INT Workshop INT-24-87W Electroweak and Beyond the Standard Model Physics at the EIC February 12-16 2024

# BSM Searches at the Intensity Frontier — Theoretical Overview

Vincenzo Cirigliano University of Washington



INSTITUTE for NUCLEAR THEORY



- The quest for new physics and the intensity frontier
- Outlook: the EIC as an intensity frontier machine

Many thanks to Krishna Kumar and my collaborators!

• Beyond the Standard Model searches at the intensity frontier: the landscape

## New physics: why?

• The SM is remarkably successful, but it's not the whole story



Credit: Fermilab

Addressing these puzzles requires new physics



Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/ D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

No Baryon Asymmetry, no Dark Matter, no Dark Energy, no Neutrino Mass Origin of flavor, Strong CP problem, Unification,...

# New physics: where?



• Where is the new physics? Is it Heavy? Is it Light & weakly coupled?

I/Coupling

## New physics: how?

Two complementary paths to search for new physics  $\bullet$ 

Λ





I/Coupling

See talk by Michael Ramsey-Musolf



## New physics: how?

Two complementary paths to search for new physics  $\bullet$ 



### I/Coupling

## New physics: how?

• Two complementary paths to search for new physics



I/Coupling



### I/Coupling

• Three classes, pushing the boundary in qualitatively different ways and at different mass scales

 $\bullet$ 



### I/Coupling

Three classes, pushing the boundary in qualitatively different ways and at different mass scales

• • •

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L<sub>a</sub>):  $0\nu\beta\beta$  decay, p decay, EDMs, LFV ( $\mu \rightarrow e$  conversion,  $ep \rightarrow \tau X$ ),

 $\bullet$ 

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L<sub>a</sub>):  $0\nu\beta\beta$  decay, p decay, EDMs, LFV ( $\mu \rightarrow e$  conversion,  $ep \rightarrow \tau X$ ),

• • •



### I/Coupling

Three classes, pushing the boundary in qualitatively different ways and at different mass scales

2. Precision tests of SM-allowed processes:  $\beta$ -decays (mesons, neutron, nuclei), PV electron scattering, muon g-2,

• • •

 $\bullet$ 

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L<sub>a</sub>):  $0\nu\beta\beta$  decay, p decay, EDMs, LFV ( $\mu \rightarrow e$  conversion,  $ep \rightarrow \tau X$ ),

. . .



### I/Coupling

Three classes, pushing the boundary in qualitatively different ways and at different mass scales

2. Precision tests of SM-allowed processes:  $\beta$ -decays (mesons, neutron, nuclei), PV electron scattering, muon g-2,

. . .

3. Searches / characterization of light and weakly coupled particles: active V's, sterile V's, dark sector particles and mediators, axions,

• • •

 $\bullet$ 

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L<sub>a</sub>):  $0\nu\beta\beta$  decay, p decay, EDMs, LFV ( $\mu \rightarrow e$  conversion,  $ep \rightarrow \tau X$ ),

. . .



### I/Coupling

Three classes, pushing the boundary in qualitatively different ways and at different mass scales

2. Precision tests of SM-allowed processes:  $\beta$ -decays (mesons, neutron, nuclei), PV electron scattering, muon g-2,

. . .

3. Searches / characterization of light and weakly coupled particles: active V's, sterile V's, dark sector particles and mediators, axions,

• • •

The EIC can play a role in all three classes

### • Discovery potential

- Explore physics that is otherwise difficult / impossible to access: high mass scale; symmetry breaking; ultralight particles
- A single deviation from SM expectation  $\rightarrow$  new physics!

- Discoven Expl MATHEMATICS OF THE UNIVERSE high
  - A single deviation from SM expectation  $\rightarrow$  new physics!



