQCD
A

⇣
1 + chiral loops +

⌘

U(µe,⇤�)


1 +⇤V

Had +
↵(⇤�)

⇡


�
U(⇤�, µW ) C�(µW )

� = G2
F
⇥ |Vij|

2
⇥ |Mhad|

2
⇥ (1 +�R)⇥ Fkin

eiWLEFT[qL,qR,qW ,...] =

Z
[d�]LEFT ei

R
dxLLEFT[qL,qR,qW ,...]

10



Paths to Vud and Vus
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Nucl. mirror decays
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(π ± →π 0eν)

€ 

n→ peν

.                 

Hadron decays Lepton decays

Nucl.  0+ →0+ 

A V,  AV V,  A
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n→ peν
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(π ± →π 0eν)

Matrix elements
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.                 

Hadron decays Lepton decays

Hadronic matrix elements:  ‘Vector - Axial’ quark current

A

<0 | Aμ |M>
(decay constants)
from Lattice QCD

[~0.2%]

V,  A

Use combination of 
data and theory 

(pQCD + lattice QCD)

Berhends-Sirlin     
  Ademollo-Gatto

Traditionally “Golden modes”:
 <f |Vμ |i> known in SU(2) [SU(3)] limit 

& 
corrections are 2nd order in                     

SU(2) [SU(3)] breaking. 
Computed in lattice QCD for K →π

V V,  A

Need experimental input on 
<f |A|i> / <f |V |i> 

For neutron and hyperons, 
Lattice QCD catching up but 
not as precise as experiment 

Nucl. mirror decaysNucl.  0+ →0+ 



Radiative corrections
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Hadron decays Lepton decays

Electroweak radiative corrections

Nucl. mirror decays

€ 

(π ± →π 0eν)

€ 

n→ peν
Nucl.  0+ →0+ 

Mesons and neutron: 
well developed perturbative  

framework, with non-perturbative 
input from lattice QCD and / or 

dispersive methods 

For leptonic meson decays: 
full lattice QCD+QED available

For exclusive channels, difficult 
to estimate the hadronic 

structure-dependent effects.  
Lattice QCD+QED? 

.                 

Recent activity to assess nuclear 
structure uncertainties:   

- Dispersive approach
- Chiral EFT

            



The Cabibbo angle — global view

Vus

Convert  Vud to  Vus via unitarity 

Largest 
uncertainty

EXP

 EXP + TH 

EXP

TH

EXP + TH 
TH

 EXP + TH 

 EXP + TH 

5.3%

0.21%

0.24%

0.6% + ?
0.8%  (1.7%)

0.8% + ?

0.8% + ?
1.2% +?

(PDG)

Fractional 
uncertainty 
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Tension among the most precise determinations

0.215 0.220 0.225 0.230 0.235 0.240
0.0

0.5

1.0

1.5

2.0

€ 

0+ → 0+

€ 

(π ± →π 0eν)

€ 

n→ peν
𝜏 exclusive

𝜏 inclusive

Hyperons

K →μν  / π → μν   

K → π l ν   



Tensions in the Vud-Vus plane
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• Bands don’t intersect in the same region                                
on the unitarity circle

• ~3σ problem even in meson sector (Kl2 vs Kl3)

• ~3σ effect in global fit (ΔCKM= −1.48(53) ⨉10-3)

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarityNeutron (0.043%)
0+ → 0+ (0.031%)

VC-Crivellin-Hoferichter-Moulson  2208.11707  
[and references therein]

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 - 1
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• Needed / expected experimental scrutiny:  

• neutron decay  (will match nominal nuclear uncertainty)

• pion beta decay (6x to 10x at PIONEER phases II, III)

• new Kμ3/Kμ2 BR measurement at NA62 

• Theoretical scrutiny:

• Standard Model predictions with few ⨉ 10-4 precision!

• Study possible BSM explanations that survive the 
constraints from other precision tests and the LHC 

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarityNeutron (0.043%)
0+ → 0+ (0.031%)

VC-Crivellin-Hoferichter-Moulson  2208.11707  
[and references therein]

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 - 1

Tensions in the Vud-Vus plane

Cabibbo angle anomaly? 
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Improving the SM predictions
Intense recent theoretical activity on several fronts 

scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain

V
n, PDG
ud

= 0.97430(2)�f (13)�R(82)�(28)⌧n [88]total. (7)

Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
III [59, 60], we obtain a very competitive extraction of Vud from neutron decay:

V
n, best
ud

= 0.97402(2)�f (13)�R(35)�(20)⌧n [42]total, (8)

with an uncertainty approaching the currently quoted error �Vud = 31 ⇥ 10�5 from 0+ ! 0+ nuclear
beta decays [6]. Compared to the baseline correction of Refs. [1–5, 7, 49], the positive shift of +0.061%
in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
of +0.026% in the correction to the rate. This one, in turn, provides a negative shift in Vud, �Vud '

�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.

3 Step I: matching the Standard Model to LEFT

In this Section, we perform the matching of the Standard Model to the LEFT at one-loop level and
present the RGE that control the e↵ective couplings in the LEFT between the electroweak and QCD
scales. We then introduce spurions and external sources in the LEFT to describe the electromagnetic
and weak interactions of quarks [46, 61], which is particularly useful in the matching of LEFT to chiral
perturbation theory, to be described in subsequent sections. Throughout, we regulate the UV divergences
in dimensional regularization, working in d = 4� 2✏ spacetime dimensions.

3.1 Wilson coe�cient and RGE

The part of the LEFT Lagrangian relevant for muon and � decays just below the weak scale reads

LFermi = �
GF
p
2
Vud C�(µ) ¯̀�↵(1� �5)⌫` ū�

↵(1� �5)d+ ... (9)

hf | |ii

hf | |ii

LLEFT = �2
p
2GF ēL�⇢µL ⌫̄µL�

⇢
⌫eL � 2

p
2GFVud C

r

�(a, µ) ēL�⇢⌫eL ūL�
⇢
dL + h.c.+ ... . (10)

Here µ denotes the MS renormalization scale and

GF =
⇡↵ (µ) g (µ)

p
2M2

W
(µ) s2

W
(µ)

, (11)

is the scale-independent Fermi constant, that is extracted from precise measurements of the muon life-
time [62–65], expressed in terms of MS Standard Model parameters (with s

2
W

= 1 � M
2
W
/M

2
Z
). The

function g (µ) can be found in Ref. [66] and reduces to g (µ) = 1 at tree level. The e↵ective coupling
multiplying the semileptonic operator that mediates � decays involves the same GF as the pure-leptonic
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is
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as a generalization of the Fermi Theory to include all known quarks and leptons as well as
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
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N
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4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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e1)
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LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p

eν

GF, GFα, GFαεχ   

Standard Model

Fermi theory + 
QCD + QED

Chiral 
Perturbation 

Theory 

•   Short distance electroweak corrections to NLL (Cβ(μ))   

•   Computation of matrix elements to O(α) and beyond 

- Dispersive methods

- Lattice QCD

- EFT for single- and multi-nucleon systems, nuclei                  

- First-principles nuclear structure calculations  
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Improving the SM predictions
Intense recent theoretical activity on several fronts 

scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain

V
n, PDG
ud

= 0.97430(2)�f (13)�R(82)�(28)⌧n [88]total. (7)

Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
III [59, 60], we obtain a very competitive extraction of Vud from neutron decay:

V
n, best
ud

= 0.97402(2)�f (13)�R(35)�(20)⌧n [42]total, (8)

with an uncertainty approaching the currently quoted error �Vud = 31 ⇥ 10�5 from 0+ ! 0+ nuclear
beta decays [6]. Compared to the baseline correction of Refs. [1–5, 7, 49], the positive shift of +0.061%
in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
of +0.026% in the correction to the rate. This one, in turn, provides a negative shift in Vud, �Vud '

�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.

3 Step I: matching the Standard Model to LEFT

In this Section, we perform the matching of the Standard Model to the LEFT at one-loop level and
present the RGE that control the e↵ective couplings in the LEFT between the electroweak and QCD
scales. We then introduce spurions and external sources in the LEFT to describe the electromagnetic
and weak interactions of quarks [46, 61], which is particularly useful in the matching of LEFT to chiral
perturbation theory, to be described in subsequent sections. Throughout, we regulate the UV divergences
in dimensional regularization, working in d = 4� 2✏ spacetime dimensions.

3.1 Wilson coe�cient and RGE

The part of the LEFT Lagrangian relevant for muon and � decays just below the weak scale reads

LFermi = �
GF
p
2
Vud C�(µ) ¯̀�↵(1� �5)⌫` ū�

↵(1� �5)d+ ... (9)

hf | |ii

hf | |ii

LLEFT = �2
p
2GF ēL�⇢µL ⌫̄µL�

⇢
⌫eL � 2

p
2GFVud C

r

�(a, µ) ēL�⇢⌫eL ūL�
⇢
dL + h.c.+ ... . (10)

Here µ denotes the MS renormalization scale and

GF =
⇡↵ (µ) g (µ)

p
2M2

W
(µ) s2

W
(µ)

, (11)

is the scale-independent Fermi constant, that is extracted from precise measurements of the muon life-
time [62–65], expressed in terms of MS Standard Model parameters (with s

2
W

= 1 � M
2
W
/M

2
Z
). The

function g (µ) can be found in Ref. [66] and reduces to g (µ) = 1 at tree level. The e↵ective coupling
multiplying the semileptonic operator that mediates � decays involves the same GF as the pure-leptonic

7
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me

γ
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j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p

eν

GF, GFα, GFαεχ   

Standard Model

Fermi theory + 
QCD + QED

Chiral 
Perturbation 

Theory 

•   Short distance electroweak corrections to NLL (Cβ(μ))   

•   Computation of matrix elements to O(α) and beyond 

- Dispersive methods

- Lattice QCD

- EFT for single- and multi-nucleon systems, nuclei                  

- First-principles nuclear structure calculations  

We will hear about most of these during the workshop.       
 In this talk I discuss progress in neutron decay
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.

1

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
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erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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e)

j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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This improvement applies to all decays

scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain

V
n, PDG
ud

= 0.97430(2)�f (13)�R(82)�(28)⌧n [88]total. (7)

Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
III [59, 60], we obtain a very competitive extraction of Vud from neutron decay:

V
n, best
ud

= 0.97402(2)�f (13)�R(35)�(20)⌧n [42]total, (8)

with an uncertainty approaching the currently quoted error �Vud = 31 ⇥ 10�5 from 0+ ! 0+ nuclear
beta decays [6]. Compared to the baseline correction of Refs. [1–5, 7, 49], the positive shift of +0.061%
in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
of +0.026% in the correction to the rate. This one, in turn, provides a negative shift in Vud, �Vud '

�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.

3 Step I: matching the Standard Model to LEFT

In this Section, we perform the matching of the Standard Model to the LEFT at one-loop level and
present the RGE that control the e↵ective couplings in the LEFT between the electroweak and QCD
scales. We then introduce spurions and external sources in the LEFT to describe the electromagnetic
and weak interactions of quarks [46, 61], which is particularly useful in the matching of LEFT to chiral
perturbation theory, to be described in subsequent sections. Throughout, we regulate the UV divergences
in dimensional regularization, working in d = 4� 2✏ spacetime dimensions.

3.1 Wilson coe�cient and RGE

The part of the LEFT Lagrangian relevant for muon and � decays just below the weak scale reads

LFermi = �
GF
p
2
Vud C�(µ) ¯̀�↵(1� �5)⌫` ū�

↵(1� �5)d+ ... (9)

hf | |ii

hf | |ii

LLEFT = �2
p
2GF ēL�⇢µL ⌫̄µL�

⇢
⌫eL � 2

p
2GFVud C

r

�(a, µ) ēL�⇢⌫eL ūL�
⇢
dL + h.c.+ ... . (10)

Here µ denotes the MS renormalization scale and

GF =
⇡↵ (µ) g (µ)

p
2M2

W
(µ) s2

W
(µ)

, (11)

is the scale-independent Fermi constant, that is extracted from precise measurements of the muon life-
time [62–65], expressed in terms of MS Standard Model parameters (with s

2
W

= 1 � M
2
W
/M

2
Z
). The

function g (µ) can be found in Ref. [66] and reduces to g (µ) = 1 at tree level. The e↵ective coupling
multiplying the semileptonic operator that mediates � decays involves the same GF as the pure-leptonic
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)
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a1) b1) c1) d1)

f1) g1) h1) i1)

e1)

j1)

c2)a2) b2)

LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
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⇡ and L

p
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⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p

eν

GF, GFα, GFαεχ   

Contributions from photons of all virtualities — EFT captures them all

Hard:       (k0, |k|) > Λχ ~ mN ~ GeV                                                   
Soft:         (k0, |k|)~ Q ~ kF ~ mπ                                   

Potential:  (k0,|k|) ~ (Q2/mN,  Q)                          
Ultrasoft  (k0, |k|) ~ Q2/mN <<  kF

scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain

V
n, PDG
ud

= 0.97430(2)�f (13)�R(82)�(28)⌧n [88]total. (7)

Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
III [59, 60], we obtain a very competitive extraction of Vud from neutron decay:

V
n, best
ud

= 0.97402(2)�f (13)�R(35)�(20)⌧n [42]total, (8)

with an uncertainty approaching the currently quoted error �Vud = 31 ⇥ 10�5 from 0+ ! 0+ nuclear
beta decays [6]. Compared to the baseline correction of Refs. [1–5, 7, 49], the positive shift of +0.061%
in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
of +0.026% in the correction to the rate. This one, in turn, provides a negative shift in Vud, �Vud '

�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.

3 Step I: matching the Standard Model to LEFT

In this Section, we perform the matching of the Standard Model to the LEFT at one-loop level and
present the RGE that control the e↵ective couplings in the LEFT between the electroweak and QCD
scales. We then introduce spurions and external sources in the LEFT to describe the electromagnetic
and weak interactions of quarks [46, 61], which is particularly useful in the matching of LEFT to chiral
perturbation theory, to be described in subsequent sections. Throughout, we regulate the UV divergences
in dimensional regularization, working in d = 4� 2✏ spacetime dimensions.

3.1 Wilson coe�cient and RGE

The part of the LEFT Lagrangian relevant for muon and � decays just below the weak scale reads

LFermi = �
GF
p
2
Vud C�(µ) ¯̀�↵(1� �5)⌫` ū�

↵(1� �5)d+ ... (9)

hf | |ii

hf | |ii

LLEFT = �2
p
2GF ēL�⇢µL ⌫̄µL�

⇢
⌫eL � 2

p
2GFVud C

r

�(a, µ) ēL�⇢⌫eL ūL�
⇢
dL + h.c.+ ... . (10)

Here µ denotes the MS renormalization scale and

GF =
⇡↵ (µ) g (µ)

p
2M2

W
(µ) s2

W
(µ)

, (11)

is the scale-independent Fermi constant, that is extracted from precise measurements of the muon life-
time [62–65], expressed in terms of MS Standard Model parameters (with s

2
W

= 1 � M
2
W
/M

2
Z
). The

function g (µ) can be found in Ref. [66] and reduces to g (µ) = 1 at tree level. The e↵ective coupling
multiplying the semileptonic operator that mediates � decays involves the same GF as the pure-leptonic

7

Matrix elements to O(α)

Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
µ⌫

V V
(q, v)

��
OPE

=
iv · q

q2 � µ2
0

⇣
2� d+ 2

↵s

⇡

⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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q2 � �2

�
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!
, (50)

where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:

g
r

9(µ�, µ) =
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain

g
r

9(µ�, µ) =

ˆ
ddq

(2⇡)d
v · q gµ⌫ T̃

µ⌫

V V
(q, v)

(q2)2
+
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1 +
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µ
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+
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#
. (52)

4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
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2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
µ⌫

V V
(q, v)

��
OPE

=
iv · q

q2 � µ2
0

⇣
2� d+ 2

↵s

⇡

⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain

g
r

9(µ�, µ) =
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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Figure 1: Diagrams that contribute to �V V in HBChPT are shown. Double, wiggly, and dashed lines
denote nucleons, photons, and pions, respectively. Dashed circles denote insertions of the sources qa,b

V
.

The arrows denote the flow of the momentum r inserted by the sources. The first three diagrams originate

from the leading-order ⇡ and ⇡N Lagrangians, Lp
2

⇡ , Le
2

⇡ , and L
p

⇡N
[44, 80, 82], which are presented in

Eq. (32). The last diagram denotes contributions from L
e
2
p

⇡N
and is proportional to g9.

where k and k
0 are the nucleon momenta, � and �

0 denote the nucleon spins, and i, j the nucleon isospins.
We take the nucleon to be at rest, k = k

0 = mNv and use the nonrelativistic normalization for heavy-
particle states hN (k0,�0

, j) |N (k,�, i)i = (2⇡)3�(3)(k � k0)�ij���
0
. W = �i lnZ denotes the generating

functional of the connected diagrams.
�V V needs to be computed in both HBChPT and LEFT, and, in both theories, it receives tree-level

and loop contributions. The contributions to �V V in HBChPT are illustrated in Fig. 1. The short-range

contributions are determined by LECs in the Le
2
p

⇡N
Lagrangian. g9 provides the only contribution to �V V .

The loops are determined by couplings in the leading-order (LO) pion and pion-nucleon Lagrangians. In
particular, the diagram with pion-mass splitting Z⇡ is symmetric in isospin, and vanishes once contracted
with the Levi-Civita tensor, so that the loop corrections are purely determined by the minimal coupling
of the photon to the nucleon. In arbitrary R⇠ gauge, we introduce the photon mass �� as an infrared
regulator and obtain

�V V |
HB�PT = e

2

 
g9 +
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. (45)

g
r
9(µ�, µ) in the second line denotes the renormalized coupling, after subtraction of the 1/" pole in the
MS� scheme. For ⇠ = 1, the anomalous dimension of gr9(µ�, µ) agrees with the result of Ref. [80], so that
Eq. (45) is independent of the scale µ�.