A V L I INSTITUTE FOR THE PHYSICS AND difficult / impossible to access: hg; ultralight particles



From Hitoshi Murayama

### • Discovery potential

- Explore physics that is otherwise difficult / impossible to access: high mass scale; symmetry breaking; ultralight particles
- A single deviation from SM expectation  $\rightarrow$  new physics!
- Diagnosing power when combining multiple probes
  - Multiple EDM searches  $\rightarrow$  underlying sources of CP violation
  - $0\nu\beta\beta$  decay, absolute  $\nu$  mass measurements,  $\nu$  oscillations, LFV ( $\mu \rightarrow e$ ,  $e \rightarrow \tau$ , ...)  $\rightarrow$  origin of neutrino mass

• ...

### • Discovery potential

- Explore physics that is otherwise difficult / impossible to access: high mass scale; symmetry breaking; ultralight particles
- A single deviation from SM expectation  $\rightarrow$  new physics!
- Diagnosing power when combining multiple probes
  - Multiple EDM searches  $\rightarrow$  underlying sources of CP violation
  - $0\nu\beta\beta$  decay, absolute  $\nu$  mass measurements,  $\nu$  oscillations, LFV ( $\mu \rightarrow e$ ,  $e \rightarrow \tau$ , ...)  $\rightarrow$  origin of neutrino mass

• • • •

• Connection to open questions

Intensity Frontier probes cluster around open questions\*

Origin of neutrino mass

Baryon asymmetry (violation of B, L, CP)

> Are there new forces, weaker than the weak force?

### Shedding light on open questions

Nature of dark matter Light & weakly interacting particles



### Shedding light on open questions

### Intensity Frontier probes cluster around open questions\*



### Shedding light on open questions

### Intensity Frontier probes cluster around open questions\*



### Shedding light on open questions

### Intensity Frontier probes cluster around open questions\*

## The Intensity Frontier in NP and HEP

• IF in the 2023 NSAC Long Range Plan (NP)

"Fundamental Symmetries, Neutrons, and Neutrinos"

- Searches for rare / SM-forbidden processes:
  - LNV: 0vββ
  - EDMs: neutron, nuclei lacksquare
- Precision measurements of SM-allowed processes:
  - Muon g-2
  - Weak charged current (mesons, neutron, nuclei) •
  - Weak neutral current (PVES)

Search / characterization of light weakly coupled particles 

- Absolute neutrino mass
- Sterile neutrinos
- Neutrino scattering

## The Intensity Frontier in NP and HEP

• IF in the 2023 NSAC Long Range Plan (NP)

"Fundamental Symmetries, Neutrons, and Neutrinos"

- Searches for rare / SM-forbidden processes:
  - LNV: 0vββ
  - EDMs: neutron, nuclei
- Precision measurements of SM-allowed processes:
  - Muon g-2
  - Weak charged current (mesons, neutron, nuclei)
  - Weak neutral current (PVES)

Search / characterization of light weakly coupled particles Search / characterization of light weakly coupled particles •

- Absolute neutrino mass
- Sterile neutrinos
- Neutrino scattering

• IF in the 2023 P5 report (HEP)\*\* (my very rough 'binning')

"Pursue Quantum Imprints of New Phenomena"

- Searches for rare / SM-forbidden processes:
  - LFV in muon (Mu2e) and tau decays (Belle-II)
  - Flavor physics: Belle-II, LHCb
  - EDMs: proton  $\bullet$
- Precision measurements of SM-allowed processes:
  - High-Luminosity LHC (ATLAS, CMS)
  - Higgs factory
  - . . .

- Neutrino oscillations  $\bullet$
- Forward physics facility at LHC
- . . .