In the LEFT, the same matrix element is given by

�V V |
LEFT = e
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Eq. (46) contains a tree-level term, proportional to the counterterm g23 that cancels the divergences
generated by loop diagrams. The loop contribution contains the hadronic tensor Tµ⌫

V V
(q, v), which can be

expressed in terms of the two-point correlation function of quark currents. Here, we use the definition [34]

T
µ⌫

V V (A) (q, v) =
"
abc

⌧
c

ij
�
�
0
�

12

i

4
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ddx eiq·xhN(k,�0

, j)|T
h
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µ
⌧
b
q (x) q�⌫ (�5) ⌧

a
q(0)

i
|N(k,�, i)i. (47)

The gauge-dependent term in Eq. (46) is obtained using

qµT
µ⌫

V V
(q, v) = qµT

⌫µ

V V
(q, v) = iv

⌫
, (48)

which follows from the conservation of the vector current.
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Figure1:Diagramsthatcontributeto�VVinHBChPTareshown.Double,wiggly,anddashedlines
denotenucleons,photons,andpions,respectively.Dashedcirclesdenoteinsertionsofthesourcesq

a,b

V.
Thearrowsdenotetheflowofthemomentumrinsertedbythesources.Thefirstthreediagramsoriginate

fromtheleading-order⇡and⇡NLagrangians,L
p2

⇡,L
e2

⇡,andL
p

⇡N[44,80,82],whicharepresentedin

Eq.(32).ThelastdiagramdenotescontributionsfromL
e2p

⇡Nandisproportionaltog9.

wherekandk0arethenucleonmomenta,�and�0denotethenucleonspins,andi,jthenucleonisospins.
Wetakethenucleontobeatrest,k=k0=mNvandusethenonrelativisticnormalizationforheavy-
particlestateshN(k0,�0,j)|N(k,�,i)i=(2⇡)3�(3)(k�k0)�ij���0

.W=�ilnZdenotesthegenerating
functionaloftheconnecteddiagrams.

�VVneedstobecomputedinbothHBChPTandLEFT,and,inboththeories,itreceivestree-level
andloopcontributions.Thecontributionsto�VVinHBChPTareillustratedinFig.1.Theshort-range

contributionsaredeterminedbyLECsintheL
e2p

⇡NLagrangian.g9providestheonlycontributionto�VV.
Theloopsaredeterminedbycouplingsintheleading-order(LO)pionandpion-nucleonLagrangians.In
particular,thediagramwithpion-masssplittingZ⇡issymmetricinisospin,andvanishesoncecontracted
withtheLevi-Civitatensor,sothattheloopcorrectionsarepurelydeterminedbytheminimalcoupling
ofthephotontothenucleon.InarbitraryR⇠gauge,weintroducethephotonmass��asaninfrared
regulatorandobtain
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9(µ�,µ)inthesecondlinedenotestherenormalizedcoupling,aftersubtractionofthe1/"poleinthe
MS�scheme.For⇠=1,theanomalousdimensionofg
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Eq.(46)containsatree-levelterm,proportionaltothecountertermg23thatcancelsthedivergences
generatedbyloopdiagrams.TheloopcontributioncontainsthehadronictensorT

µ⌫

VV(q,v),whichcanbe
expressedintermsofthetwo-pointcorrelationfunctionofquarkcurrents.Here,weusethedefinition[34]
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Thegauge-dependentterminEq.(46)isobtainedusing
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whichfollowsfromtheconservationofthevectorcurrent.
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Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)
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where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain

V
n, PDG
ud

= 0.97430(2)�f (13)�R(82)�(28)⌧n [88]total. (7)

Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
III [59, 60], we obtain a very competitive extraction of Vud from neutron decay:

V
n, best
ud

= 0.97402(2)�f (13)�R(35)�(20)⌧n [42]total, (8)

with an uncertainty approaching the currently quoted error �Vud = 31 ⇥ 10�5 from 0+ ! 0+ nuclear
beta decays [6]. Compared to the baseline correction of Refs. [1–5, 7, 49], the positive shift of +0.061%
in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
of +0.026% in the correction to the rate. This one, in turn, provides a negative shift in Vud, �Vud '

�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.

3 Step I: matching the Standard Model to LEFT

In this Section, we perform the matching of the Standard Model to the LEFT at one-loop level and
present the RGE that control the e↵ective couplings in the LEFT between the electroweak and QCD
scales. We then introduce spurions and external sources in the LEFT to describe the electromagnetic
and weak interactions of quarks [46, 61], which is particularly useful in the matching of LEFT to chiral
perturbation theory, to be described in subsequent sections. Throughout, we regulate the UV divergences
in dimensional regularization, working in d = 4� 2✏ spacetime dimensions.

3.1 Wilson coe�cient and RGE

The part of the LEFT Lagrangian relevant for muon and � decays just below the weak scale reads

LFermi = �
GF
p
2
Vud C�(µ) ¯̀�↵(1� �5)⌫` ū�

↵(1� �5)d+ ... (9)

hf | |ii

hf | |ii

LLEFT = �2
p
2GF ēL�⇢µL ⌫̄µL�

⇢
⌫eL � 2

p
2GFVud C

r

�(a, µ) ēL�⇢⌫eL ūL�
⇢
dL + h.c.+ ... . (10)

Here µ denotes the MS renormalization scale and

GF =
⇡↵ (µ) g (µ)

p
2M2

W
(µ) s2

W
(µ)

, (11)

is the scale-independent Fermi constant, that is extracted from precise measurements of the muon life-
time [62–65], expressed in terms of MS Standard Model parameters (with s

2
W

= 1 � M
2
W
/M

2
Z
). The

function g (µ) can be found in Ref. [66] and reduces to g (µ) = 1 at tree level. The e↵ective coupling
multiplying the semileptonic operator that mediates � decays involves the same GF as the pure-leptonic

7



Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
µ⌫

V V
(q, v)

��
OPE

=
iv · q

q2 � µ2
0

⇣
2� d+ 2

↵s

⇡

⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain

�V V |
LEFT =

e
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d4q
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v · q gµ⌫T
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V V (q, v)
�
q2 � �2

�

�2

!
, (50)

where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:

g
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#
. (51)

Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain

g
r

9(µ�, µ) =

ˆ
ddq

(2⇡)d
v · q gµ⌫ T̃

µ⌫

V V
(q, v)
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1 +
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µ
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�

µ2
�
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2
+

⇠

2

#
. (52)

4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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a1) b1) c1) d1)

f1) g1) h1) i1)

e1)

j1)

c2)a2) b2)

LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me

γ

γW W

γ 4

a) b) c) d)

f) g) h) i)

e)

j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p

eν

GF, GFα, GFαεχ   
Hard photons 

[(k0, |k|) >~ Λχ ~ mN ~ GeV]
 leave behind local 

interactions at low energy 

scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain

V
n, PDG
ud

= 0.97430(2)�f (13)�R(82)�(28)⌧n [88]total. (7)

Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
III [59, 60], we obtain a very competitive extraction of Vud from neutron decay:

V
n, best
ud

= 0.97402(2)�f (13)�R(35)�(20)⌧n [42]total, (8)

with an uncertainty approaching the currently quoted error �Vud = 31 ⇥ 10�5 from 0+ ! 0+ nuclear
beta decays [6]. Compared to the baseline correction of Refs. [1–5, 7, 49], the positive shift of +0.061%
in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
of +0.026% in the correction to the rate. This one, in turn, provides a negative shift in Vud, �Vud '

�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.

3 Step I: matching the Standard Model to LEFT

In this Section, we perform the matching of the Standard Model to the LEFT at one-loop level and
present the RGE that control the e↵ective couplings in the LEFT between the electroweak and QCD
scales. We then introduce spurions and external sources in the LEFT to describe the electromagnetic
and weak interactions of quarks [46, 61], which is particularly useful in the matching of LEFT to chiral
perturbation theory, to be described in subsequent sections. Throughout, we regulate the UV divergences
in dimensional regularization, working in d = 4� 2✏ spacetime dimensions.

3.1 Wilson coe�cient and RGE

The part of the LEFT Lagrangian relevant for muon and � decays just below the weak scale reads

LFermi = �
GF
p
2
Vud C�(µ) ¯̀�↵(1� �5)⌫` ū�

↵(1� �5)d+ ... (9)

hf | |ii

hf | |ii

LLEFT = �2
p
2GF ēL�⇢µL ⌫̄µL�

⇢
⌫eL � 2

p
2GFVud C

r

�(a, µ) ēL�⇢⌫eL ūL�
⇢
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is the scale-independent Fermi constant, that is extracted from precise measurements of the muon life-
time [62–65], expressed in terms of MS Standard Model parameters (with s
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Z
). The

function g (µ) can be found in Ref. [66] and reduces to g (µ) = 1 at tree level. The e↵ective coupling
multiplying the semileptonic operator that mediates � decays involves the same GF as the pure-leptonic
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scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain
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Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
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in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
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�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.
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Matrix elements to O(α)

Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)
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where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain

g
r

9(µ�, µ) =

ˆ
ddq

(2⇡)d
v · q gµ⌫ T̃

µ⌫

V V
(q, v)

(q2)2
+

1

(4⇡)2

"✓
1 +

1� ⇠

2

◆
ln

µ
2
�

µ2
�

3

2
+

⇠

2

#
. (52)

4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)
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where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T
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IR = i/ (v · q)
and obtain
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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Figure 1: Diagrams that contribute to �V V in HBChPT are shown. Double, wiggly, and dashed lines
denote nucleons, photons, and pions, respectively. Dashed circles denote insertions of the sources qa,b

V
.

The arrows denote the flow of the momentum r inserted by the sources. The first three diagrams originate

from the leading-order ⇡ and ⇡N Lagrangians, Lp
2

⇡ , Le
2

⇡ , and L
p

⇡N
[44, 80, 82], which are presented in

Eq. (32). The last diagram denotes contributions from L
e
2
p

⇡N
and is proportional to g9.

where k and k
0 are the nucleon momenta, � and �

0 denote the nucleon spins, and i, j the nucleon isospins.
We take the nucleon to be at rest, k = k

0 = mNv and use the nonrelativistic normalization for heavy-
particle states hN (k0,�0

, j) |N (k,�, i)i = (2⇡)3�(3)(k � k0)�ij���
0
. W = �i lnZ denotes the generating

functional of the connected diagrams.
�V V needs to be computed in both HBChPT and LEFT, and, in both theories, it receives tree-level

and loop contributions. The contributions to �V V in HBChPT are illustrated in Fig. 1. The short-range

contributions are determined by LECs in the Le
2
p

⇡N
Lagrangian. g9 provides the only contribution to �V V .

The loops are determined by couplings in the leading-order (LO) pion and pion-nucleon Lagrangians. In
particular, the diagram with pion-mass splitting Z⇡ is symmetric in isospin, and vanishes once contracted
with the Levi-Civita tensor, so that the loop corrections are purely determined by the minimal coupling
of the photon to the nucleon. In arbitrary R⇠ gauge, we introduce the photon mass �� as an infrared
regulator and obtain
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g
r
9(µ�, µ) in the second line denotes the renormalized coupling, after subtraction of the 1/" pole in the
MS� scheme. For ⇠ = 1, the anomalous dimension of gr9(µ�, µ) agrees with the result of Ref. [80], so that
Eq. (45) is independent of the scale µ�.

In the LEFT, the same matrix element is given by
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Eq. (46) contains a tree-level term, proportional to the counterterm g23 that cancels the divergences
generated by loop diagrams. The loop contribution contains the hadronic tensor Tµ⌫

V V
(q, v), which can be

expressed in terms of the two-point correlation function of quark currents. Here, we use the definition [34]
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The gauge-dependent term in Eq. (46) is obtained using

qµT
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V V
(q, v) = qµT
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⌫
, (48)

which follows from the conservation of the vector current.
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Figure1:Diagramsthatcontributeto�VVinHBChPTareshown.Double,wiggly,anddashedlines
denotenucleons,photons,andpions,respectively.Dashedcirclesdenoteinsertionsofthesourcesq

a,b

V.
Thearrowsdenotetheflowofthemomentumrinsertedbythesources.Thefirstthreediagramsoriginate

fromtheleading-order⇡and⇡NLagrangians,L
p2

⇡,L
e2

⇡,andL
p

⇡N[44,80,82],whicharepresentedin

Eq.(32).ThelastdiagramdenotescontributionsfromL
e2p

⇡Nandisproportionaltog9.

wherekandk0arethenucleonmomenta,�and�0denotethenucleonspins,andi,jthenucleonisospins.
Wetakethenucleontobeatrest,k=k0=mNvandusethenonrelativisticnormalizationforheavy-
particlestateshN(k0,�0,j)|N(k,�,i)i=(2⇡)3�(3)(k�k0)�ij���0

.W=�ilnZdenotesthegenerating
functionaloftheconnecteddiagrams.

�VVneedstobecomputedinbothHBChPTandLEFT,and,inboththeories,itreceivestree-level
andloopcontributions.Thecontributionsto�VVinHBChPTareillustratedinFig.1.Theshort-range

contributionsaredeterminedbyLECsintheL
e2p

⇡NLagrangian.g9providestheonlycontributionto�VV.
Theloopsaredeterminedbycouplingsintheleading-order(LO)pionandpion-nucleonLagrangians.In
particular,thediagramwithpion-masssplittingZ⇡issymmetricinisospin,andvanishesoncecontracted
withtheLevi-Civitatensor,sothattheloopcorrectionsarepurelydeterminedbytheminimalcoupling
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Eq.(46)containsatree-levelterm,proportionaltothecountertermg23thatcancelsthedivergences
generatedbyloopdiagrams.TheloopcontributioncontainsthehadronictensorT
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Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)
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where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T
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IR = i/ (v · q)
and obtain
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain

V
n, PDG
ud

= 0.97430(2)�f (13)�R(82)�(28)⌧n [88]total. (7)

Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
III [59, 60], we obtain a very competitive extraction of Vud from neutron decay:

V
n, best
ud

= 0.97402(2)�f (13)�R(35)�(20)⌧n [42]total, (8)

with an uncertainty approaching the currently quoted error �Vud = 31 ⇥ 10�5 from 0+ ! 0+ nuclear
beta decays [6]. Compared to the baseline correction of Refs. [1–5, 7, 49], the positive shift of +0.061%
in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
of +0.026% in the correction to the rate. This one, in turn, provides a negative shift in Vud, �Vud '

�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.

3 Step I: matching the Standard Model to LEFT

In this Section, we perform the matching of the Standard Model to the LEFT at one-loop level and
present the RGE that control the e↵ective couplings in the LEFT between the electroweak and QCD
scales. We then introduce spurions and external sources in the LEFT to describe the electromagnetic
and weak interactions of quarks [46, 61], which is particularly useful in the matching of LEFT to chiral
perturbation theory, to be described in subsequent sections. Throughout, we regulate the UV divergences
in dimensional regularization, working in d = 4� 2✏ spacetime dimensions.

3.1 Wilson coe�cient and RGE

The part of the LEFT Lagrangian relevant for muon and � decays just below the weak scale reads

LFermi = �
GF
p
2
Vud C�(µ) ¯̀�↵(1� �5)⌫` ū�

↵(1� �5)d+ ... (9)

hf | |ii

hf | |ii

LLEFT = �2
p
2GF ēL�⇢µL ⌫̄µL�

⇢
⌫eL � 2

p
2GFVud C

r

�(a, µ) ēL�⇢⌫eL ūL�
⇢
dL + h.c.+ ... . (10)

Here µ denotes the MS renormalization scale and

GF =
⇡↵ (µ) g (µ)

p
2M2

W
(µ) s2

W
(µ)

, (11)

is the scale-independent Fermi constant, that is extracted from precise measurements of the muon life-
time [62–65], expressed in terms of MS Standard Model parameters (with s

2
W

= 1 � M
2
W
/M

2
Z
). The

function g (µ) can be found in Ref. [66] and reduces to g (µ) = 1 at tree level. The e↵ective coupling
multiplying the semileptonic operator that mediates � decays involves the same GF as the pure-leptonic

7

E

Λχ 
 (~GeV)

kF, mπ

   MW.Z

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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a1) b1) c1) d1)

f1) g1) h1) i1)

e1)

j1)

c2)a2) b2)

LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me

γ

γW W

γ 4

a) b) c) d)

f) g) h) i)

e)

j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p

eν

GF, GFα, GFαεχ   

scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain

V
n, PDG
ud

= 0.97430(2)�f (13)�R(82)�(28)⌧n [88]total. (7)

Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
III [59, 60], we obtain a very competitive extraction of Vud from neutron decay:

V
n, best
ud

= 0.97402(2)�f (13)�R(35)�(20)⌧n [42]total, (8)

with an uncertainty approaching the currently quoted error �Vud = 31 ⇥ 10�5 from 0+ ! 0+ nuclear
beta decays [6]. Compared to the baseline correction of Refs. [1–5, 7, 49], the positive shift of +0.061%
in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
of +0.026% in the correction to the rate. This one, in turn, provides a negative shift in Vud, �Vud '

�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.

3 Step I: matching the Standard Model to LEFT

In this Section, we perform the matching of the Standard Model to the LEFT at one-loop level and
present the RGE that control the e↵ective couplings in the LEFT between the electroweak and QCD
scales. We then introduce spurions and external sources in the LEFT to describe the electromagnetic
and weak interactions of quarks [46, 61], which is particularly useful in the matching of LEFT to chiral
perturbation theory, to be described in subsequent sections. Throughout, we regulate the UV divergences
in dimensional regularization, working in d = 4� 2✏ spacetime dimensions.

3.1 Wilson coe�cient and RGE

The part of the LEFT Lagrangian relevant for muon and � decays just below the weak scale reads

LFermi = �
GF
p
2
Vud C�(µ) ¯̀�↵(1� �5)⌫` ū�

↵(1� �5)d+ ... (9)

hf | |ii

hf | |ii

LLEFT = �2
p
2GF ēL�⇢µL ⌫̄µL�

⇢
⌫eL � 2

p
2GFVud C

r

�(a, µ) ēL�⇢⌫eL ūL�
⇢
dL + h.c.+ ... . (10)

Here µ denotes the MS renormalization scale and

GF =
⇡↵ (µ) g (µ)

p
2M2

W
(µ) s2

W
(µ)

, (11)

is the scale-independent Fermi constant, that is extracted from precise measurements of the muon life-
time [62–65], expressed in terms of MS Standard Model parameters (with s

2
W

= 1 � M
2
W
/M

2
Z
). The

function g (µ) can be found in Ref. [66] and reduces to g (µ) = 1 at tree level. The e↵ective coupling
multiplying the semileptonic operator that mediates � decays involves the same GF as the pure-leptonic
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Matrix elements to O(α)

Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
µ⌫

V V
(q, v)

��
OPE

=
iv · q

q2 � µ2
0

⇣
2� d+ 2

↵s

⇡

⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain

�V V |
LEFT =

e
2

(4⇡)2

✓
1

2

⇣
1�

↵s

⇡

⌘
ln

µ
2

µ2
0

+
1

4
�

1� ⇠

2

✓
ln

µ
2

�2
�

+ 1

◆
�

⇠

2
ln ⇠

+(4⇡)2
ˆ

d4q

(2⇡)4
v · q gµ⌫T

µ⌫

V V (q, v)
�
q2 � �2

�

�2

!
, (50)

where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:

g
r

9(µ�, µ) =

ˆ
d4q

(2⇡)4
v · q gµ⌫T

µ⌫

V V (q, v)
�
q2 � �2

�

�2

+
1

(4⇡)2

"
ln

µ
2
�

�2
�

+
1

2

⇣
1�

↵s

⇡

⌘
ln

µ
2

µ2
0

+
1� ⇠

2
ln

µ
2
�

µ2
�

5

4
+

⇠

2

#
. (51)

Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain

g
r

9(µ�, µ) =

ˆ
ddq

(2⇡)d
v · q gµ⌫ T̃

µ⌫

V V
(q, v)

(q2)2
+

1

(4⇡)2

"✓
1 +

1� ⇠

2

◆
ln

µ
2
�

µ2
�

3

2
+

⇠

2

#
. (52)

4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)
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where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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Figure 1: Diagrams that contribute to �V V in HBChPT are shown. Double, wiggly, and dashed lines
denote nucleons, photons, and pions, respectively. Dashed circles denote insertions of the sources qa,b

V
.

The arrows denote the flow of the momentum r inserted by the sources. The first three diagrams originate

from the leading-order ⇡ and ⇡N Lagrangians, Lp
2

⇡ , Le
2

⇡ , and L
p

⇡N
[44, 80, 82], which are presented in

Eq. (32). The last diagram denotes contributions from L
e
2
p

⇡N
and is proportional to g9.

where k and k
0 are the nucleon momenta, � and �

0 denote the nucleon spins, and i, j the nucleon isospins.
We take the nucleon to be at rest, k = k

0 = mNv and use the nonrelativistic normalization for heavy-
particle states hN (k0,�0

, j) |N (k,�, i)i = (2⇡)3�(3)(k � k0)�ij���
0
. W = �i lnZ denotes the generating

functional of the connected diagrams.
�V V needs to be computed in both HBChPT and LEFT, and, in both theories, it receives tree-level

and loop contributions. The contributions to �V V in HBChPT are illustrated in Fig. 1. The short-range

contributions are determined by LECs in the Le
2
p

⇡N
Lagrangian. g9 provides the only contribution to �V V .

The loops are determined by couplings in the leading-order (LO) pion and pion-nucleon Lagrangians. In
particular, the diagram with pion-mass splitting Z⇡ is symmetric in isospin, and vanishes once contracted
with the Levi-Civita tensor, so that the loop corrections are purely determined by the minimal coupling
of the photon to the nucleon. In arbitrary R⇠ gauge, we introduce the photon mass �� as an infrared
regulator and obtain
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g
r
9(µ�, µ) in the second line denotes the renormalized coupling, after subtraction of the 1/" pole in the
MS� scheme. For ⇠ = 1, the anomalous dimension of gr9(µ�, µ) agrees with the result of Ref. [80], so that
Eq. (45) is independent of the scale µ�.

In the LEFT, the same matrix element is given by
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Eq. (46) contains a tree-level term, proportional to the counterterm g23 that cancels the divergences
generated by loop diagrams. The loop contribution contains the hadronic tensor Tµ⌫

V V
(q, v), which can be

expressed in terms of the two-point correlation function of quark currents. Here, we use the definition [34]

T
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The gauge-dependent term in Eq. (46) is obtained using

qµT
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V V
(q, v) = qµT

⌫µ

V V
(q, v) = iv

⌫
, (48)

which follows from the conservation of the vector current.
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Figure1:Diagramsthatcontributeto�VVinHBChPTareshown.Double,wiggly,anddashedlines
denotenucleons,photons,andpions,respectively.Dashedcirclesdenoteinsertionsofthesourcesq

a,b

V.
Thearrowsdenotetheflowofthemomentumrinsertedbythesources.Thefirstthreediagramsoriginate

fromtheleading-order⇡and⇡NLagrangians,L
p2

⇡,L
e2

⇡,andL
p

⇡N[44,80,82],whicharepresentedin

Eq.(32).ThelastdiagramdenotescontributionsfromL
e2p

⇡Nandisproportionaltog9.

wherekandk0arethenucleonmomenta,�and�0denotethenucleonspins,andi,jthenucleonisospins.
Wetakethenucleontobeatrest,k=k0=mNvandusethenonrelativisticnormalizationforheavy-
particlestateshN(k0,�0,j)|N(k,�,i)i=(2⇡)3�(3)(k�k0)�ij���0

.W=�ilnZdenotesthegenerating
functionaloftheconnecteddiagrams.

�VVneedstobecomputedinbothHBChPTandLEFT,and,inboththeories,itreceivestree-level
andloopcontributions.Thecontributionsto�VVinHBChPTareillustratedinFig.1.Theshort-range

contributionsaredeterminedbyLECsintheL
e2p

⇡NLagrangian.g9providestheonlycontributionto�VV.
Theloopsaredeterminedbycouplingsintheleading-order(LO)pionandpion-nucleonLagrangians.In
particular,thediagramwithpion-masssplittingZ⇡issymmetricinisospin,andvanishesoncecontracted
withtheLevi-Civitatensor,sothattheloopcorrectionsarepurelydeterminedbytheminimalcoupling
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Eq.(46)containsatree-levelterm,proportionaltothecountertermg23thatcancelsthedivergences
generatedbyloopdiagrams.TheloopcontributioncontainsthehadronictensorT
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VV(q,v),whichcanbe
expressedintermsofthetwo-pointcorrelationfunctionofquarkcurrents.Here,weusethedefinition[34]
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whichfollowsfromtheconservationofthevectorcurrent.
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Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)
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(q, v)

��
OPE

=
iv · q

q2 � µ2
0

⇣
2� d+ 2

↵s

⇡

⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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gV and gA at μχ~Λχ encode 
effect of hard photons

of the decay, µ� ⇠ E0, is discussed in Section 5. In Section 6, we discuss the implications for neutron
decay and the determination of Vud and comment on the relation to superallowed 0+ ! 0+ transitions.
Conclusions and outlook are presented in Section 7. Appendix A contains details about electric charge
renormalization and running in the LEFT and Chiral Perturbation Theory. Appendix B discusses the
factorization of the nonrelativistic Fermi function in nonrelativistic QED, while Appendix C contains
details on the extraction of the O(↵2) anomalous dimension in LEFT and HBChPT//⇡EFT.

2 Statement of the problem and results

Neutron decay is a low-energy process characterized by the energy scales of the neutron-proton mass
di↵erence, mn �mp ⇡ 1.3 MeV, and the electron mass me ⇡ 511 keV. These scales, which we denote by
qext, are much smaller than the pion mass, m⇡ ⇡ 137 MeV, the nucleon mass, mN ⇡ 939 MeV, and the W
boson mass, MW ⇡ 80 GeV. The existence of widely separated mass scales makes the process amenable
to a description based on EFTs. In this work, we systematically implement EFT methods to study low-
energy charged-current processes such as neutron decay. We first integrate out the heavy particles (W ,
Z, h, t) and match the full Standard Model onto the so-called LEFT. Subsequently, we integrate out the
scale of the nucleon mass, by matching the LEFT onto HBChPT [50]. We finally integrate out physics at
the scale of the pion mass, following [44], by matching HBChPT onto /⇡EFT. The neutron decay rate is
thus organized in an expansion in several small parameters (besides GF q

2
ext, which sets the overall scale):

the electromagnetic coupling constant ↵, ✏recoil = qext/mN , which describes small kinematic corrections,
✏/⇡ = qext/m⇡, which captures the radiative pion contributions, and the HBChPT expansion parameter
✏� = m⇡/⇤� with the scale ⇤� = 4⇡F⇡ ⇡ 1 GeV.

The neutron decay rate is most conveniently computed starting from the /⇡EFT in which � decays are
described by the Lagrangian [46, 51, 52]

L/⇡ = �
p
2GFVud ē�⇢PL⌫e N̄v (gV v

⇢
� 2gAS

⇢) ⌧+Nv +O
�
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�
+ h.c., (1)

where Nv = (p, n)T denotes the heavy-nucleon field doublet, v⇢ is the nucleon velocity, and S
⇢ = (0,~�/2)

denotes the nucleon spin, with the Pauli matrices �, while ⌧ denotes Pauli matrices in the isospin space,
satisfying [⌧a, ⌧ b] = 2i"abc⌧ c, {⌧

a
, ⌧

b
} = 2�ab, and ⌧

+ = 1
2

�
⌧
1 + i⌧

2
�
. Higher-order terms in Eq. (1)

include the contributions of weak magnetism, recoil corrections, and induced tensor coupling [44]. The
couplings gV and gA themselves have an expansion in ↵, ✏/⇡, and ✏�. At leading order, one has gV = 1.
At O(↵), gV does not receive any long-distance corrections from pion or photon loops and only picks up
contributions from local O(e2p) operators in the HBChPT Lagrangian [44]:

gV = C
r

�

h
1 +

↵

2⇡
ĈV

i
, (2)

ĈV = 8⇡2


�
X6

2
+ 2 (V1 + V2 + V3 + V4)� g9

�
. (3)

Here, Cr

�
= 1+O(↵) is the Wilson coe�cient of the Fermi operator in LEFT, see Eq. (9), which captures

electroweak corrections from energy scales above ⇤�. The LECs X6, g9, V1,2,3,4 and associated HBChPT
operators will be defined below in Eqs. (36), (40), and (42). The couplings gV,A(µ�) depend on the
renormalization scale of the /⇡EFT (in a way that cancels in the ratio � = gA/gV ) and encode contributions
from the weak scale all the way down to the pion mass scale.

In the following sections, we will detail the various steps needed to connect the low-energy coupling
gV to the electroweak scale, following a top-down approach. Key new results of this work are: (i) The
expression for gV (µ� ⇠ ⇤�) in terms of the Wilson coe�cient Cr

�
computed with anomalous dimensions

of O(↵,↵↵s,↵
2) and a “subtracted” hadronic function, related to the traditional non-perturbative �W

box contribution evaluated in the recent literature [1–5] (see Eq. (78) and discussion surrounding it); (ii)
The use of two-loop anomalous dimensions in the RGE (88) needed to evolve the vector coupling down
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Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
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V V
(q, v)
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=
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2� d+ 2
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⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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evolution from µW down to µ� and sums the LL and
NLL of MW /⇤�. The term involving B(a) is a scheme-
dependent quantity that enters the matching onto �PT
[45]. Similarly, both U(µ�, µW ) and Cr

�(µW ) depend on
the arbitrary parameter a, while the product of these
three factors is scheme independent. The terms in square
bracket in Eq. (7) represent the contributions to gV from
matching LEFT onto chiral EFT. This involves a pertur-
bative term
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and a non-perturbative contribution ⇤V
had

(µ0), which is
a subtracted version of the standard �W box ⇤V

�W of
Refs. [12, 13] and can be expressed in terms of the unpo-
larized structure function T3(⌫, Q2) (⌫ ⌘ q0, Q2

⌘ �q2)
as follows:
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The leftmost factor Ũ(µ, µ�) in Eq. (7) encodes the run-
ning of gV (µ) in chiral EFT, whose anomalous dimen-
sion is known to O(↵2) [45]. Note that to NLL accuracy
gV does not depend on the scales µW , µ0, and µ�, see
Ref. [45] for further details. In this work, we will need as
input for the nuclear-level EFT the value

gV (µ = M⇡±) = 1.01494(12), (10)

where the error is dominated by the non-perturbative

contribution ⇤V
had

(µ0) [45], which was evaluated with in-
put from Refs. [9, 12–17]. It is also interesting to give gV
at the nucleon mass scale, which is related to �V

R in the
traditional approach,

gV (µ = mN ) = 1.01153(12). (11)

A matching formula similar to Eq. (7) holds for the
axial e↵ective coupling gA(µ) in Eq. (6). While details
will be given in Ref. [67], for the purposes of this analysis
we note that the short-distance (µW ! µ�) and long-
distance (µ⇡ ! µext) RG evolution factors are the same
for gV and gA, so that gA/gV is scale independent and
contains non-perturbative information from matching at
the scale µ ' µ� and µ ' µ⇡.

Next, hard photons generate contributions to the pion
chiral Lagrangian

L⇡ = 2e2F 2

⇡Z⇡ ⇡
+⇡� + . . . , (12)

where Z⇡ is a low-energy constant (LEC) determined
from M2

⇡± � M2

⇡0 = 2e2F 2
⇡Z⇡. Diagrams involving Z⇡

lead to isospin-breaking corrections to gA [63] and, as we
will see below, to RC to nuclear � decay. In this work, we

define the isospin limit by M⇡ = M⇡0 , including correc-
tions from the pion mass splitting as generated by hard
photons via the chiral Lagrangian. For the nucleon, we
did not find any relevant isospin-breaking e↵ects, for the
numerics we use mN = (mn +mp)/2 = 0.939GeV.
Hard photons also generate EW 2b contact operators

between nucleons at O(GF↵). The interactions with the
lowest number of derivatives act in an S wave. There
are two 1S0 operators, with isospin T = 1, 2, and one
spin-dependent operator connecting 1S0 and 3S1 waves.
Omitting terms involving pions, we can write

L
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Naive dimensional analysis would indicate that
gNN
V 1,V 2,V 3

= O(⇤�3
� ), but as we will discuss in more

detail below, the RG equations require the two 1S0

LECs to scale as

gNN
V 1,V 2

= O

✓
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⇤�F 2
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◆
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The values of these LECs are not known at present, but
could be determined in a global analysis of superallowed
� decays together with Vud, see Sec. VIII. Finally, hard
photons also lead to isospin-breaking corrections to NN
strong interactions [68, 69], which play a role in the eval-
uation of �C .

B. Power counting in the hadronic EFT

Having integrated out hard photons, we can now in-
vestigate various RC in chiral EFT with dynamical pho-
tons and leptons. Before doing any actual calculations
we would like to identify the diagrams that give the most
important contributions by formulating a power counting
(PC). This is somewhat complicated by the fact that we
encounter diagrams involving loops with virtual pions,
nucleons, and photons. In the presence of more than
one nucleon, we can identify three regions for the loop
momentum q:

1. soft: q0 ' |q| ' M⇡,

2. potential: q0 ' q2/mN ' qext, |q| ' M⇡.

3. ultrasoft: q0 ' |q| ' qext ' M2
⇡/mN .

The most common loops in chiral EFT involve virtual
pions corresponding to a soft scaling for which one has
to track powers of Q ' M⇡ ' � ' kF . Diagrams with
soft loops can be estimated by the following PC rules

• Soft: each loop integration picks up a factor
Q4/(4⇡)2. Each pion or photon propagator scales
as 1/Q2. Each heavy-baryon nucleon propagator
or electron propagator scales as 1/Q.
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NLL RGE in ChPT 
[soft and u-soft photons]

 LL~ (ɑ ln(Λχ/me )n  

 NLL ~  ɑ (ɑ ln(Λχ/me ))n              

Adapt from  Ji & Ramsey-Musolf ’91 and Gimenez ’92 Figure 3: HBChPT diagrams contributing to the anomalous dimension of gV and to �̃RC at two loop.
Only the first two diagrams give rise to terms in the �̃1 enhanced by ⇡

2 [100]. These diagrams also give
rise to the leading ↵

2
⇡
2
/�

2 behavior captured by the nonrelativistic Fermi function.

We thus arrive to our final form for the di↵erential decay rate:
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. (104)

Compared to state-of-the-art analyses of neutron decay in the literature (see e.g. Ref. [38]), our result (104)
amounts to replacing the relativistic Fermi function [53, 109–111, 124–127] with the nonrelativistic one,
F0 ! FNR. While we arrived at this result by constructing the relevant terms of the amplitude in the
EFT framework, one could also argue for this replacement along the following lines. First, recall that
the leading corrections to the phase space coming from the distortion of the electron wavefunction in the
Coulomb field of the proton is usually captured by the function [53]

F0(�) =
2

1 + �
F (�) = 4(2Ee�R)2(��1)

e
⇡y

|�(� + iy)|2

(�(1 + 2�))2
, y =

↵

�
, � =

p
1� ↵2. (105)

This form is obtained by solving the Dirac equation for an electron moving in the charge distribution
of a uniformly charged sphere of radius R [53], but corresponds to a rescaling of the solution of the
Dirac equation for a point-like proton, F (�), evaluated not at the origin, where the wavefunction diverges
logarithmically, but at the “nucleon radius” R. R corresponds to a mass scale much larger than me, and
e↵ectively acts as a UV regulator. So we see that while F0(�) coincides with FNR(�) at one-loop level, F0

includes a dependence on the UV regulator via the logarithms of R that first appear at O(↵2). Expanding
F0 in series of ↵, one obtains

F0(�) = FNR (�)
⇥
1� ↵

2 (�E � 3 + ln(2EeR�)) +O(↵4)
⇤
. (106)

The dependence on the UV regulator R ⇠ 1/µ does not match the µ-dependence of gV (µ) in the MS�
scheme presented so far. In dimensional regularization, indeed, the lnR term in Eq. (106) corresponds to
a UV singularity that appears in the first two diagrams in Fig. 3, when we consider only the contribution
arising from picking the two nucleon poles. This is only one piece of the full anomalous dimension �̃1. In
order not to double-count large logarithms, one should set the logarithmic term in F0 to zero when using
the RGEs to evaluate the large logarithms as we do here. The remaining O(↵2) terms in Eq. (106) are
incomplete and beyond the accuracy of our calculation, which allows us to drop them and replace the
relativistic Fermi function F0 by its nonrelativistic counterpart FNR.
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Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
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V V
(q, v)
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, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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evolution from µW down to µ� and sums the LL and
NLL of MW /⇤�. The term involving B(a) is a scheme-
dependent quantity that enters the matching onto �PT
[45]. Similarly, both U(µ�, µW ) and Cr

�(µW ) depend on
the arbitrary parameter a, while the product of these
three factors is scheme independent. The terms in square
bracket in Eq. (7) represent the contributions to gV from
matching LEFT onto chiral EFT. This involves a pertur-
bative term
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and a non-perturbative contribution ⇤V
had

(µ0), which is
a subtracted version of the standard �W box ⇤V

�W of
Refs. [12, 13] and can be expressed in terms of the unpo-
larized structure function T3(⌫, Q2) (⌫ ⌘ q0, Q2
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as follows:
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The leftmost factor Ũ(µ, µ�) in Eq. (7) encodes the run-
ning of gV (µ) in chiral EFT, whose anomalous dimen-
sion is known to O(↵2) [45]. Note that to NLL accuracy
gV does not depend on the scales µW , µ0, and µ�, see
Ref. [45] for further details. In this work, we will need as
input for the nuclear-level EFT the value

gV (µ = M⇡±) = 1.01494(12), (10)

where the error is dominated by the non-perturbative

contribution ⇤V
had

(µ0) [45], which was evaluated with in-
put from Refs. [9, 12–17]. It is also interesting to give gV
at the nucleon mass scale, which is related to �V

R in the
traditional approach,

gV (µ = mN ) = 1.01153(12). (11)

A matching formula similar to Eq. (7) holds for the
axial e↵ective coupling gA(µ) in Eq. (6). While details
will be given in Ref. [67], for the purposes of this analysis
we note that the short-distance (µW ! µ�) and long-
distance (µ⇡ ! µext) RG evolution factors are the same
for gV and gA, so that gA/gV is scale independent and
contains non-perturbative information from matching at
the scale µ ' µ� and µ ' µ⇡.