## The Intensity Frontier in NP and HEP

• IF in the 2023 NSAC Long Range Plan (NP)

"Fundamental Symmetries, Neutrons, and Neutrinos"

- IF in the 2023 P5 report (HEP)\*\* (my very rough 'binning') "Pursue Quantum Imprints of New Phenomena" Searches for rare / SM-forbidden processes: Searches for rare / SM-forbidden processes: LNV: 0vββ • LFV in muon (Mu2e) and tau decays (Belle-II) EDMs: neutron, nuclei Flavor physics: Belle-II, LHCb EDMs: proton  $\bullet$ Precision measurements of SM-allowed processes: Precision measurements of SM-allowed processes: Muon g-2 • High-Luminosity LHC (ATLAS, CMS) • Weak charged current (mesons, neutron, nuclei) Higgs factory Weak neutral current (PVES) . . . Search / characterization of light weakly coupled particles Search / characterization of light weakly coupled particles •
  - Absolute neutrino mass
  - Sterile neutrinos
  - Neutrino scattering ullet

In the rest of this talk: selected IF probes (with emphasis on NP and an eye towards the EIC)

Neutrino oscillations  $\bullet$ 

 $\bullet$ 

• • •

• Forward physics facility at LHC









## Interlude: theory framework



To motivate and analyze intensity frontier searches, fairly general EFT-based theory framework(s) have emerged, encompassing many underlying models

### I/Coupling

### UV: the Standard Model Effective Field Theory

### Heavy new particles affect low-energy physics through local operators suppressed by inverse powers of heavy scale



See talk by **Radja Boughezal** 



## Light, weakly coupled new physics: portals

"Portals": dominant interactions through which the SM and dark sector couple (↔ lowest dimensional SM singlet operators)



Credit: Stefania Gori



Leading axion interactions appear at  $O(I/\Lambda)$ :

 $aF\tilde{F}/f_a$ ,  $aG\tilde{G}/f_a$ ,  $\bar{\psi}\gamma^{\mu}\gamma_5\psi \partial_{\mu}a/f_a$ 

# Rare / forbidden processes



## Neutrino mass & new physics

- $\bullet$
- Lorentz invariance  $\Rightarrow$  two options for massive neutrinos: Dirac or Majorana  $\bullet$



### The Standard Model

Massive neutrinos provide the only laboratory-based evidence of physics beyond the Standard Model



 $\Delta L=0$ 



 $\Delta L=2$ 

$$\mathcal{L}_D \sim \bar{\nu}_R \, M_D \, \nu_L$$

### Conserves $L=L_e+L_{\mu}+L_{\tau}$

$$\mathcal{L}_M \sim \nu_L^T \, C M_M \, \nu_L$$

Violates L ( $\Delta$ L=2)

### Neutrino mass a Neutrino mass & new physics Massive neutrinos provide the only laboratory-based evidence of physics beyond the Standard Model Dirac mass Lorentz invariance $\Rightarrow$ two options for massive neutrines. First of massing mass and new physics $m \bar{\nu}_L \nu_R + h.c. = m \bar{\nu} \nu$ $\nu = \nu_L + \nu_R$ In both cases V mass requires introducing new degrees of freedom & interactions Majorana mass Dirac mass $m \bar{\nu}_L \nu_R + \text{h.c.} = m \bar{\nu} \nu \mathsf{D}^{\mathsf{irac}}$ $m \nu_L^T C \nu_L + \text{h.c.} = m \bar{\nu} \nu$ $\nu = \nu_L + \nu_R$ $\nu = \nu_L + \nu_L^c = \nu^c$ Majorana Χ Η X M<sub>R</sub>-I Higgs triplet $\nu_R$ $L_L^{\alpha}$ $L_L^{\alpha} =$ What are the sources and mediators of lepton formilyey io ationserves L • Violates $L_{e,\mu,\tau}$ and L ( $\Delta L=2$ ) → Charged Lepton Flavor Violation





## 0vββ decay: significance







$$2, Z + 2) + e^- + e^-$$

Potentially observable only in certain even-even nuclei (<sup>76</sup>Ge, <sup>100</sup>Mo,<sup>136</sup>Xe, ...) for which single beta decay is energetically forbidden

# 0vββ decay: significance







### Shed light on the physics responsible for tiny but non-zero neutrino mass & Demonstrate Majorana nature of neutrinos (neutrino=antineutrino)

$$2, Z + 2) + e^- + e^-$$

Potentially observable only in certain even-even nuclei (<sup>76</sup>Ge, <sup>100</sup>Mo, <sup>136</sup>Xe, ...) for which single beta decay is energetically forbidden

(B-L conserved in the the SM)

This 'matter-creating' process points to elegant mechanisms for generating the matter-antimatter asymmetry in the universe (leptogenesis)

# 0vββ decay: discovery potential



### I/Coupling

• Ton-scale  $0V\beta\beta$  searches  $[T_{1/2} \sim 10^{27-28} \text{ yr}]$  can discover LNV from a broad variety of mechanisms and mass scales





# 0vββ decay: discovery potential OVββ physics reach Ton-scale 0vββ searches [T<sub>1/2</sub> ~10<sup>27-28</sup> yr] can discover LNV from a broad variety of mechanisms and mass scales



![](_page_32_Picture_5.jpeg)

### 0νββ decay $0\nu\beta\beta$ decay on scale **Beyond ton**

# 0vββ decay: discovery potential

![](_page_33_Figure_2.jpeg)

Contributions to  $0V\beta\beta$  not directly related to the exchange of light neutrinos, within reach of planned experiments & possibly correlated with signal at LHC in pp  $\rightarrow$  ee jj

Ton-scale  $0V\beta\beta$  searches  $[T_{1/2} \sim 10^{27-28} \text{ yr}]$  can discover LNV from a broad variety of mechanisms and mass scales

![](_page_33_Picture_6.jpeg)

![](_page_33_Picture_7.jpeg)

# 0vββ decay: discovery potential

![](_page_34_Figure_2.jpeg)

I/Coupling

Ton-scale  $0V\beta\beta$  searches  $[T_{1/2} \sim 10^{27-28} \text{ yr}]$  can discover LNV from a broad variety of mechanisms and mass scales

Connecting sources of LNV to nuclei is a multi-scale problem! Best tackled through EFT to achieve controlled uncertainty

Theory advances require synergy of phenomenology, EFT, Lattice QCD, and first-principles nuclear structure

![](_page_34_Figure_7.jpeg)

White paper 2203. 21169 and refs therein

Exciting prospects due to planned ton-scale experiments

![](_page_34_Picture_11.jpeg)

## Charged LFV and new physics

• V oscillations  $\Rightarrow L_{e,\mu,\tau}$  not conserved. However, in SM + massive V, Charged-LFV decays are suppressed to unobservable level

![](_page_35_Figure_2.jpeg)

 $Br(\mu$ 

 Observation of CLFV processes would unambiguously indicate new physics, related to the origin of leptonic 'flavor' & possibly neutrino mass

$$\mathcal{L}_{\nu \text{SM}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\nu-\text{mass}}$$
$$u \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

Petcov '77, Marciano-Sanda '77, Shrock '77...

![](_page_35_Figure_8.jpeg)

## Charged LFV and new physics

• V oscillations  $\Rightarrow L_{e,\mu,\tau}$  not conserved. However, in SM + massive V, Charged-LFV decays are suppressed to unobservable level

![](_page_36_Figure_2.jpeg)

 $Br(\mu$ 

 Observation of CLFV processes would unambiguously indicate new physics, related to the origin of leptonic 'flavor' & possibly neutrino mass

$$\mathcal{L}_{\nu \text{SM}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\nu-\text{mass}}$$
$$(a \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{1i}}{M^2_W} \right|^2 < 10^{-54}$$

Petcov '77, Marciano-Sanda '77, Shrock '77...

![](_page_36_Figure_8.jpeg)

# CLFV physics reach

![](_page_37_Figure_2.jpeg)

• LFV processes are sensitive to broad spectrum of new physics: both heavy and light + weakly coupled

![](_page_38_Figure_2.jpeg)

We can probe LFV dynamics through a combination of low-energy and collider searches

• LFV processes are sensitive to broad spectrum of new physics: both heavy and light + weakly coupled

## LFV probes across energy scales

Decays of  $\mu$ ,  $\tau$  (and mesons)