Next, hard photons generate contributions to the pion
chiral Lagrangian

L⇡ = 2e2F 2
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+⇡� + . . . , (12)

where Z⇡ is a low-energy constant (LEC) determined
from M2
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⇡0 = 2e2F 2
⇡Z⇡. Diagrams involving Z⇡

lead to isospin-breaking corrections to gA [63] and, as we
will see below, to RC to nuclear � decay. In this work, we

define the isospin limit by M⇡ = M⇡0 , including correc-
tions from the pion mass splitting as generated by hard
photons via the chiral Lagrangian. For the nucleon, we
did not find any relevant isospin-breaking e↵ects, for the
numerics we use mN = (mn +mp)/2 = 0.939GeV.
Hard photons also generate EW 2b contact operators

between nucleons at O(GF↵). The interactions with the
lowest number of derivatives act in an S wave. There
are two 1S0 operators, with isospin T = 1, 2, and one
spin-dependent operator connecting 1S0 and 3S1 waves.
Omitting terms involving pions, we can write
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detail below, the RG equations require the two 1S0

LECs to scale as

gNN
V 1,V 2

= O
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⇤�F 2
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◆
. (14)

The values of these LECs are not known at present, but
could be determined in a global analysis of superallowed
� decays together with Vud, see Sec. VIII. Finally, hard
photons also lead to isospin-breaking corrections to NN
strong interactions [68, 69], which play a role in the eval-
uation of �C .

B. Power counting in the hadronic EFT

Having integrated out hard photons, we can now in-
vestigate various RC in chiral EFT with dynamical pho-
tons and leptons. Before doing any actual calculations
we would like to identify the diagrams that give the most
important contributions by formulating a power counting
(PC). This is somewhat complicated by the fact that we
encounter diagrams involving loops with virtual pions,
nucleons, and photons. In the presence of more than
one nucleon, we can identify three regions for the loop
momentum q:

1. soft: q0 ' |q| ' M⇡,

2. potential: q0 ' q2/mN ' qext, |q| ' M⇡.

3. ultrasoft: q0 ' |q| ' qext ' M2
⇡/mN .

The most common loops in chiral EFT involve virtual
pions corresponding to a soft scaling for which one has
to track powers of Q ' M⇡ ' � ' kF . Diagrams with
soft loops can be estimated by the following PC rules

• Soft: each loop integration picks up a factor
Q4/(4⇡)2. Each pion or photon propagator scales
as 1/Q2. Each heavy-baryon nucleon propagator
or electron propagator scales as 1/Q.
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• Need input on hadronic box up to Q2 =2 GeV2
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• With gV(μχ) at μχ ~ me  →   compute matrix element and decay rate including virtual (ultra-soft) and real photons 
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
2

✓
1 +

´
x0

1 w(x, x0)FNR (�(x)) (1 + �recoil (xme)) �RC (xme, µ�) dx

f0(1 +�f )

◆
, (110)

where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2

 
1 +

↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
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which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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+0.026% shift in total radiative correction to neutron decay compared to previous literature  

to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
↵⇡

�

⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].

6

6.2 Total decay rate and extraction of Vud
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where the phase space integral is given by

f0 =
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1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
↵⇡

�

⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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λ=gA/gV taken from experiment.
It includes electromagnetic shift 

to both gV and gA.

Ratio is scale independent.  

ΔR: proportional to                                                          
(gV (me))2  ⨉ (1 + O(α) virtual and 

real effects from      ) 

of the decay, µ� ⇠ E0, is discussed in Section 5. In Section 6, we discuss the implications for neutron
decay and the determination of Vud and comment on the relation to superallowed 0+ ! 0+ transitions.
Conclusions and outlook are presented in Section 7. Appendix A contains details about electric charge
renormalization and running in the LEFT and Chiral Perturbation Theory. Appendix B discusses the
factorization of the nonrelativistic Fermi function in nonrelativistic QED, while Appendix C contains
details on the extraction of the O(↵2) anomalous dimension in LEFT and HBChPT//⇡EFT.

2 Statement of the problem and results

Neutron decay is a low-energy process characterized by the energy scales of the neutron-proton mass
di↵erence, mn �mp ⇡ 1.3 MeV, and the electron mass me ⇡ 511 keV. These scales, which we denote by
qext, are much smaller than the pion mass, m⇡ ⇡ 137 MeV, the nucleon mass, mN ⇡ 939 MeV, and the
W boson mass MW ⇡ 80 GeV. The existence of widely separated mass scales makes the process amenable
to a description based on EFTs. In this work, we systematically implement EFT methods to study low-
energy charged-current processes such as neutron decay. We first integrate out the heavy particles (W ,
Z, h, t) and match the full Standard Model onto the so-called LEFT. Subsequently, we integrate out the
scale of the nucleon mass, by matching the LEFT onto HBChPT [50]. We finally integrate out physics at
the scale of the pion mass, following [43], by matching HBChPT onto /⇡EFT. The neutron decay rate is
thus organized in an expansion in several small parameters (besides GF q

2
ext, which sets the overall scale):

the electromagnetic coupling constant ↵, ✏recoil = qext/mN , which describes small kinematic corrections,
✏/⇡ = qext/m⇡, which captures the radiative pion contributions, and the HBChPT expansion parameter
✏� = m⇡/⇤� with the scale ⇤� = 4⇡F⇡ ⇡ 1 GeV.

The neutron decay rate is most conveniently computed starting from the /⇡EFT in which � decays are
described by the Lagrangian [45, 51, 52]

L/⇡ = �
p
2GFVud ē�⇢PL⌫e N̄v (gV v

⇢
� 2gAS

⇢) ⌧+Nv +O
�
↵, ✏recoil, ✏/⇡, ✏�

�
+ h.c., (1)

where Nv = (p, n)T denotes the heavy-nucleon field doublet, v⇢ is the nucleon velocity, and S
⇢ = (0,~�/2)

denotes the nucleon spin, with the Pauli matrices �, while ⌧ denotes Pauli matrices in the isospin space,
satisfying [⌧a, ⌧ b] = 2i"abc⌧ c, {⌧

a
, ⌧

b
} = 2�ab, and ⌧

+ = 1
2

�
⌧
1 + i⌧

2
�
. Higher-order terms in Eq. (1)

include the contributions of weak magnetism, recoil corrections, and induced tensor coupling [43]. The
couplings gV and gA themselves have an expansion in ↵, ✏/⇡, and ✏�. At leading order, one has gV = 1.
At O(↵), gV does not receive any long-distance corrections from pion or photon loops and only picks up
contributions from local O(e2p) operators in the HBChPT Lagrangian [43]:

gV = 1 +
↵

2⇡
ĈV , (2)

ĈV = 8⇡2


�
X6

2
+ 2 (V1 + V2 + V3 + V4)� g9

�
. (3)

The LECs X6, g9, V1,2,3,4 and associated HBChPT operators will be defined below in Eqs. (38), (42),
and (44). The couplings gV,A(µ�) depend on the renormalization scale of the /⇡EFT (in a way that cancels
in the ratio � = gA/gV ) and encode contributions from the weak scale all the way down to the pion mass
scale.

In the following sections, we will detail the various steps needed to connect the low-energy coupling
gV to the electroweak scale, following a top-down approach. Key new results of this work are: (i) The
expression for gV (µ� ⇠ ⇤�) in terms of the Wilson coe�cient computed with anomalous dimensions of
O(↵,↵↵s,↵

2) and a “subtracted” hadronic function, related to the traditional non-perturbative �W box
contribution evaluated in the recent literature [1–5] (see Eq. (83) and discussion surrounding it); (ii)
The use of two-loop anomalous dimensions in the RGE (96) needed to evolve the vector coupling down
to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵

2 ln (mN/me). The resulting
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =
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x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation
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(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find
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The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
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2 and
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2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
↵⇡

�

⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do
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nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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where the phase space integral is given by
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with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵
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terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do
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In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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where the phase space integral is given by
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x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2

 
1 +

↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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It includes electromagnetic shift 
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Ratio is scale independent.  
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

Figure 3: HBChPT diagrams contributing to the anomalous dimension of gV and to �̃RC at two loop.
Only the first two diagrams give rise to terms in the �̃1 enhanced by ⇡

2 [100]. These diagrams also give
rise to the leading ↵

2
⇡
2
/�

2 behavior captured by the nonrelativistic Fermi function.

We thus arrive to our final form for the di↵erential decay rate:
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. (104)

Compared to state-of-the-art analyses of neutron decay in the literature (see e.g. Ref. [38]), our result (104)
amounts to replacing the relativistic Fermi function [53, 109–111, 124–127] with the nonrelativistic one,
F0 ! FNR. While we arrived at this result by constructing the relevant terms of the amplitude in the
EFT framework, one could also argue for this replacement along the following lines. First, recall that
the leading corrections to the phase space coming from the distortion of the electron wavefunction in the
Coulomb field of the proton is usually captured by the function [53]

F0(�) =
2

1 + �
F (�) = 4(2Ee�R)2(��1)

e
⇡y

|�(� + iy)|2

(�(1 + 2�))2
, y =

↵

�
, � =

p
1� ↵2. (105)

This form is obtained by solving the Dirac equation for an electron moving in the charge distribution
of a uniformly charged sphere of radius R [53], but corresponds to a rescaling of the solution of the
Dirac equation for a point-like proton, F (�), evaluated not at the origin, where the wavefunction diverges
logarithmically, but at the “nucleon radius” R. R corresponds to a mass scale much larger than me, and
e↵ectively acts as a UV regulator. So we see that while F0(�) coincides with FNR(�) at one-loop level, F0

includes a dependence on the UV regulator via the logarithms of R that first appear at O(↵2). Expanding
F0 in series of ↵, one obtains

F0(�) = FNR (�)
⇥
1� ↵

2 (�E � 3 + ln(2EeR�)) +O(↵4)
⇤
. (106)

The dependence on the UV regulator R ⇠ 1/µ does not match the µ-dependence of gV (µ) in the MS�
scheme presented so far. In dimensional regularization, indeed, the lnR term in Eq. (106) corresponds to
a UV singularity that appears in the first two diagrams in Fig. 3, when we consider only the contribution
arising from picking the two nucleon poles. This is only one piece of the full anomalous dimension �̃1. In
order not to double-count large logarithms, one should set the logarithmic term in F0 to zero when using
the RGEs to evaluate the large logarithms as we do here. The remaining O(↵2) terms in Eq. (106) are
incomplete and beyond the accuracy of our calculation, which allows us to drop them and replace the
relativistic Fermi function F0 by its nonrelativistic counterpart FNR.
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No large logs but contains enhanced contributions ~ (πα/β), which we re-sum via the 
non-relativistic Fermi function ansatz (not based on a full 2-loop calculation) 
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e)/(2mn) is the electron endpoint energy and � ⌘ gA/gV is the ratio of e↵ective

axial and vector couplings in the low-energy Lagrangian (1). The ratio � = �
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by a µ�-independent electromagnetic correction �
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RC parameterized in terms of calculable pion loops and

certain chiral LECs (see Ref. [44]). � itself can be extracted from beta decay correlation experiments, so

that we do not need to know �
(�)
RC for the purpose of studying total decay rates and the extraction of Vud .

�recoil(Ee) collects recoil corrections that can be found in Ref. [46]. They are usually factorized since the
impact of the product of radiative times recoil corrections is estimated to be well below 10�4. Finally,
�̃RC(Ee) represents the electromagnetic corrections arising from the matrix element squared. To O(↵),
one finds
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where ĝ(Ee, E0) is a “subtracted” Sirlin function

ĝ (Ee, E0) = g (Ee, E0)�
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, (99)

defined in terms of the Sirlin function g (Ee, E0) of Ref. [33]. ĝ (Ee, E0) arises naturally in the EFT
calculation and does not contain any large logarithm of mN/me.

The corrections proportional to ⇡↵/� in Eq. (98) are enhanced by a factor of ⇡2 compared to the
naive scaling of loop corrections, and are numerically dominant even for � ⇠ O(1). The leading terms in
the series in ⇡↵/� arise from the momentum regions of loop integrals in which the photon momentum
has potential scaling, k0 ⇠ me�

2
⌧ |~k| ⇠ me�, and they can be identified with nonrelativistic EFT

methods [104–107]. Their resummation leads to the nonrelativistic Fermi function FNR(�) [108–118]
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which we include in the matrix element squared as
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where
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As we discuss in Appendix B, the factorization ansatz in Eq. (101) captures all numerically-enhanced
leading and subleading terms in 1/�, and reproduces similar results for the production of two heavy
quarks at threshold, derived with nonrelativistic QCD and potential nonrelativistic QCD [104–107, 119–
122]. At O(↵2), Eq. (101) gives
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Indeed, the first cross term �(11/4)↵2
/� corresponds to the matching coe�cient of heavy-

light to heavy-heavy current [123] in the MS� renormalization scheme. The second cross term
(↵2

/�) (E0 �me)
2
/
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comes from the product of the Fermi function with real radiation. These
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where E0 = (m2
n�m

2
p+m

2
e)/(2mn) is the electron endpoint energy and � ⌘ gA/gV is the ratio of e↵ective

axial and vector couplings in the low-energy Lagrangian (1). The ratio � = �
QCD(1 + �

(�)
RC) is a↵ected

by a µ�-independent electromagnetic correction �
(�)
RC parameterized in terms of calculable pion loops and

certain chiral LECs (see Ref. [44]). � itself can be extracted from beta decay correlation experiments, so

that we do not need to know �
(�)
RC for the purpose of studying total decay rates and the extraction of Vud .

�recoil(Ee) collects recoil corrections that can be found in Ref. [46]. They are usually factorized since the
impact of the product of radiative times recoil corrections is estimated to be well below 10�4. Finally,
�̃RC(Ee) represents the electromagnetic corrections arising from the matrix element squared. To O(↵),
one finds
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where ĝ(Ee, E0) is a “subtracted” Sirlin function

ĝ (Ee, E0) = g (Ee, E0)�
3

2
ln

m
2
N

m2
e

, (99)

defined in terms of the Sirlin function g (Ee, E0) of Ref. [33]. ĝ (Ee, E0) arises naturally in the EFT
calculation and does not contain any large logarithm of mN/me.

The corrections proportional to ⇡↵/� in Eq. (98) are enhanced by a factor of ⇡2 compared to the
naive scaling of loop corrections, and are numerically dominant even for � ⇠ O(1). The leading terms in
the series in ⇡↵/� arise from the momentum regions of loop integrals in which the photon momentum
has potential scaling, k0 ⇠ me�

2
⌧ |~k| ⇠ me�, and they can be identified with nonrelativistic EFT

methods [104–107]. Their resummation leads to the nonrelativistic Fermi function FNR(�) [108–118]
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which we include in the matrix element squared as

1 + �̃RC(Ee, µ�) = FNR(�) +
↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
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As we discuss in Appendix B, the factorization ansatz in Eq. (101) captures all numerically-enhanced
leading and subleading terms in 1/�, and reproduces similar results for the production of two heavy
quarks at threshold, derived with nonrelativistic QCD and potential nonrelativistic QCD [104–107, 119–
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The short-distance radiative correction

�R(µUV) ⌘ g2
V
(µUV)� 1, (27)

encodes short-distance electroweak and hadronic physics above the scale µUV [4, 5, 7, 35, 51]; we do not
include an estimate for isospin breaking in �R since its numerical value (⇠ �4 ⇥ 10�5 [52]) is roughly six
times smaller than the current error estimate on �R. The term �R,static encodes the long-distance radiative
corrections (as given above), and �recoil and �rad.rec. are recoil and radiative recoil corrections. The recoil
corrections are computed as described in Refs. [2, 26], and we include the e↵ect of the induced pseudoscalar
form factor (i.e., one-pion exchange) [26]. The radiative-recoil correction includes the dominant interference
between recoil terms and the first-order ⇡↵/� correction, and the shift between the electron velocity in the
proton versus neutron rest frame [26]. A summary of recoil and radiative recoil corrections is given in the
Supplemental Material.

In terms of |Vud|, �, and �R(µUV = �) the neutron lifetime is thus given by (restoring ~ for SI units and
using inputs for mn, mp, GF from the Particle Data Group (2024) [53])2

⌧n ⇥ |Vud|2(1 + 3�2)


1 +�R(µUV = �)

�
1 + 27.04(7)⇥ 10�3

�
=

2⇡3~
G2

F
�5fstatic

= 5263.284(17) s . (28)

As an illustrative example, let us take the lifetime of the neutron from the most recent UCN⌧ average,
⌧n = 877.82(30) s [54] and the measurement of � from the PERKEO-III experiment [55], � = �1.27641(56).
Using �R(µUV = �) = 45.37(27)⇥ 10�3 [51],3 we obtain

|Vud| = 0.97393(17)⌧ (35)�(13)�R(3)�R

= 0.97393(41) ,
(29)

where in the final line, errors have been added in quadrature. Using average values from Ref. [53] for ⌧n
(878.4(5)s excluding beam measurements or 878.6(6)s including beam measurements) in place of the most
precise measurement (⌧n = 877.82(30)s [54]) yields a similar result in Eq. (29) (⇠ 1� downward shift in
|Vud| and similar total error). Using the average from Ref. [53] for � (�1.2754(13)) in place of the most
precise measurement (� = �1.27641(56) [55]) yields a consistent central value, and approximately two times
larger total error. An in-beam measurement of ⌧n [56] is ⇠ 4� discrepant with the ultracold neutrons (UCN)
measurements, which dominate the average.4 For a discussion of the discrepancy between in-beam and UCN
measurements of ⌧n, see Refs. [58, 59]. We have computed radiative corrections to the decay rate for the process
n ! pe⌫̄(�). This rate determines the neutron lifetime in the Standard Model, but should be interpreted as a
partial rate if neutron decay modes beyond the Standard Model are present.

6 Discussion

Our new result, Eq. (24), modifies the long-distance radiative correction to neutron beta decay. Compared to
previous work [7, 51], the largest e↵ect corresponds to the replacement of the Fermi function ansatz,

FNR =
(2⇡↵/�)

1� exp(�2⇡↵/�)
���!
m!0

1 + ⇡↵+
⇡2↵2

3
+ . . . , (30)

with the resummation (10),

����
MH(µ2)

MH(w,�µ2 � i0)

����
2

= exp


⇡↵

�

�
���!
m!0

1 + ⇡↵+
⇡2↵2

2
+ . . . . (31)

2The normalization factor �5fstatic is defined in the static limit, cf. Eq. (26), and di↵ers from the quantity m5
ef0 used in

Ref. [51], Eq. (4). We combine this di↵erence with other recoil corrections in our �recoil. The total e↵ect of recoil corrections is
the same in our accounting as in Ref. [51] up to subleading corrections, cf. the discussion after Eq. (33) below.