(K 
$$\rightarrow \pi \mu e$$
; B  $\rightarrow K \mu \tau$ ,

$$\mu \to e\gamma, \quad \mu \to e\bar{e}e, \quad \mu(A,Z)$$
  
$$\tau \to \ell\gamma, \quad \tau \to \ell_{\alpha}\bar{\ell}_{\beta}\ell_{\beta}, \quad \tau \to \ell\Sigma$$

Collider processes: 

$$pp \rightarrow R \rightarrow \ell_{\alpha} \bar{\ell}_{\beta} + X \qquad R = Z, h, \tilde{\nu}, \dots$$
$$pp \rightarrow \ell_{\alpha} \bar{\ell}_{\beta} + X$$

LHC

e p

![](_page_39_Figure_8.jpeg)

$$\rightarrow \ell + X$$

![](_page_39_Picture_11.jpeg)

## LFV probes across energy scales

Decays of  $\mu$ ,  $\tau$  (and mesons)

![](_page_40_Figure_2.jpeg)

![](_page_40_Picture_4.jpeg)

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma}$$

 $\tilde{\Gamma}\ell^{\beta}\bar{\ell}\tilde{\Gamma}\ell + \sum_{\Gamma}\frac{C^{\alpha\beta}_{\Gamma}}{\Lambda^{2}}\bar{\ell}^{\alpha}\Gamma\ell^{\beta}\bar{q}\Gamma q + \frac{1}{F^{\Gamma}_{\alpha\beta}}\partial_{\mu}a\,\bar{\ell}^{\alpha}\Gamma^{\mu}\ell^{\beta}$ 

Each model generates a specific pattern of operators → multiple CLFV measurements needed to extract the underlying physics

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

• New physics mass scale probed through any process

$$BR_{\alpha \rightarrow \beta} \sim$$

μ-e sector:  $\Lambda/\sqrt{C} \sim 10^2 \,\text{TeV}$ τ-μ(e) sector:

Each model generates a specific pattern of operators → multiple CLFV measurements needed to extract the underlying physics

$$(v_{ew}/\Lambda)^4 * |(C_n)^{\alpha\beta}|^2$$

//√C ~ 10<sup>4-5</sup> TeV

(Muon decays) (Tau decays)

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

• New physics mass scale probed through any process

![](_page_43_Figure_4.jpeg)

![](_page_43_Figure_5.jpeg)

Calibbi-Redigolo-Ziegler-Zupan 2006.04795

Each model generates a specific pattern of operators  $\rightarrow$  multiple CLFV measurements needed to extract the underlying physics

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

- New physics mass scale probed through any process
- lacksquare

Each model generates a specific pattern of operators → multiple CLFV measurements needed to extract the underlying physics

```
Relative strength of operators ([C_D]^{e\mu} vs [C_S]^{e\mu}...) through \mu \rightarrow 3e versus \mu \rightarrow e\gamma
 versus \mu \rightarrow e conversion (and similarly for \tau \rightarrow e, \mu) \Rightarrow Mediators, mechanism
```

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

- Each model generates a specific pattern of operators → multiple CLFV measurements needed to extract the underlying physics
- New physics mass scale probed through any process
- $\bullet$
- Flavor structure of couplings ( $[C_D]^{e\mu}$  vs  $[C_D]^{\tau\mu}...$ ) through  $\mu \rightarrow e$  versus  $\tau \rightarrow \mu$  versus  $\tau \rightarrow e \Rightarrow$  Sources of flavor breaking

```
Relative strength of operators ([C_D]^{e\mu} vs [C_S]^{e\mu}...) through \mu \rightarrow 3e versus \mu \rightarrow e\gamma
 versus \mu \rightarrow e conversion (and similarly for \tau \rightarrow e, \mu) \Rightarrow Mediators, mechanism
```

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

- New physics mass scale probed through any process
- $\bullet$  $\tau \rightarrow \mu$  versus  $\tau \rightarrow e \Rightarrow$  Sources of flavor breaking