3This value for �R is taken from Ref. [51] (see also Table 2 of Ref. [23] and Refs. [4, 5, 7–9, 12]). We have converted between
the renormalization scheme of Ref. [51] and conventional MS at renormalization scale µ = �.

4The in-beam-measurement of ⌧n also yields a value for |Vud| that is discrepant with determinations from superallowed beta
decays [57].
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ΔR: proportional to                                                          
(gV (me))2  ⨉ (1 + O(α) virtual and 

real effects from      ) 

of the decay, µ� ⇠ E0, is discussed in Section 5. In Section 6, we discuss the implications for neutron
decay and the determination of Vud and comment on the relation to superallowed 0+ ! 0+ transitions.
Conclusions and outlook are presented in Section 7. Appendix A contains details about electric charge
renormalization and running in the LEFT and Chiral Perturbation Theory. Appendix B discusses the
factorization of the nonrelativistic Fermi function in nonrelativistic QED, while Appendix C contains
details on the extraction of the O(↵2) anomalous dimension in LEFT and HBChPT//⇡EFT.

2 Statement of the problem and results

Neutron decay is a low-energy process characterized by the energy scales of the neutron-proton mass
di↵erence, mn �mp ⇡ 1.3 MeV, and the electron mass me ⇡ 511 keV. These scales, which we denote by
qext, are much smaller than the pion mass, m⇡ ⇡ 137 MeV, the nucleon mass, mN ⇡ 939 MeV, and the
W boson mass MW ⇡ 80 GeV. The existence of widely separated mass scales makes the process amenable
to a description based on EFTs. In this work, we systematically implement EFT methods to study low-
energy charged-current processes such as neutron decay. We first integrate out the heavy particles (W ,
Z, h, t) and match the full Standard Model onto the so-called LEFT. Subsequently, we integrate out the
scale of the nucleon mass, by matching the LEFT onto HBChPT [50]. We finally integrate out physics at
the scale of the pion mass, following [43], by matching HBChPT onto /⇡EFT. The neutron decay rate is
thus organized in an expansion in several small parameters (besides GF q

2
ext, which sets the overall scale):

the electromagnetic coupling constant ↵, ✏recoil = qext/mN , which describes small kinematic corrections,
✏/⇡ = qext/m⇡, which captures the radiative pion contributions, and the HBChPT expansion parameter
✏� = m⇡/⇤� with the scale ⇤� = 4⇡F⇡ ⇡ 1 GeV.

The neutron decay rate is most conveniently computed starting from the /⇡EFT in which � decays are
described by the Lagrangian [45, 51, 52]

L/⇡ = �
p
2GFVud ē�⇢PL⌫e N̄v (gV v

⇢
� 2gAS

⇢) ⌧+Nv +O
�
↵, ✏recoil, ✏/⇡, ✏�

�
+ h.c., (1)

where Nv = (p, n)T denotes the heavy-nucleon field doublet, v⇢ is the nucleon velocity, and S
⇢ = (0,~�/2)

denotes the nucleon spin, with the Pauli matrices �, while ⌧ denotes Pauli matrices in the isospin space,
satisfying [⌧a, ⌧ b] = 2i"abc⌧ c, {⌧

a
, ⌧

b
} = 2�ab, and ⌧

+ = 1
2

�
⌧
1 + i⌧

2
�
. Higher-order terms in Eq. (1)

include the contributions of weak magnetism, recoil corrections, and induced tensor coupling [43]. The
couplings gV and gA themselves have an expansion in ↵, ✏/⇡, and ✏�. At leading order, one has gV = 1.
At O(↵), gV does not receive any long-distance corrections from pion or photon loops and only picks up
contributions from local O(e2p) operators in the HBChPT Lagrangian [43]:

gV = 1 +
↵

2⇡
ĈV , (2)

ĈV = 8⇡2


�
X6

2
+ 2 (V1 + V2 + V3 + V4)� g9

�
. (3)

The LECs X6, g9, V1,2,3,4 and associated HBChPT operators will be defined below in Eqs. (38), (42),
and (44). The couplings gV,A(µ�) depend on the renormalization scale of the /⇡EFT (in a way that cancels
in the ratio � = gA/gV ) and encode contributions from the weak scale all the way down to the pion mass
scale.

In the following sections, we will detail the various steps needed to connect the low-energy coupling
gV to the electroweak scale, following a top-down approach. Key new results of this work are: (i) The
expression for gV (µ� ⇠ ⇤�) in terms of the Wilson coe�cient computed with anomalous dimensions of
O(↵,↵↵s,↵

2) and a “subtracted” hadronic function, related to the traditional non-perturbative �W box
contribution evaluated in the recent literature [1–5] (see Eq. (83) and discussion surrounding it); (ii)
The use of two-loop anomalous dimensions in the RGE (96) needed to evolve the vector coupling down
to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵

2 ln (mN/me). The resulting
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
2

✓
1 +

´
x0

1 w(x, x0)FNR (�(x)) (1 + �recoil (xme)) �RC (xme, µ�) dx

f0(1 +�f )

◆
, (110)

where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2

 
1 +

↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
↵⇡

�

⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling
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terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].

6

6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling
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terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do
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In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =
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1
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =
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x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
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�

⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
↵⇡
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⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation
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�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and
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2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling
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terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do
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In the standard non-EFT approach, additional terms scaling as ↵2
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ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.

25

Overall shift of -0.013% in Vud (neutron) compared to previous literature

Corrections to neutron decay rate

30

6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
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�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
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⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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where the phase space integral is given by

f0 =
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1
w(x, x0) dx, w(x, x0) = x (x0 � x)2
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x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation
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(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling
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large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
↵⇡

�

⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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2e2GFVud ēL�0⌫L ⇥N †⌧+N

�
e2gNN

V 1 N †N + e2gNN
V 2 N †⌧ 3N

�

✏� ⇠
(m⇡, kF , F⇡)

⇤�
⇠ 0.1

gNN
V 1,V 2 ⇠

1

F 2
⇡⇤�

L/⇡

1

Corrections to neutron decay rate

30

6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
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�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
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⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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4
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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where the phase space integral is given by

f0 =
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x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
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1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O
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⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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• To separate hadronic and electroweak contributions to gV (µ�), and to make contact with some of
the previous literature, we provide the fixed-order result
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In the above relations, the explicit dependence on µ0 is canceled by the implicit dependence in

⇤V

Had(µ0). The hadronic physics is included in ⇤V

Had, while the two logarithms in Eq. (114), which
are proportional to the anomalous dimensions, correspond to the ratios between electroweak vs
hadronic and hadronic vs beta-decay scales.

• Our numerical result for �R is
�R = 4.044(27)%, (115)

which, apart from the uncertainty coming from gV discussed in Sect. 5.4, includes a perturbative
uncertainty of 0.005% obtained by varying the scale of the calculation µ� in the range m2

e/2  µ
2
� 

2m2
e. Our result for �R is 0.061% above the most recent evaluation [8] based on Refs. [1–6]. The

sources of this di↵erence are discussed in Section 2. Combining �f and �R in the factorization
scheme of Eq. (107) we obtain

�TOT = 7.761(27)%. (116)

Using the results from Refs. [1–6, 8], one gets �TOT = 7.735(27)%, about one � below our result.
The di↵erence is due to two competing factors in our analysis: a positive shift of +0.061% in �R

and a negative shift of �0.035% in �f .

• As a consistency check on the accuracy of the calculation and the size of cross terms (such as recoil
⇥ electromagnetic corrections), we have performed the phase-space integration in a di↵erent scheme
that does not assume factorization of FNR and �recoil, defined by
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with

�gV = [gV (µ�)]
2
� 1, (118)
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�RC =
1
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1
w(x, x0) �RC (xme, µ�) dx, (120)

�recoil =
1

f0

ˆ
x0

1
w(x, x0) �recoil (xme) dx. (121)

For the numerical values in this scheme, we find �gV = 5.060(27)%, �C = 3.375%, �RC = �0.969%,
�recoil = 0.173%, leading to�TOT = 7.770%. The latter di↵ers from the factorized result by 0.009%,
consistent with its expected size of O(↵2) and the uncertainties quoted above.

Finally, we extract the CKM matrix element Vud from precise measurements of the neutron lifetime
with our updated calculation of radiative corrections and present the results in Section 2.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation
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with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find
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The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
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2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
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large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do
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6.2 Total decay rate and extraction of Vud
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where the phase space integral is given by
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with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵
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ln (mN/me), and O
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⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].

6

6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2

 
1 +

↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵
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terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do
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In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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where the phase space integral is given by

f0 =
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x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2
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x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by
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+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
↵⇡

�

⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
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, (110)

where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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2
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2
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e

+
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4
+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate
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which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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• Widely separated mass scales play a role in neutron decay & EFT approach not fully embraced in the literature

• Small ratios appear as expansion parameters and arguments of logs
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leading logarithms (LL~ (ɑ ln(ε))n)  and next-to-leading logarithms (NLL ~ ɑ (ɑS ln(εW))n,  ɑ (ɑ ln(ε))n )
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Connecting scales & processes (1)
To connect UV physics to beta decays, use EFT
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• Leading (dim-6) new physics effects 
are encoded in 5 quark-level 
operators (up to flavor indices) 

• Quark-level version of Lee-Yang 
(1956) effective Lagrangian

• Start with GeV scale effective Lagrangian
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+ ✏`DT ¯̀�µ⌫(1� �5)⌫` · ū�
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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and only the ratio of decay constants FK/F⇡ needs to be pro-
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cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
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Simplest ‘solution’:  right-handed (V+A) quark currents. 
Shift Vud,us from vector (axial) channels by  1+εR  (1-εR), can resolve all tensions
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µ(1� �5)d

+ ✏DR ¯̀�µ(1� �5)⌫` · ū�
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Unveiling R-handed quark currents?

ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
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doscalar couplings ✏P, ✏(s)
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4

ΛR ~5-10 TeV

VC-Crivellin-Hoferichter-Moulson  2208.11707 

• Preferred ranges are not (yet) in conflict with constraints from other low-E probes
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E

Λχ 

 (~GeV)

Q~kF, mπ 

(~100 MeV)

   MW.Z 

(~100 GeV)

qext, ΔEnucl, me 

(~ MeV)

ΛBSM 

??
Standard Model Effective Field Theory  

Chiral EFT 

Nuclear many-body

LEFT: Fermi Theory + QCD + QED

BSM

Interpretation framework for β decays
Widely separated scales:   ΛBSM  >> MW >> Λχ  >> Q ~ kF ~ mπ  >> me ~ qext         ⇒     Tackle through a tower of EFTs

With key non-perturbative 
input from Lattice QCD and 

dispersive methods 

The EFT expands amplitudes 
in ε’s and sums large 

logarithms ~ ɑn+m (ln(ε))n

EFT for neutron decay: why?

13

• Widely separated mass scales play a role in neutron decay & EFT approach not fully embraced in the literature

• Small ratios appear as expansion parameters and arguments of logs
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• At the required precision (~10-4), need to keep terms of O(GFɑ),  O(GFɑεχ),  along with                                          

leading logarithms (LL~ (ɑ ln(ε))n)  and next-to-leading logarithms (NLL ~ ɑ (ɑS ln(εW))n,  ɑ (ɑ ln(ε))n )
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Connecting scales & processes (2)
To connect UV physics to beta decays, use EFT

29

• Need to know high-scale origin of the various εα

• Tree-level LEFT-SMEFT (dim-6) matching at 

scale μW ~ 246 GeV 

• Leading-log SMEFT (dim-6) running between Λ 

and μW is known 

W. Dekens, P, Stoffer 1908.05295 

M. Dawid, VC, W. Dekens 2402.06723

R. Alonso, E. Jenkins, A. Manohar, M. Trott, 
1308.2627, 1310.4838, 1312. 2014 

• One loop SMEFT-LEFT matching also known 
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εL,R   originate from SU(2)xU(1) 
invariant vertex corrections
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Building blocks

Gauge  
invariance 

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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εL 

εR  

SMEFT origin of the low-energy operators



εL,R   originate from SU(2)xU(1) 
invariant vertex corrections
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Q
HW̃

H†H W̃ I
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QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
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Q
HW̃B

H†τIH W̃ I
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QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν
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←→
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Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Gauge  
invariance 

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
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Q(3)
Hq (H†i

←→
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µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)
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Qlu (l̄pγµlr)(ūsγµut)
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8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
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Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄
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Q(3)
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Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

moment operators,
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=
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[

4g1Nc (yu + yq)C
(3)
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]

+ . . .
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=
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+ . . .
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]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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QHD

(
H†DµH

)∗ (
H†DµH

)
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8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)
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8 : (L̄L)(R̄R)
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qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄
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sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)
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(L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt) parameter shift (G
F
)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt) 7 7 3

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt) 3 7 3

(L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj) 3 7 3

(L̄R)(L̄R) + h.c.

Q(1)
lequ

(l̄jper)✏jk(q̄ksut) 3 7 3

Q(3)
lequ

(l̄jp�µ⌫er)✏jk(q̄ks�
µ⌫ut) 3 7 3

Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.

and �i =
q

1� ↵2Z2
i
, with Z the atomic number of the final-state nucleus. The Wilson coe�-

cients are given in terms of the ✏i that vanish in the SM, but are generally nonzero in SMEFT, see

7

Operators L EW C

H
4
D

2

QHD

�
H†DµH

�⇤ �
H†DµH

�
parameter shift (mZ)

X
2
H

2

QHWB H†⌧ IHW I
µ⌫B

µ⌫ parameter shift (sin ✓W )

 
2
H

2
D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr) 7 3 3

Q(3)
Hl

(H†i
 !
D I

µH)(l̄p⌧ I�µlr) 3 3 3

QHe (H†i
 !
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D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3
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D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3
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Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Qed (ēpγµer)(d̄sγµdt)

Q(1)
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ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)
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Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

moment operators,

µ
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CeB
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CuB
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µ
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pr
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16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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µ GBρ
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ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH
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)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2
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Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I
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D µH)(ēp�µer) 7 3 3

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr) 7 3 3

Q(3)
Hq

(H†i
 !
D I

µH)(q̄p⌧ I�µqr) 3 3 3

QHu (H†i
 !
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D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3
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Contribute tp  pp →  eν+X and  pp →  e+e− +X  at the LHC

 εα ~10-3 -10-4  LHC:  pp → eν + X 

mT(GeV)

VC, Graesser, Gonzalez-Alonso   
1210.4553 

Alioli-Dekens-Girard-Mereghetti 1804.07407  
Gupta et al. 1806.09006 

Boughezal-Mereghetti-Petriello 
2106.05337 

…

  1706.06786

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
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s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution
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where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)
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Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)
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k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6
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Operators L EW C

H
4
D

2

QHD

�
H†DµH

�⇤ �
H†DµH

�
parameter shift (mZ)

X
2
H

2

QHWB H†⌧ IHW I
µ⌫B

µ⌫ parameter shift (sin ✓W )

 
2
H

2
D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr) 7 3 3

Q(3)
Hl

(H†i
 !
D I

µH)(l̄p⌧ I�µlr) 3 3 3

QHe (H†i
 !
D µH)(ēp�µer) 7 3 3

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr) 7 3 3

Q(3)
Hq

(H†i
 !
D I

µH)(q̄p⌧ I�µqr) 3 3 3

QHu (H†i
 !
D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3

(L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt) parameter shift (G
F
)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt) 7 7 3

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt) 3 7 3

(L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj) 3 7 3

(L̄R)(L̄R) + h.c.

Q(1)
lequ

(l̄jper)✏jk(q̄ksut) 3 7 3

Q(3)
lequ

(l̄jp�µ⌫er)✏jk(q̄ks�
µ⌫ut) 3 7 3

Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.
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cients are given in terms of the ✏i that vanish in the SM, but are generally nonzero in SMEFT, see
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High Energy constraints

Can be probed at the LHC by associated Higgs + W production 

εL,R εL,R

H

W

W

q

q’

Current LHC results allow for to εL,R ~ 5%       
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Qed (ēpγµer)(d̄sγµdt)

Q(1)
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moment operators,
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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ud (ūpγµur)(d̄sγµdt)

Q(8)
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄
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and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of
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ϵIJKW̃ Iν
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ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.
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Iµν
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7 : ψ2H2D
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Q(3)
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D I
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←→
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←→
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Q(3)
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←→
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←→
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Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
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Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
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k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)
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Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
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(L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt) parameter shift (G
F
)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt) 7 7 3

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt) 3 7 3

(L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj) 3 7 3

(L̄R)(L̄R) + h.c.

Q(1)
lequ

(l̄jper)✏jk(q̄ksut) 3 7 3

Q(3)
lequ

(l̄jp�µ⌫er)✏jk(q̄ks�
µ⌫ut) 3 7 3

Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.

and �i =
q
1� ↵2Z2

i
, with Z the atomic number of the final-state nucleus. The Wilson coe�-

cients are given in terms of the ✏i that vanish in the SM, but are generally nonzero in SMEFT, see

7

Operators L EW C

H
4
D

2

QHD

�
H†DµH

�⇤ �
H†DµH

�
parameter shift (mZ)

X
2
H

2

QHWB H†⌧ IHW I
µ⌫B

µ⌫ parameter shift (sin ✓W )

 
2
H

2
D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr) 7 3 3

Q(3)
Hl

(H†i
 !
D I

µH)(l̄p⌧ I�µlr) 3 3 3

QHe (H†i
 !
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Can be probed at the LHC by associated Higgs + W production 
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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moment operators,

µ
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CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
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]
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µ
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dµ
CeW

pr
=

1
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−2g2NcC
(3)
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prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
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[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

dj

ui
dj

ui

High Energy constraints
≡

High scale effective Lagrangian

Constrained by Z-pole and σhad..  Usually included in ‘precision EW’ fits

Test
Test
Test
Test
Test
Test

Oll = l̄�µl l̄�
µ
l

✏
(s)
R

|Vud|
2
⌧n

�
1 + 3g2A

�
(1 +�R) = 5099.3(3)s

�R = 0.03983(27)

|Vud|
2 =

2984.432(3) s

ft

⇣
1 +�V

R + �0R + �NS � �C

⌘

�(1)
CKM = |V

�
ud|

2 + |V
K`3
us |

2
� 1

= �1.76(56)⇥ 10�3

�(2)
CKM = |V

�
ud|

2 + |V
K`2/⇡`2,�
us |

2
� 1

= �0.98(58)⇥ 10�3

�(3)
CKM = |V

K`2/⇡`2,K`3

ud |
2 + |V

K`3
us |

2
� 1

= �1.64(63)⇥ 10�2

� ⌘
gA

gV

�
exp

�QCD
= 1 + �RC � 2✏dR

�
exp

�QCD
= 1 + �RC � 2✏R

1

Test
Test
Test
Test
Test
Test

Oll = l̄�µl l̄�
µ
l

O
(3)
lq = l̄�µ�

a
l q̄�

µ
�
a
q

✏
(s)
R

|Vud|
2
⌧n

�
1 + 3g2A

�
(1 +�R) = 5099.3(3)s

�R = 0.03983(27)

|Vud|
2 =

2984.432(3) s

ft

⇣
1 +�V

R + �0R + �NS � �C

⌘

�(1)
CKM = |V

�
ud|

2 + |V
K`3
us |

2
� 1

= �1.76(56)⇥ 10�3

�(2)
CKM = |V

�
ud|

2 + |V
K`2/⇡`2,�
us |

2
� 1

= �0.98(58)⇥ 10�3

�(3)
CKM = |V

K`2/⇡`2,K`3

ud |
2 + |V

K`3
us |

2
� 1

= �1.64(63)⇥ 10�2

� ⌘
gA

gV

�
exp

�QCD
= 1 + �RC � 2✏dR

1

dj

ui
dj

ui

High Energy constraints
≡

High scale effective Lagrangian

Constrained by Z-pole and σhad..  Usually included in ‘precision EW’ fits

Test
Test
Test
Test
Test
Test

Oll = l̄�µl l̄�
µ
l

✏
(s)
R

|Vud|
2
⌧n

�
1 + 3g2A

�
(1 +�R) = 5099.3(3)s

�R = 0.03983(27)

|Vud|
2 =

2984.432(3) s

ft

⇣
1 +�V

R + �0R + �NS � �C

⌘

�(1)
CKM = |V

�
ud|

2 + |V
K`3
us |

2
� 1

= �1.76(56)⇥ 10�3

�(2)
CKM = |V

�
ud|

2 + |V
K`2/⇡`2,�
us |

2
� 1

= �0.98(58)⇥ 10�3

�(3)
CKM = |V

K`2/⇡`2,K`3

ud |
2 + |V

K`3
us |

2
� 1

= �1.64(63)⇥ 10�2

� ⌘
gA

gV

�
exp

�QCD
= 1 + �RC � 2✏dR

�
exp

�QCD
= 1 + �RC � 2✏R

1

Test
Test
Test
Test
Test
Test

Oll = l̄�µl l̄�
µ
l

O
(3)
lq = l̄�µ�

a
l q̄�

µ
�
a
q

✏
(s)
R

|Vud|
2
⌧n

�
1 + 3g2A

�
(1 +�R) = 5099.3(3)s

�R = 0.03983(27)

|Vud|
2 =

2984.432(3) s

ft

⇣
1 +�V

R + �0R + �NS � �C

⌘

�(1)
CKM = |V

�
ud|

2 + |V
K`3
us |

2
� 1

= �1.76(56)⇥ 10�3

�(2)
CKM = |V

�
ud|

2 + |V
K`2/⇡`2,�
us |

2
� 1

= �0.98(58)⇥ 10�3

�(3)
CKM = |V

K`2/⇡`2,K`3

ud |
2 + |V

K`3
us |

2
� 1

= �1.64(63)⇥ 10�2

� ⌘
gA

gV

�
exp

�QCD
= 1 + �RC � 2✏dR

1

εL 

εL 

εR 

εL 

εL 

εT 

εS,P 

εS,P 

Contribute to Z-pole and other precision electroweak (EW) observables, including** MW

**
**



35

The CLEW framework

• An informed global analysis of β-decays in SMEFT requires data from Collider,  Low energy, and ElectroWeak tests

VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  2311.00021

4

  Low energy CC 
processes

Collider: 
Drell-Yan,  
associated 

Higgs 
production, … 

Electroweak precision: 
Z pole,  W mass, …  

C L

EW

Corollary:  a global SMEFT analysis of 
precision EW observables requires 

including constraints from low-
energy CC processes (β-decays)

Challenge:  identify a manageable set 
of observables and corresponding 

operators that ‘closes’                               
(at least at tree level) 
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A CLEWed global analysis 

AIC = (χ2)min+ 2 k 

To gain qualitative and quantitative insight on most relevant operators (model selection),  
use the Akaike Information Criterion

Minimization of AIC: 

balance between goodness of fit (rewarded)  and proliferation of parameters (penalized) 

# of estimated parameters

The CLEW analysis with no flavor symmetry assumptions requires 37 couplings                   
But not all operators matter



Category Operators Description # of Ops. WPDG
✓

WCDF
✓

I. CST Oblique corrections 1 0.55 1.00

II. CHud RH charged currents 2 0.99 0.96

III. C(1)
Hl

C(3)
Hl

LH lepton vertices 6 0.01 0.11

IV. CHe RH lepton vertices 3 0.09 0.42

V. C(u)
Hq

C(d)
Hq

LH quark vertices 5 0.03 0.13

VI. CHu CHd RH quark vertices 5 0.06 0.32

VII. Cll Lepton 4-fermion 1 0.37 0.87

VIII. C(u)
lq

C(d)
lq

Semileptonic 4-fermion 6 0.03 0.03

IX. Cledq C(1)
lequ

Scalar 4-fermion 6 0.02 0.04

X. C(3)
lequ

Tensor 4-fermion 2 0.13 0.13

Table 9: We divide the 37 operators identified in the left panel of Table 2 into ten categories.
In the third column, each category is described by the type of operators within it, which are
listed in the second column. The fourth column counts how many operators among the 37 are
included in each category. The fifth column gives the total weights of all models that contain
the corresponding category, as described in Eq. (4.8). The sixth column repeats this using the
CDF mW .

The best-performing models fall into the first category which includes right-handed charged
currents. In fact, the optimal model contains �, [CHud]11, [CHud]12, and CST as fit parameters
and has �AIC = 19. The best-fit results are given by

CHud
11

= (�0.030± 0.008)TeV�2 ,

CHud
12

= (�0.040± 0.011)TeV�2 ,

CST = (�0.0038± 0.0022)TeV�2 . (8.2)

The values for CHud are the same as those found in the L2(RH) discussed in the previous
section (see Table 6). The nonzero value of CST accounts for the slight discrepancy in mW that
is present even when the CDF measurement is excluded. In fact, the observables and matrix
elements most improved in this model closely resemble those of L2(RH), which are shown in the
left panel of Fig. 6. In addition, the tension in mW is reduced from approximately 2� to less
than 1�.

The second-best model (with �AIC = 18) is nothing more than L2(RH), while the third-best
model includes CHud and Cll. The two models L7 (V) and L8 (RS) that we studied in Section 7
also fall into this family, with the additional parameters causing a penalty in AIC.

Of the 41 models selected for their performance, where their values of �AIC are within 10
units below the best model, only two exclude the right-handed operator, while they include both
Cll and CST (marked by orange diamonds in Fig. 12). A three-parameter fit with only �, Cll

37

A CLEWed global analysis 

37

• Scanned model space by ‘turning on’ 
certain classes of effective couplings 

• Akaike Information Criterion favors  
models with Right-Handed Charged 
Currents of quarks 

• Best fit to CLEW data:  two RH CC 
vertex corrections and the S parameter 

Operators grouped in 10 categories

Scanned this model space 

210 = 1024 ‘models’
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including

38

1024 models

• Scanned model space by ‘turning on’ 
certain classes of effective couplings 

• Akaike Information Criterion favors  
models with Right-Handed Charged 
Currents of quarks 

• Models with oblique corrections (CST) 
also fare better than SM 

Standard Model

Favored 
models

Disfavored
 modelsCHud

A CLEWed global analysis 

38
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including

38

1024 models

• Scanned model space by ‘turning on’ 
certain classes of effective couplings 

• Akaike Information Criterion favors  
models with Right-Handed Charged 
Currents of quarks 

• Models with oblique corrections (CST) 
also fare better than SM 

Standard Model

Favored 
models

Disfavored
 modelsCHud

A CLEWed global analysis 

38

The winner (ΔAIC=19): two RH CC 
vertex corrections and a 
combination of oblique parameters 

(UV completions?   Vector-like 
quarks generate RH CC at tree level 
and oblique at 1-loop)

Category Operators Description # of Ops. WPDG
✓

WCDF
✓

I. CST Oblique corrections 1 0.55 1.00

II. CHud RH charged currents 2 0.99 0.96

III. C(1)
Hl

C(3)
Hl

LH lepton vertices 6 0.01 0.11

IV. CHe RH lepton vertices 3 0.09 0.42

V. C(u)
Hq

C(d)
Hq

LH quark vertices 5 0.03 0.13

VI. CHu CHd RH quark vertices 5 0.06 0.32

VII. Cll Lepton 4-fermion 1 0.37 0.87

VIII. C(u)
lq

C(d)
lq

Semileptonic 4-fermion 6 0.03 0.03

IX. Cledq C(1)
lequ

Scalar 4-fermion 6 0.02 0.04

X. C(3)
lequ

Tensor 4-fermion 2 0.13 0.13

Table 9: We divide the 37 operators identified in the left panel of Table 2 into ten categories.
In the third column, each category is described by the type of operators within it, which are
listed in the second column. The fourth column counts how many operators among the 37 are
included in each category. The fifth column gives the total weights of all models that contain
the corresponding category, as described in Eq. (4.8). The sixth column repeats this using the
CDF mW .

The best-performing models fall into the first category which includes right-handed charged
currents. In fact, the optimal model contains �, [CHud]11, [CHud]12, and CST as fit parameters
and has �AIC = 19. The best-fit results are given by

CHud
11

= (�0.030± 0.008)TeV�2 ,

CHud
12

= (�0.040± 0.011)TeV�2 ,

CST = (�0.0038± 0.0022)TeV�2 . (8.2)

The values for CHud are the same as those found in the L2(RH) discussed in the previous
section (see Table 6). The nonzero value of CST accounts for the slight discrepancy in mW that
is present even when the CDF measurement is excluded. In fact, the observables and matrix
elements most improved in this model closely resemble those of L2(RH), which are shown in the
left panel of Fig. 6. In addition, the tension in mW is reduced from approximately 2� to less
than 1�.

The second-best model (with �AIC = 18) is nothing more than L2(RH), while the third-best
model includes CHud and Cll. The two models L7 (V) and L8 (RS) that we studied in Section 7
also fall into this family, with the additional parameters causing a penalty in AIC.

Of the 41 models selected for their performance, where their values of �AIC are within 10
units below the best model, only two exclude the right-handed operator, while they include both
Cll and CST (marked by orange diamonds in Fig. 12). A three-parameter fit with only �, Cll

37

See talk by Benedetta Belfatto
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including
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certain classes of effective couplings 

• Akaike Information Criterion favors  
models with Right-Handed Charged 
Currents of quarks 

• Models with oblique corrections (CST) 
also fare better than SM 
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The runner-up (ΔAIC=18):               
just two RH CC vertex corrections! 
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Figure 5: Results of the L2(RH) fit to low-energy CC observables involving two Wilson coe�-
cients [CHud]11 and [CHud]12, given in units of TeV�2. Three contours illustrate the likelihoods
of 1, 2, and 3�. The best-fit point is marked by a yellow cross, whereas the origin (the SM
point) is marked by a blue dot.

L2(RH) L6(SPS) L8

[CHud]11 �0.030± 0.008 – �0.058± 0.079

[CHud]12 �0.040± 0.011 – 0.080± 0.35

[Cledq]1111 – �0.014± 0.006 0.0010± 0.0075

[Cledq]1122 – �0.014± 0.006 0.0009± 0.0075

[C̄(1)
lequ

]1111 – �0.014± 0.006 0.0010± 0.0075

[Cledq]2211 – 0.0062± 0.0042 0.017± 0.039

[Cledq]2222 – 0.0006± 0.0045 �0.0096± 0.036

[C̄(1)
lequ

]2211 – 0.0054± 0.0043 0.014± 0.036

Table 6: Central values and 1� uncertainties for the Wilson coe�cients in the L2 (RH), L6
(SPS) and L8 (RS) fits, given in units of TeV�2.

The corresponding eigenvectors are given by

0.28CHud
11

+ 0.96CHud
12

= �0.011⇥ (4.2± 1)TeV�2 ,

0.96CHud
11

� 0.28CHud
12

= �0.0076⇥ (2.1± 1)TeV�2 , (7.1)

and thus, respectively, 4.2� and 2.1� away from zero.
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including
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1024 models

• Scanned model space by ‘turning on’ 
certain classes of effective couplings 

• Akaike Information Criterion favors  
models with Right-Handed Charged 
Currents of quarks 

• Models with oblique corrections (CST) 
also fare better than SM 

Standard Model
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models

Disfavored
 modelsCHud
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Messages from this exercise:
• “Cabibbo anomaly”  still consistent with other EW precision & collider data 
• “Preferred solution” (RH quark currents)  testable in the future 

• CKM unitarity test provides relevant input to unravel new physics scenarios

VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  JHEP 03 (24) 33, arXiv: 2311.00021



• Further scrutiny is needed  & there is lots of activity in the community

• Experiment: nuclei, neutron, K, π,  𝜏

• Theory:  lattice QCD+QED for neutron, K, π, 𝜏;   EFT+ dispersive + first-principles methods for nuclei;  
… 

Conclusions and outlook

41

• Precision studies of β decays are a great tool to test the 

Standard Model and explore what may lie beyond 

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarityNeutron (0.043%)
0+ → 0+ (0.031%)

• Current tensions in Cabibbo universality test could point to 

new physics at Λ ~ few TeV                    
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Backup



Cabibbo universality test
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Nicola Cabibbo 
(1935-2010) 

δVus/Vus ~ 0.2%  δVud/Vud ~ 0.03%  δVub/Vub ~ 5% 

~1.5 ⨉10-5~0.05 ~0..95 

  Vud and Vus are the most accurately known 
elements of the CKM matrix ⇒ 

1st row provides the most stringent test of 
universality & sensitivity to new physics 



Vector coupling gV

Combining the HBChPT coupling constants into the /⇡EFT counterterm ĈV according to
Eqs. (2), (3), (72), and (73), we achieve the matching condition
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where we resummed logarithms in the Wilson coe�cient C
r

�
(a, µ), as it is described in Section 3.1.

This expression does not contain electroweak-scale parameters or artificial hadronic scales, besides the
dependence contained in the coupling constant C

r

�
(a, µ). The vector coupling gV (µ�) does not depend

on the scale and scheme used in the LEFT at the one-loop level.
We can further simplify the expression for gV (µ�) and connect it to the previous literature. First,

we eliminate the evanescent scheme dependence by defining the scheme-independent NLO Wilson coe�-
cient [68]

C
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which can be immediately read o↵ from Eq. (16). We then have
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where the non-perturbative input is in the “subtracted” hadronic contribution ⇤V

Had(µ0), which is closely
related to the standard ⇤V

�W
of Refs. [1, 2, 39]
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We will evaluate the non-perturbative input in Eq. (79) in Sec. 5.2.
Eq. (78) encodes the so-called “inner” radiative corrections to the Fermi transitions in the EFT

language in the form of a µ�-dependent coupling gV (µ�), which appears in the e↵ective Lagrangian of
Eq. (1). Once all large electroweak logarithms are resummed via the RGE in C�(µ), Eq. (78) does not
contain additional large logarithms when the scales µ�, µ, and µ0 are similar and of order ⇤� ⇠ 1 GeV. As
shown below, the µ�-scale dependence in gV (µ�) is canceled in physical amplitudes by the µ� dependence
of the virtual photon corrections computed in the pionless theory. Since the only scale of these loops is
O(me), we will evolve gV (µ�) down to the scale µ� ⇠ me in order to avoid large logarithms, see Sec. 5.3.

5.2 Evaluation of the non-perturbative input

As shown in Refs. [1, 2], the box function can be represented as a one-dimensional integral over the Q2
> 0

variable
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↵
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0
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2
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where F (Q2) = (12/Q2)M (0)
3 (1, Q2) and M

(0)
3 (1, Q2) is the first Nachtmann moment of the structure

function defined in terms of the imaginary part of T3(⌫, Q2). Following Refs. [1, 2], it is useful to isolate
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Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)
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V V
(q, v)
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⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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while V3 and V4 from the isoscalar component. We thus define two matrix elements
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At the order we are working, the electron and neutrinos can be taken to be massless and to carry zero
momentum.

The HBChPT diagrams contributing to �(0,1)
VW

are shown in Fig. 2. The loop diagrams cancel for
isoscalar electromagnetic couplings, so that we obtain
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In the LEFT, the isovector and isoscalar components are given by
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The hadronic tensors with two isovector currents are defined in Eq. (47), while we define the hadronic
tensor with one isoscalar vector current as

T
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As in Sec. 4.2, the UV divergences in the LEFT are determined by the operator product expansion.
In NDR, the leading-order OPEs of Tµ⌫

V V
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and T
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V V,0 � T
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V A,0 are proportional to the symmetric
and antisymmetric combinations of Dirac matrices (�µ/q�⌫ ± �

⌫
/q�

µ)PL, respectively. The symmetric
combination does not depend on the scheme, while the antisymmetric piece depends on the definition of
the evanescent operators, in such a way as to compensate the dependence of the couplings in the LEFT.
Using the OPE, we obtain
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The integrals of the subtracted hadronic tensors T̄ are convergent, so that we can perform the Dirac
algebra on the leptonic leg in d = 4 dimension. Putting everything together, we arrive at the matching
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5 Corrections to gV

In this Section, we combine the coupling constants of the heavy-baryon chiral perturbation theory into
the counterterm of gV in /⇡EFT. We subsequently evaluate the non-perturbative inputs to the vector
coupling constant, resum logarithms between the chiral and electron-mass scales, and provide numerical
results for gV .

5.1 Matching at the baryon-mass scale

Having determined the electroweak coupling constants V1-V4 and the electromagnetic coupling constant
g9, we can evaluate the O(↵) contribution to gV in the low-energy e↵ective theory, cf. Eqs. (2) and (3).
These corrections are known in the literature as “inner” radiative corrections.

Before getting to the final result, we can combine the LECs that depend on the V V hadronic tensor,
g9 and V1 + V2, and the lepton wavefunction renormalization X6, obtaining
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which is independent of the gauge parameter ⇠. TV V enters this combination of LECs multiplied by the
IR regulator �

2
� . The only contribution to the integral can thus come from the infrared limit of TV V ,

where the hadronic tensor is well approximated by the elastic piece. The integral over the hadronic tensor
then only leaves behind a finite piece, yielding
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Thus, the only contributions to �
X6
2 + 2 (V1 + V2)� g9 are due to the di↵erent renormalization scales, µ

vs µ�, and the di↵erent subtraction scheme commonly used in HBChPT, MS� vs MS.
The other combination of LECs V3 + V4 is conveniently expressed in terms of the scalar amplitude
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where we defined the amplitude T3 from the tensor decomposition of the hadronic tensor as [85–90]5

T
µ⌫

V A,0 = i"
µ⌫�⇢

q⇢v�
T3

4mN⌫
+ · · · , (74)

with the OPE-subtracted expression
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In the OPE, we have retained the O(↵s) correction, which is needed to cancel the µ-dependent term
proportional to ↵↵s ln(MW /µ) in C

r

�
. To the order we are working, we can use ↵s(µ) at any µ where

QCD is perturbative. We will use ↵s(µ0) in what follows.