Plurality of searches is essential. The EIC can play an important role

Each model generates a specific pattern of operators  $\rightarrow$  multiple CLFV measurements needed to extract the underlying physics

```
Relative strength of operators ([C_D]^{e\mu} vs [C_S]^{e\mu}...) through \mu \rightarrow 3e versus \mu \rightarrow e\gamma
versus \mu \rightarrow e conversion (and similarly for \tau \rightarrow e, \mu) \Rightarrow Mediators, mechanism
```

```
Flavor structure of couplings ([C_D]^{e\mu} vs [C_D]^{\tau\mu}...) through \mu \rightarrow e versus
```

## EDMs and new sources of CP violation

White paper 2203.08103 and refs therein

- Probe P and T symmetry violation (CP) in flavor diagonal transitions:  $\bullet$ 
  - Highly suppressed in Standard Model (CKM phase)
  - A non-zero EDM would imply new physics or a tiny QCD  $\theta$ -term (< 10<sup>-10</sup>). Multiple measurements (n, p, atoms, molecules) can disentangle the two effects

![](_page_47_Figure_6.jpeg)

![](_page_47_Figure_8.jpeg)

Sensitive to broad spectrum of new physics (Higgs sector, SUSY, ALPs...) & baryogengesis mechanisms

![](_page_48_Figure_0.jpeg)

$$d_W \sim \frac{1}{\Lambda^2}$$

$$d_f, \tilde{d}_q \sim \frac{u}{\Lambda^2}$$

![](_page_48_Picture_8.jpeg)

![](_page_48_Picture_9.jpeg)

![](_page_49_Figure_0.jpeg)

$$\frac{i}{2} \sum_{q=u,d,s} \tilde{d}_q g_s \,\bar{q} \sigma \cdot G \gamma_5 q + d_W \frac{g_s}{6} G \tilde{G} G + \sum_i C_i^{(4f)} O_i^{(4f)}$$

$$\begin{aligned} d_W \sim \frac{1}{\Lambda^2} \\ d_f, \tilde{d}_q \sim \frac{u}{\Lambda^2} \end{aligned}$$

Hard to assess relative reach of various EDMs & to disentangle underlying physics in case of discovery

![](_page_49_Picture_9.jpeg)

![](_page_50_Figure_0.jpeg)

$$\begin{pmatrix} d_W \sim \frac{1}{\Lambda^2} \\ d_f, \tilde{d}_q \sim \frac{u}{\Lambda^2} \end{pmatrix}$$

$$pe \text{ fm}$$
  
 $(0.78 \pm 0.03)d_d + (0.0027 \pm 0.016)d_s$   
 $- (1.1 \pm 0.55)e\tilde{d}_d + (50 \pm 40) \text{ MeV} e \tilde{d}_G$ 

Hard to assess relative reach of various EDMs & to disentangle underlying physics in case of discovery

**Opportunity for lattice QCD** & EIC spin physics

![](_page_50_Picture_9.jpeg)

![](_page_51_Figure_1.jpeg)

## Precision probes of weak interactions

- Beta decays and parity-violating electron scattering (PVES) have played a central role in establishing the Standard Model
- Today, with precision approaching the 0.1% level or better (together with the muon g-2 at the <ppm level!) they probe quantum effects in the Standard Model at unprecedented levels
- "Broad band" sensitivity to new physics, both heavy and light

![](_page_52_Figure_4.jpeg)

Radiative corrections to electron scattering

![](_page_52_Figure_6.jpeg)

Representative diagrams for muon g-2

![](_page_52_Picture_9.jpeg)

## PVES and the weak mixing angle $\theta_W$

![](_page_53_Figure_1.jpeg)

## PVES and the weak mixing angle $\theta_W$

![](_page_54_Figure_1.jpeg)