5
Note that T3 defined in this paper is equal to i times the T3 defined in [45], which in turn is twice as large as the T3

defined in [1].
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equations
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To obtain the second line of Eqs. (62) and (63), we used the Ward identities on the subtracted tensors,
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the symmetry (antisymmetry) of unpolarized hadronic tensors Tµ⌫

V V (0) (T
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V A(0)) under µ $ ⌫, and, in the
contractions with the Levi-Civita tensor, we replaced
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The non-perturbative QCD input in the LECs is encoded in the subtracted hadronic tensors T V V ,
T V A, T V V, 0, and T V A, 0. Using time reversal and crossing symmetry [2, 33], we can show that the scalar
functions in the matching equations (62) and (63) are odd or even under q ! �q, explicitly we have
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where we indicated that the functions depend only on the invariants
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, ⌫ = v · q. (68)

As a consequence of Eqs. (66) and (67), TV A and TV V, 0 do not contribute to the matching, and the final
expressions for the combinations of LECs V1 + V2 and V3 + V4 are
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Note that in this framework, the LECs depend not only on the chiral renormalization scale (µ�), but also
on the LEFT renormalization scale (µ) and the schemes adopted for �5 and the evanescent operators.
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To obtain the second line of Eqs. (62) and (63), we used the Ward identities on the subtracted tensors,
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the symmetry (antisymmetry) of unpolarized hadronic tensors Tµ⌫

V V (0) (T
µ⌫

V A(0)) under µ $ ⌫, and, in the
contractions with the Levi-Civita tensor, we replaced
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The non-perturbative QCD input in the LECs is encoded in the subtracted hadronic tensors T V V ,
T V A, T V V, 0, and T V A, 0. Using time reversal and crossing symmetry [2, 33], we can show that the scalar
functions in the matching equations (62) and (63) are odd or even under q ! �q, explicitly we have
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where we indicated that the functions depend only on the invariants

Q
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, ⌫ = v · q. (68)

As a consequence of Eqs. (66) and (67), TV A and TV V, 0 do not contribute to the matching, and the final
expressions for the combinations of LECs V1 + V2 and V3 + V4 are
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Note that in this framework, the LECs depend not only on the chiral renormalization scale (µ�), but also
on the LEFT renormalization scale (µ) and the schemes adopted for �5 and the evanescent operators.
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Combining the HBChPT coupling constants into the /⇡EFT counterterm ĈV according to Eqs. (2)-(3)
using Eqs. (23), (74), and (76), we achieve the matching condition
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(80)
This expression does not contain electroweak-scale parameters or artificial hadronic scales, besides the
dependence contained in the coupling constant C

r

�
(a, µ). Equation (80) is scheme-independent at the

one-loop level and includes all O (↵) Standard-Model contributions. To resum higher order logarithms, it
is convenient to express Eq. (80) in factorized form
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where we resummed logarithms in the Wilson coe�cient C
r

�
(a, µ) according to Section 3.1. We can

further simplify the expression for gV (µ�) and connect it to the previous literature. First, we eliminate
the evanescent scheme dependence by defining the scheme-independent NLO Wilson coe�cient [68]
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which can be immediately read o↵ from Eq. (16). We then have
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where the non-perturbative input is in the “subtracted” hadronic contribution ⇤V

Had(µ0), which is closely
related to the standard ⇤V

�W
of Refs. [1, 2, 38]
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We will evaluate the non-perturbative input in Eq. (84) in Sec. 5.2.
Eq. (83) encodes the so-called “inner” radiative corrections to the Fermi transitions in the EFT

language in the form of a µ�-dependent coupling gV (µ�), which appears in the e↵ective Lagrangian of
Eq. (1). Once all large electroweak logarithms are resummed via the RGE in C�(µ), Eq. (83) does not
contain additional large logarithms when the scales µ�, µ, and µ0 are similar and of order ⇤� ⇠ 1 GeV. As
shown below, the µ�-scale dependence in gV (µ�) is canceled in physical amplitudes by the µ� dependence
of the virtual photon corrections computed in the pionless theory. Since the only scale of these loops is
O(me), we will evolve gV (µ�) down to the scale µ� ⇠ me in order to avoid large logarithms, see Sec. 5.3.

5.2 Evaluation of the non-perturbative input

As shown in Refs. [1, 2], the box function can be represented as a one-dimensional integral over the Q2
> 0

variable
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           is the usual ‘box’ up to Q2~(μ0)2



Vector coupling gV

Combining the HBChPT coupling constants into the /⇡EFT counterterm ĈV according to
Eqs. (2), (3), (72), and (73), we achieve the matching condition
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where we resummed logarithms in the Wilson coe�cient C
r

�
(a, µ), as it is described in Section 3.1.

This expression does not contain electroweak-scale parameters or artificial hadronic scales, besides the
dependence contained in the coupling constant C

r

�
(a, µ). The vector coupling gV (µ�) does not depend

on the scale and scheme used in the LEFT at the one-loop level.
We can further simplify the expression for gV (µ�) and connect it to the previous literature. First,

we eliminate the evanescent scheme dependence by defining the scheme-independent NLO Wilson coe�-
cient [68]
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which can be immediately read o↵ from Eq. (16). We then have
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where the non-perturbative input is in the “subtracted” hadronic contribution ⇤V

Had(µ0), which is closely
related to the standard ⇤V

�W
of Refs. [1, 2, 39]
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We will evaluate the non-perturbative input in Eq. (79) in Sec. 5.2.
Eq. (78) encodes the so-called “inner” radiative corrections to the Fermi transitions in the EFT

language in the form of a µ�-dependent coupling gV (µ�), which appears in the e↵ective Lagrangian of
Eq. (1). Once all large electroweak logarithms are resummed via the RGE in C�(µ), Eq. (78) does not
contain additional large logarithms when the scales µ�, µ, and µ0 are similar and of order ⇤� ⇠ 1 GeV. As
shown below, the µ�-scale dependence in gV (µ�) is canceled in physical amplitudes by the µ� dependence
of the virtual photon corrections computed in the pionless theory. Since the only scale of these loops is
O(me), we will evolve gV (µ�) down to the scale µ� ⇠ me in order to avoid large logarithms, see Sec. 5.3.

5.2 Evaluation of the non-perturbative input

As shown in Refs. [1, 2], the box function can be represented as a one-dimensional integral over the Q2
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where F (Q2) = (12/Q2)M (0)
3 (1, Q2) and M

(0)
3 (1, Q2) is the first Nachtmann moment of the structure

function defined in terms of the imaginary part of T3(⌫, Q2). Following Refs. [1, 2], it is useful to isolate
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We will evaluate the non-perturbative input in Eq. (79) in Sec. 5.2.
Eq. (78) encodes the so-called “inner” radiative corrections to the Fermi transitions in the EFT

language in the form of a µ�-dependent coupling gV (µ�), which appears in the e↵ective Lagrangian of
Eq. (1). Once all large electroweak logarithms are resummed via the RGE in C�(µ), Eq. (78) does not
contain additional large logarithms when the scales µ�, µ, and µ0 are similar and of order ⇤� ⇠ 1 GeV. As
shown below, the µ�-scale dependence in gV (µ�) is canceled in physical amplitudes by the µ� dependence
of the virtual photon corrections computed in the pionless theory. Since the only scale of these loops is
O(me), we will evolve gV (µ�) down to the scale µ� ⇠ me in order to avoid large logarithms, see Sec. 5.3.
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Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)
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where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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equations

2(V1 + V2)(µ�, µ) =

ˆ
d4q

(2⇡)4
1

q2
�
q2 � �2

�

�
�
v · q gµ⌫T

µ⌫

V V (q, v) + i"µ⇢⌫�q
⇢
v
�
T
µ⌫

V A(q, v)
�

+
1

(4⇡)2

"
2 ln

µ
2

�2
�

+
1

2

⇣
1�

↵s

⇡

⌘
ln

µ
2

µ2
0

� ln
µ
2
�

�2
�

+
9

4
+ (1� ⇠)

 
ln

µ
2
�

µ2
� 1

!#
, (62)

2(V3 + V4)(a, µ�, µ) = �

ˆ
id4q

(2⇡)4
1

q2
�
q2 � �2

�

�
�
v · q gµ⌫T

µ⌫

V V, 0(q, v) + i"µ⇢⌫�q
⇢
v
�
T
µ⌫

V A, 0(q, v)
�

+
1

(4⇡)2


1

2

⇣
1�

↵s

⇡

⌘
ln

µ
2

µ2
0

+
3� 8a

12

�
. (63)

To obtain the second line of Eqs. (62) and (63), we used the Ward identities on the subtracted tensors,
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the symmetry (antisymmetry) of unpolarized hadronic tensors Tµ⌫

V V (0) (T
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contractions with the Levi-Civita tensor, we replaced
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PL⌫e + ē (�� � /vv

�)PL⌫e. (65)

The non-perturbative QCD input in the LECs is encoded in the subtracted hadronic tensors T V V ,
T V A, T V V, 0, and T V A, 0. Using time reversal and crossing symmetry [2, 33], we can show that the scalar
functions in the matching equations (62) and (63) are odd or even under q ! �q, explicitly we have
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where we indicated that the functions depend only on the invariants

Q
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, ⌫ = v · q. (68)

As a consequence of Eqs. (66) and (67), TV A and TV V, 0 do not contribute to the matching, and the final
expressions for the combinations of LECs V1 + V2 and V3 + V4 are
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Note that in this framework, the LECs depend not only on the chiral renormalization scale (µ�), but also
on the LEFT renormalization scale (µ) and the schemes adopted for �5 and the evanescent operators.
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To obtain the second line of Eqs. (62) and (63), we used the Ward identities on the subtracted tensors,
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the symmetry (antisymmetry) of unpolarized hadronic tensors Tµ⌫

V V (0) (T
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V A(0)) under µ $ ⌫, and, in the
contractions with the Levi-Civita tensor, we replaced
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The non-perturbative QCD input in the LECs is encoded in the subtracted hadronic tensors T V V ,
T V A, T V V, 0, and T V A, 0. Using time reversal and crossing symmetry [2, 33], we can show that the scalar
functions in the matching equations (62) and (63) are odd or even under q ! �q, explicitly we have
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where we indicated that the functions depend only on the invariants

Q
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As a consequence of Eqs. (66) and (67), TV A and TV V, 0 do not contribute to the matching, and the final
expressions for the combinations of LECs V1 + V2 and V3 + V4 are
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Note that in this framework, the LECs depend not only on the chiral renormalization scale (µ�), but also
on the LEFT renormalization scale (µ) and the schemes adopted for �5 and the evanescent operators.
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Combining the HBChPT coupling constants into the /⇡EFT counterterm ĈV according to Eqs. (2)-(3)
using Eqs. (23), (74), and (76), we achieve the matching condition
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(80)
This expression does not contain electroweak-scale parameters or artificial hadronic scales, besides the
dependence contained in the coupling constant C

r

�
(a, µ). Equation (80) is scheme-independent at the

one-loop level and includes all O (↵) Standard-Model contributions. To resum higher order logarithms, it
is convenient to express Eq. (80) in factorized form
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where we resummed logarithms in the Wilson coe�cient C
r

�
(a, µ) according to Section 3.1. We can

further simplify the expression for gV (µ�) and connect it to the previous literature. First, we eliminate
the evanescent scheme dependence by defining the scheme-independent NLO Wilson coe�cient [68]

C�(µ) =
C�(a, µ)

1 + ↵(µ)
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, (82)

which can be immediately read o↵ from Eq. (16). We then have
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where the non-perturbative input is in the “subtracted” hadronic contribution ⇤V

Had(µ0), which is closely
related to the standard ⇤V

�W
of Refs. [1, 2, 38]
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We will evaluate the non-perturbative input in Eq. (84) in Sec. 5.2.
Eq. (83) encodes the so-called “inner” radiative corrections to the Fermi transitions in the EFT

language in the form of a µ�-dependent coupling gV (µ�), which appears in the e↵ective Lagrangian of
Eq. (1). Once all large electroweak logarithms are resummed via the RGE in C�(µ), Eq. (83) does not
contain additional large logarithms when the scales µ�, µ, and µ0 are similar and of order ⇤� ⇠ 1 GeV. As
shown below, the µ�-scale dependence in gV (µ�) is canceled in physical amplitudes by the µ� dependence
of the virtual photon corrections computed in the pionless theory. Since the only scale of these loops is
O(me), we will evolve gV (µ�) down to the scale µ� ⇠ me in order to avoid large logarithms, see Sec. 5.3.

5.2 Evaluation of the non-perturbative input

As shown in Refs. [1, 2], the box function can be represented as a one-dimensional integral over the Q2
> 0

variable
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           is the usual ‘box’ up to Q2~(μ0)2

• Use non-perturbative input on T3 from dispersive analysis or LQCD 

• No dependence on scheme, μ and μ0   (up to higher perturbative orders)

• For μχ ~ μ ~ μ0 ~ 1 GeV all large logs are in the NLO Wilson coefficient 

• Dependence on μχ canceled by loops in pion-less EFT
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This expression does not contain electroweak-scale parameters or artificial hadronic scales, besides the
dependence contained in the coupling constant C
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(a, µ). Equation (80) is scheme-independent at the

one-loop level and includes all O (↵) Standard-Model contributions. To resum higher order logarithms, it
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We will evaluate the non-perturbative input in Eq. (84) in Sec. 5.2.
Eq. (83) encodes the so-called “inner” radiative corrections to the Fermi transitions in the EFT

language in the form of a µ�-dependent coupling gV (µ�), which appears in the e↵ective Lagrangian of
Eq. (1). Once all large electroweak logarithms are resummed via the RGE in C�(µ), Eq. (83) does not
contain additional large logarithms when the scales µ�, µ, and µ0 are similar and of order ⇤� ⇠ 1 GeV. As
shown below, the µ�-scale dependence in gV (µ�) is canceled in physical amplitudes by the µ� dependence
of the virtual photon corrections computed in the pionless theory. Since the only scale of these loops is
O(me), we will evolve gV (µ�) down to the scale µ� ⇠ me in order to avoid large logarithms, see Sec. 5.3.
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FIG. 2: Overview of the required shift to lattice QCD de-
terminations of gA and comparison with current experimen-
tal determination of �. The bottom panel shows the shift
and increased uncertainty in magenta with corrected val-
ues. The keys in the figure are FLAG21 [21], CalLat19 [22],
PNDME18 [42], PDG21 [6], PERKEO3 [23], UCNA [45].

of � is at present obtained from experiments, where
these corrections are automatically included. The correc-
tion does have a big impact when comparing with first-
principles lattice QCD computations of neutron � decay.
Present lattice calculations of gA work in the isospin limit
without QED, but Eq. (15) shows these results cannot be
directly compared to the experimentally extracted value
of gA without subtracting the newly identified isospin-
breaking radiative corrections in this Letter.

In Fig. 2 we show the significance of the correction �
(�)
RC

in comparing lattice QCD calculations with the state-of-
the-art experimental determination of �. Compared to
the most precise individual lattice calculation [22], our
radiative corrections corresponds to a 2.7� shift and a
more modest ⇠ 1� shift in the conservative FLAG’21
average [21]. �

(�)
RC

generally improves the agreement be-
tween lattice QCD and experimental determination of
� and is essential if one wishes to obtain robust ranges
(or constraints) on right-handed currents. For example,
assuming existing central values and an increased lattice-

QCD precision, the neglect of radiative corrections (�(�)
RC

)
would wrongfully point to BSM physics at O(1TeV).

Isospin-breaking corrections to the weak magnetism do
translate into explicit spectral changes (see the appendix
for the full di↵erential decay rate). Relative corrections
of O(10�4) occur in the SM predictions of both a, the
�-⌫ angular correlation, and A, the �-asymmetry. These
are comparable to anticipated experimental precision in
the coming decade within the context of CKM unitarity
tests [12]. Even larger relative changes (O(0.1%)) can
occur due to cancellations in the leading-order SM pre-
diction, such as in nuclear mirror systems used in com-

plementary |Vud| determinations [46]. An extension of
this e↵ort to nuclear systems is deemed crucial and fits
within rejuvenated superallowed e↵orts [5, 47]. On the
other hand, the induced tensor coupling cT produces a
shift to the Fierz term and the neutrino-asymmetry pa-
rameter B at the level of 10�5, negligible in light of the
expected experimental accuracies.

Conclusions and outlook — By using a systematic ef-
fective field theory approach we have identified and com-
puted novel radiative corrections to neutron �-decay.
The largest correction, at the percent level, can be under-
stood as a QED correction to the nucleon axial charge.
While this does not impact the extraction of Vud from
experiments, it has important consequences for the po-
tential of �-decay experiments to constrain BSM right-
handed currents when comparing the measured value of
� = gA/gV to the first-principles calculation of the same
quantity with lattice QCD. In addition, we have iden-
tified changes in the neutron di↵erential decay rate, in
particular a shift in the �-⌫ angular correlation and the
�-asymmetry, that are relevant for next-generation ex-
periments.

The new shift in the nucleon axial charge depends upon
non-analytic contributions associated with pion loops as
well as analytic short-distance corrections parameterized
by LECs. The LECs that lead to the largest part of
the correction (c3 and c4) are precisely extracted from
pion-nucleon scattering data, but others are presently
unknown leading to a sizable uncertainty in our results.
Lattice QCD can compute the hadronic n ! p amplitude
in the presence of QED [19, 20], which enables a determi-
nation of the unknown LECs. There are subtleties that
must be addressed related to gauge invariance and the
non-factorizable contributions to the renormalization of
the four-fermion operator [48]. QEDM [49], in which the
photon is given a non-zero mass, may simplify the iden-
tification of the matrix element of interest by increasing
the energy gap to the excited state contamination.