### β decays and CKM unitarity β decays and CKM unitarity

with uncertainty entirely dominated by experiment [22]. A competitive determination requires a dedicated experimental

campaign, as planned at the PIONEER experiment [26]. The best information on  $4_{us}$  Comes from usion decays,  $u_{z_2} =$  $K \to \ell \nu_{\ell}$  and  $K_{\ell 3} = K \to \pi \ell \nu_{\ell}$ . The former is typically analyzed by normalizing to  $\pi_{\ell 2}$  decays [27], leading to a constraint on  $V_{us}/V_{ud}$ , while  $K_{\ell 3}$  decays give direct access to  $V_{us}$  when the corresponding form factor is provided from lattice QCD<sup>a</sup>[28]. Details of the global fit to know 2008 ays, as well as the input for decay constants, form factors, and radiative corrections, are discussed in Sec. 2, leading to

$$\frac{V_{us}}{V_{ud}}\Big|_{K_{\ell 2}/\pi_{\ell 2}} = 0.23108(23)_{\exp}(42)_{F_K/F_{\pi}}(16)_{\mathrm{IB}}[51]_{\mathrm{total}},$$

$$V_{us}^{K_{\ell 3}} = 0.22330(95)_{\exp}(39)_{f_{\pm}}(8)_{\mathrm{IB}}[53]_{\mathrm{total}},$$
(7)

where the errors refer to experiment, lattice input for the matrix elements, and isospin-breaking corrections, respectively. Together with the constraints on  $V_{ud}$ , these bands give rise to the situation depicted in Eig. 1 optogone hand, there is a tension between the best fit and CKM unitarity, but another tension, arising entirely from meson decays, is the to the fortable the  $K_{\ell 2}$  and  $K_{\ell 3}$  constraints intersect away from the unitarity circle. Additional information on  $V_{us}$  can be derived from  $\tau$ decays [29, 30], but given the larger errors [31, 32] we will continue to focus on the kaon sector

The main point of this Letter is that given the various tensions in the  $V_{ud}-V_{us}$  plane, there is urgent need for additional information on the compatibility of  $K_{\ell_2}$  and  $K_{\ell_3}$  data, especially  $\rightarrow$ when it comes to interpreting either of the tensions (CKM Neutron (0.043%) tarity and  $K_{\ell 2}$  versus  $K_{\ell 3}$ ) in terms of physics beyond the SM (BSM). In particular, the data base for SGD completely 965 inated by a single experiment [33], and at the same time the global fit to all kaon data displays a relatively poor fit quality. All these points could be scrutinized by a new measurement of the  $K_{\mu3}/K_{\mu2}$  branching fraction at the level of a few permil, as

 $\Delta_{\rm CKM} = |V_{\rm ud}|^2 + |V_{\rm us}|^2 + |V_{\rm ub}|^2 - 1 = -15(5) \times 10^{-4}$ 

**V**<sub>us</sub>

K→ πℓν (0.25%)

Figure 1: Constraints in the  $V_{uc} - V_{us}$  plane. The partially overlapp bands correspond to  $V_{ud}^{0^+ \rightarrow 0^+}$  (leftmost, red) and  $V_{ud}^{n, \text{ best}}$  (rightmost horizontal band (green) corresponds to  $V_{us}^{K_{\ell_3}}$ . The diagonal sponds to  $(V_{us}/V_{ud})_{K_{\ell 2}/\pi_{\ell 2}}$ . The unitarity circle is denoted line. The 68% C.L. ellipse from a set to all four constraints low ( $V_{ud} = 0.97378(26)$ ,  $V_{us} = 0.22422(36)$ ,  $\chi^2/dof = 6.4$ it deviates from the unitarity line b $2.8\sigma$ . Note that the si increase in case  $\tau$  decays are include. **0+ (0.031%)** —

1

K Table 1, where, however, the value for  $V_{us}$  from cludes @17charge chames 7c5 ounting for corr them. The extraction of  $V_{us}$  from  $K_{\ell 3}$  decays req put on the respective form factors, which are tak sive parameterization from Ref. [71], consgained by ( Refs. [72–78]. This leaves form-factor normalization

![](_page_55_Figure_13.jpeg)

![](_page_55_Figure_14.jpeg)

![](_page_55_Picture_15.jpeg)

![](_page_55_Picture_16.jpeg)