Looking beyond neutron decay, it is very possible
that similar-sized corrections a↵ect nuclear �-decay.
The computations in this Letter provide the first step
towards a full EFT treatment of radiative corrections
to the multi-nucleon level. Given the interest in these
low-energy precision tests of the Standard Model and
the existing deviations from first-row CKM unitarity,
it is imperative to accurately determine these radiative
corrections in order to make full use of the anticipated
precision of upcoming experiments.
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• Radiative corrections generally improve agreement between data (neutron decay) and lattice QCD calculations

Test
Test
Test
Test
Test
Test

� ⌘
gA

gV

�
exp

�QCD
= 1 + �RC � 2✏dR

�
PDG

�FLAG
� 1 = (2.4± 2.2)%

�
PDG

�CalLat
� 1 = (0.9± 0.7)%

�RC ' (2.0± 0.6±??)% �RC ⇠ 0.01� 0.03%

gA

gV
=

g
(0)
A

g
(0)
V

h
1 +

↵

2⇡

�
�(0)

em +�(1)
em + ...

�i

b = �
me

mN

1 + 2gAµV + g
2
A

1 + 3g2A
�

↵me

m⇡

g
2
A

1 + 3g2A
+ b

BSM[✏S,T ]

b⌫ = �
me

mN

(1 + gA)(gA + µV )

1 + 3g2A
�

↵me

3m⇡

gA(1 + 2gA)

1 + 3g2A
+ b

BSM
⌫ [✏S,T ]

µV = µp � µn

b =

b⌫ =

1

Scale variation +
 knownLECs Unknown LECs

VC, J. de Vries, L. Hayen, E. Mereghetti,  A. Walker-Loud  2202.10439

gA/gV to O(ɑ) and O(ɑεχ)

Test
Test
Test
Test
Test
Test

� ⌘
gA

gV

�
exp

�QCD
= 1 + �RC � 2✏dR

�
PDG

�FLAG
� 1 = (2.4± 2.2)%

�
PDG

�CalLat
� 1 = (0.9± 0.7)%

�RC ' (2.0± 0.5±??)% �RC ⇠ 0.01� 0.03%

gA

gV
=

g
(0)
A

g
(0)
V

h
1 +

↵

2⇡

�
�(0)

em +�(1)
em + ...

�i

b = �
me

mN

1 + 2gAµV + g
2
A

1 + 3g2A
�

↵me

m⇡

g
2
A

1 + 3g2A
+ b

BSM[✏S,T ]

b⌫ = �
me

mN

(1 + gA)(gA + µV )

1 + 3g2A
�

↵me

3m⇡

gA(1 + 2gA)

1 + 3g2A
+ b

BSM
⌫ [✏S,T ]

µV = µp � µn

b =

b⌫ =

1

• (gA/gV)  gets %-level corrections proportional to the pion EM mass splitting (100x larger than previous estimates)

Large uncertainty due to unknown LEC that 
could be determined by future lattice calculations 

CY Seng  2403.08976  
VC, W. Dekens, E. Mereghetti, O. Tomalak ,  arXiv: 2410.21404



Operators L EW C

H
4
D

2

QHD

�
H†DµH

�⇤ �
H†DµH

�
parameter shift (mZ)

X
2
H

2

QHWB H†⌧ IHW I
µ⌫B

µ⌫ parameter shift (sin ✓W )

 
2
H

2
D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr) 7 3 3

Q(3)
Hl

(H†i
 !
D I

µH)(l̄p⌧ I�µlr) 3 3 3

QHe (H†i
 !
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to deal with flavor structure and set up three classes of analyses in addition to the SM analy-
sis. In Section 4 we summarize the statistical tools used in our work. We present our results
in Sections 5-8 providing a discussion of the main features driving the various fits. Apart from
discussing the nearly-global analysis, we also consider a number of simpler scenarios that involve
subsets of SMEFT operators and investigate which one leads to the most favored solution of the
CAA. In Section 9, we explore the potential of future measurements and theoretical developments
to probe the nonzero couplings, which the statistical analysis identifies as the simplest explana-
tion for the CAA. We o↵er our conclusions and outlook in Section 10, while technical details are
provided in the Appendices. We collect the results of the ‘flavor-assumption-independent’ fit in
the Supplemental Material.

2 Analysis framework

2.1 Standard Model E↵ective Field Theory

Assuming that BSM physics appears at a scale ⇤ well above the electroweak scale, ⇤ � v, its
e↵ects can be captured by an EFT. If the BSM dynamics is weakly coupled, the resulting TeV-
scale e↵ective Lagrangian linearly realizes the electroweak symmetry SU(2)⇥U(1) and contains
an SM-like SU(2) Higgs doublet. The relevant EFT is the SMEFT [42, 43], which extends the
SM with operators of canonical dimension d > 4, suppressed by powers of ⇤4�d. The first BSM
operator appears at dimension five [44] and gives rise to neutrino Majorana masses. The leading
contributions to the observables of interest in this work arise from dimension-six operators Qi,
which are described by the following e↵ective Lagrangian

L = LSM +
X

i

CiQi , (2.1)

where the Wilson coe�cients, Ci, have mass dimension �2. There are 2499 operators in SMEFT
at dimension six [45], and we adopt the widely used Warsaw basis [43]. As discussed in the
Introduction, our analysis includes only the operators that a↵ect low-energy CC (semi)leptonic
processes, EWPO, and Drell-Yan at the LHC. We list the relevant operators in Table 1 along
with the classes of observables to which they contribute, making it clear that a joint analysis of
these three classes of observables is required for consistency.

Our notation is such that lT = (⌫L, eL) and qT = (uL, dL) stand for left-handed lepton
and quark SU(2) doublets, while u = uR, d = dR, and e = eR are the right-handed up-type,
down-type, and charged-lepton fields. We use p, r, s, t for generation indices and work in a
basis in which the electron and down-quark Yukawa matrices are diagonal. This implies that
the fields dL,R, eL,R correspond to the mass eigenstates, while for the up-type quarks we have
uL = V †umass

L
, where V is the CKM matrix 2. For further details of our notation, we refer to

Appendix A.
In this work, we will mainly be concerned with the SMEFT Lagrangian at tree level and only

consider loop e↵ects to include sizable QCD corrections at leading-log accuracy. This a↵ects
only the operators in the (L̄R)(L̄R) and (L̄R)(R̄L) classes in Table 1. We will evaluate these
coe�cients at a renormalization scale of µ = 1 TeV when presenting the results. We use the
Lagrangian in Eq. (2.1) to make predictions for observables at or above the electroweak scale,

2We will not be concerned with neutrino mass e↵ects in the current work, implying we do not distinguish
between neutrino mass and flavor eigenstates.

5

** We are not including ‘ld, lu, ed, eu, qe’  4-fermion operators that 
affect Drell-Yan (included in our analysis), NC processes at low-E & 
DIS (not included in our analysis).   Inclusion of such operators 
would lead to a ~ closed set of observables ⨂ operators.

The CLEW framework
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What about flavor?

• Most SMEFT analyses impose flavor symmetry to reduce number of couplings.  However  

• This re-introduces model-dependence (e.g. excludes classes of operators / models such as LRSM)

• Results can depend strongly on flavor assumptions   L. Bellafronte, S. Dawson, P. P. Giardino  2304.00029

• We perform a flavor-assumption-independent analysis:  exploit approximate decoupling of CLEW and FCNC

An Bn Cn

CLEW precision observables FCNC observables

Wilson Coefficients: 
An, Bn, Cn 

Bn  strongly constrained by FCNC.
Often Bn appears in CLEW observables 
suppressed by powers of  Vus= λC~0.2

Ltot = LCLEW(An, Bn) ⨉ LFCNC (Bn Cn) ⨉ …. → Ltot = LCLEW(An, Bn=0) ⨉ LFCNC (Bn Cn) ⨉ …. 

~  factorized likelihood.  
Expect minimal impact on An 
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Falsifying R-handed current hypothesis
VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  2311.00021

• Currently less-sensitive probes of R-handed couplings

• gA/gV:  neutron decay  vs  Lattice QCD (need ~ order 
of magnitude theoretical improvement) 

• K →(ππ)I=2 decay amplitude: experiment vs Lattice 
QCD (difficult to improve) 

• WH & WZ production at the High Luminosity LHC 
will reach sensitivity need to test the R-handed 
current solution to the Cabibbo angle anomaly  

Figure 18: Tree level corrections from the RH CC operator CHud to WH and WZ production
at the LHC. CHud is denoted by a square, while SM vertices are denoted by a circle.

SM background. On the other hand, CHud gives large corrections to the associated production
of the W and Higgs boson (WH) and to the production of the W and Z boson (WZ). In the
former case, contact interactions between two quarks, one Higgs and a W , shown by the first
diagram in Fig. 18, induce corrections to WH that are enhanced by s/m2

W compared to the
SM. In WZ production, the presence of a right-handed current a↵ects cancelation between the
t- and s-channel diagrams and also leads to corrections that increase in energy as s/m2

W .
Corrections to WH were discussed in Ref. [33, 60]. Defining the signal strength

µWH =
�W+H + �W�H

�SM

W+H + �SM

W�H

= 1 +
X

ij

aij
⇥
v2CHud

⇤2
ij
, (6.16)

at NLO in QCD the coe�cients a are [60]

a11(13TeV) = 1.6(1) · 102 , a11(14TeV) = 1.7(1) · 102 ,

a12(13TeV) = 0.9(2) · 102 , a12(14TeV) = 1.0(1) · 102 , (6.17)

where the error comes from PDF and scale uncertainties. The latest results from the ATLAS
and CMS collaboration are [61, 62]

µWH(13TeV)|ATLAS = 1.2± 0.2 , µWH(13TeV)|CMS = 1.4± 0.3 , (6.18)

leading to
|[CHud]11| < 0.95 TeV�2 , |[CHud]12| < 1.3 TeV�2 . (6.19)

These limits are about a factor of three/four too weak to constrain the region allowed by the
global fit results presented in Table ??. Being the scaling quadratic with the coe�cient, mea-
surements of the signal strength alone will not be su�cient to competitively constrain CHud.
However, the enhancement of the SMEFT corrections is more pronounced at high Higgs or W
transverse momentum or HW invariant mass, so that dedicated high pT measurements could
further constrain right-handed operators [33, 60].

We calculated the WZ cross section by extending the POWHEG implementation of WZ produc-
tion in the SM [63] to right-handed W couplings. The corrections to the inclusive cross section
are a factor of ten smaller compared to WH, for example, at 13 TeV

µWZ =
�W+Z + �W�Z

�SM

W+Z + �SM

W�Z

= 1 + 19
⇥
v2CHud

⇤2
11

+ 9
⇥
v2CHud

⇤2
12
. (6.20)

However, the absolute cross section is larger, and we can exploit more precise measurements of
the total cross section and di↵erential measurements at high transverse momentum or invariant
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Figure 16: Left panel: the figure shows the L2(RH) scenario with the fit to L observables shown
in red, while the constraint from A2 is shown in blue. The combination of the two is depicted
by the dashed black lines. Right panel: the constraints from EDMs (red) and "0/"K (blue), as
well as their combination (black, dashed), on the imaginary parts of the CHud couplings.

can see that the regions preferred by the fits to � and kaon decays and the constraints from A2

are compatible at the 1� level. The joint fit gives

[CHud]11 = �0.030± 0.0084 , [CHud]12 = �0.026± 0.0085 . (9.14)

The addition of A2 to the fit currently somewhat shifts the best fit point of the L2(RH) scenario
discussed in Section 7 (see Table 6). The preferred value of [CHud]12 is most a↵ected by A2,
although the shift is not greater than ⇠ 1�. Future improvements in the lattice determination
of ASM

2 could provide a more sensitive probe of the RH couplings.

EDMs and ✏0/✏: The phases of the RH CC coe�cients [CHud]11 and [CHud]12 induce tree-level
corrections to the neutron EDM, to atomic EDMs, and to direct CP-violation in kaon decays
(✏0/✏), through the non-leptonic operators O1LR and O2LR. These contributions were studied
in Refs. [96, 101], and lead to very strong constraints, shown in the right panel of Fig. 16. The
constraints on the imaginary parts of [CHud]11 and [CHud]12 can be naively translated into scales
in the 250 to 500 TeV range, much larger than the scales associated with the real part.

Similarly, the CP-violating partner of QHWB contributes to the electron EDM at one loop. In
a single coupling scenario, its coe�cient is restricted to below 3⇥10�6TeV�2 (95% CL) [102,103].
While the combination of right-handed charged currents and oblique corrections provides an
attractive explanation for the CAA and tensions in EWPO, when matching to concrete UV-
complete models, some care must be taken to ensure that their phases are aligned with the
SM.

9.2 Collider signatures

CHWB and CHD are degenerate in EWPO. The degeneracy is broken in Higgs observables, WZ,
and WW production data [41, 65, 104, 105]. With new and more precise data from the LHC,
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35

Falsifying R-handed current hypothesis

VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  2311.00021

• Two options  (besides comparing gA  from experiment and Lattice QCD) 

• K →(ππ)I=2 decay amplitude: experiment vs Lattice QCD 

• WH & WZ production at the High Luminosity LHC 

Figure 19: Di↵erential cross section as a function of the variable M(WZ) [64], which provides
a proxy for the WZ invariant mass. The blue line is the SM prediction. The green and red
line add the contribution of [CHud]11 and [CHud]12 on top of the SM. The black point are data
from [64]

.

mass. For example, Fig. 19 illustrates the corrections from right-handed current operators to
the di↵erential cross section with respect to the invariant mass of the WZ pair, with the W
and Z decaying leptonically. As discussed in Ref. [64], the variable M(WZ) is reconstructed
from the neutrino and charged lepton momenta, assuming that the longitudinal momentum of
the neutrino is zero, and it is thus a proxy for the real invariant mass of the WZ pair. From
Fig. 19, we see that the corrections from CHud are enhanced at high invariant mass, and values
still allowed by WH are already excluded by CMS data. At the HL-LHC, couplings of the size
[CHud]12 ⇠ 0.1 TeV�2, which are relevant to the Cabibbo anomaly, will generate hundreds of
events with M(WZ) & 1 TeV, so that at least part of the parameter space identified in Section
?? will be excluded.

ST CHWB and CHD are constrained by Higgs and EWPO data. A SMEFT fit to H ! ��
data [65] yields

CHWB = 0.0020+0.0044
�0.0042 TeV�2, CHD = �0.21+0.42

�0.44TeV
�2 (6.21)

in a single coupling fit. The relatively weak sensitivity to CHD implies that even in the single
coupling assumption, H ! �� is not su�cient to exclude the ST explanation of the W mass.
Future combined fits to EWPO and Higgs will provide further constraints. Can you guys read
anything out of Ref. [66]?
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SM background. On the other hand, CHud gives large corrections to the associated production
of the W and Higgs boson (WH) and to the production of the W and Z boson (WZ). In the
former case, contact interactions between two quarks, one Higgs and a W , shown by the first
diagram in Fig. 18, induce corrections to WH that are enhanced by s/m2

W compared to the
SM. In WZ production, the presence of a right-handed current a↵ects cancelation between the
t- and s-channel diagrams and also leads to corrections that increase in energy as s/m2

W .
Corrections to WH were discussed in Ref. [33, 60]. Defining the signal strength

µWH =
�W+H + �W�H

�SM

W+H + �SM

W�H

= 1 +
X

ij

aij
⇥
v2CHud

⇤2
ij
, (6.16)

at NLO in QCD the coe�cients a are [60]

a11(13TeV) = 1.6(1) · 102 , a11(14TeV) = 1.7(1) · 102 ,

a12(13TeV) = 0.9(2) · 102 , a12(14TeV) = 1.0(1) · 102 , (6.17)

where the error comes from PDF and scale uncertainties. The latest results from the ATLAS
and CMS collaboration are [61, 62]

µWH(13TeV)|ATLAS = 1.2± 0.2 , µWH(13TeV)|CMS = 1.4± 0.3 , (6.18)

leading to
|[CHud]11| < 0.95 TeV�2 , |[CHud]12| < 1.3 TeV�2 . (6.19)

These limits are about a factor of three/four too weak to constrain the region allowed by the
global fit results presented in Table ??. Being the scaling quadratic with the coe�cient, mea-
surements of the signal strength alone will not be su�cient to competitively constrain CHud.
However, the enhancement of the SMEFT corrections is more pronounced at high Higgs or W
transverse momentum or HW invariant mass, so that dedicated high pT measurements could
further constrain right-handed operators [33, 60].

We calculated the WZ cross section by extending the POWHEG implementation of WZ produc-
tion in the SM [63] to right-handed W couplings. The corrections to the inclusive cross section
are a factor of ten smaller compared to WH, for example, at 13 TeV

µWZ =
�W+Z + �W�Z

�SM

W+Z + �SM

W�Z

= 1 + 19
⇥
v2CHud

⇤2
11

+ 9
⇥
v2CHud

⇤2
12
. (6.20)

However, the absolute cross section is larger, and we can exploit more precise measurements of
the total cross section and di↵erential measurements at high transverse momentum or invariant

40

εR   
s

u

u

d

εR   W

εR   Z

Z

W

q

q’

W

Z

WεR   

Figure 16: Left panel: the figure shows the L2(RH) scenario with the fit to L observables shown
in red, while the constraint from A2 is shown in blue. The combination of the two is depicted
by the dashed black lines. Right panel: the constraints from EDMs (red) and "0/"K (blue), as
well as their combination (black, dashed), on the imaginary parts of the CHud couplings.

can see that the regions preferred by the fits to � and kaon decays and the constraints from A2

are compatible at the 1� level. The joint fit gives

[CHud]11 = �0.030± 0.0084 , [CHud]12 = �0.026± 0.0085 . (9.14)

The addition of A2 to the fit currently somewhat shifts the best fit point of the L2(RH) scenario
discussed in Section 7 (see Table 6). The preferred value of [CHud]12 is most a↵ected by A2,
although the shift is not greater than ⇠ 1�. Future improvements in the lattice determination
of ASM

2 could provide a more sensitive probe of the RH couplings.

EDMs and ✏0/✏: The phases of the RH CC coe�cients [CHud]11 and [CHud]12 induce tree-level
corrections to the neutron EDM, to atomic EDMs, and to direct CP-violation in kaon decays
(✏0/✏), through the non-leptonic operators O1LR and O2LR. These contributions were studied
in Refs. [96, 101], and lead to very strong constraints, shown in the right panel of Fig. 16. The
constraints on the imaginary parts of [CHud]11 and [CHud]12 can be naively translated into scales
in the 250 to 500 TeV range, much larger than the scales associated with the real part.

Similarly, the CP-violating partner of QHWB contributes to the electron EDM at one loop. In
a single coupling scenario, its coe�cient is restricted to below 3⇥10�6TeV�2 (95% CL) [102,103].
While the combination of right-handed charged currents and oblique corrections provides an
attractive explanation for the CAA and tensions in EWPO, when matching to concrete UV-
complete models, some care must be taken to ensure that their phases are aligned with the
SM.

9.2 Collider signatures

CHWB and CHD are degenerate in EWPO. The degeneracy is broken in Higgs observables, WZ,
and WW production data [41, 65, 104, 105]. With new and more precise data from the LHC,
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