 $V_{ud}$ 

![](_page_55_Figure_18.jpeg)

![](_page_55_Figure_19.jpeg)

### β decays and CKM unitarity β decays and CKM unitarity

with uncertainty entirely dominated by experiment [22]. A competitive determination requires a dedicated experimental

campaign, as planned at the PIONEER experiment [26]. The best information on  $4_{us}$  Comes from usion decays,  $u_{z_2} =$  $K \to \ell \nu_{\ell}$  and  $K_{\ell 3} = K \to \pi \ell \nu_{\ell}$ . The former is typically analyzed by normalizing to  $\pi_{\ell 2}$  decays [27], leading to a constraint on  $V_{us}/V_{ud}$ , while  $K_{\ell 3}$  decays give direct access to  $V_{us}$  when the corresponding form factor is provided from lattice QCD<sup>a</sup>[28]. Details of the global fit to know 200 as well as the input for decay constants, form factors, and radiative corrections, are discussed in Sec. 2, leading to

$$\frac{V_{us}}{V_{ud}}\Big|_{K_{\ell 2}/\pi_{\ell 2}} = 0.23108(23)_{\exp}(42)_{F_K/F_{\pi}}(16)_{\mathrm{IB}}[51]_{\mathrm{total}},$$

$$V_{us}^{K_{\ell 3}} = 0.22330(95)_{\exp}(39)_{f_{\pm}}[68)_{\mathrm{IB}}[53]_{\mathrm{total}},$$
(7)

where the errors refer to experiment, lattice input for the matrix elements, and isospin-breaking corrections, respectively. Together with the constraints on  $V_{ud}$ , these bands give rise to the situation depicted in Els. 1 on the hand, there is a tension between the best fit and CKM unitarity, but another tension, arising entirely from meson decays, is the to the fortable the  $K_{\ell 2}$  and  $K_{\ell 3}$  constraints intersect away from the unitarity circle. Additional information on  $V_{us}$  can be derived from  $\tau$ decays [29, 30], but given the larger errors [31, 32] we will continue to focus on the kaon sector.

The main point of this Letter is that given the various tensions in the  $V_{ud}-V_{us}$  plane, there is urgent need for additional information on the compatibility of  $K_{\ell_2}$  and  $K_{\ell_3}$  data, especially  $\rightarrow$ when it comes to interpreting either of the tensions (CKM Neutron (0.043%) tarity and  $K_{\ell 2}$  versus  $K_{\ell 3}$ ) interproof physics beyond the SM (BSM). In particular, the data base for SGD completely 965 inated by a single experiment [33], and at the same time the global fit to all kaon data displays a relatively poor fit quality. All these points could be scrutinized by a new measurement of the  $K_{\mu3}/K_{\mu2}$  branching fraction at the level of a few permil, as

 $\Delta_{\rm CKM} = |V_{\rm ud}|^2 + |V_{\rm us}|^2 + |V_{\rm ub}|^2 - 1 = -15(5) \times 10^{-4}$ 

**V**<sub>us</sub>

K→ πℓν (0.25%)

Figure 1: Constraints in the  $V_{uc} - V_{us}$  plane. The partially overlapping vertical bands correspond to  $V_{ud}^{0^+ \rightarrow 0^+}$  (leftmost, red) and  $V_{ud}^{n, \text{ best}}$  (rightmost violat). The horizontal band (green) corresponds to  $V_{us}^{K_{\ell^3}}$ . The diagonal sponds to  $(V_{us}/V_{ud})_{K_{\ell 2}/\pi_{\ell 2}}$ . The unitarity circle is denoted line. The 68% C.L. ellipse from a set to all four constraints low ( $V_{ud} = 0.97378(26)$ ,  $V_{us} = 0.22422(36)$ ,  $\chi^2/dof = 6.4$ it deviates from the unitarity line b $2.8\sigma$ . Note that the si increase in case  $\tau$  decays are include. **0**<sup>+</sup> (0.031%) –

1

Table 1, where, however, the value for  $V_{us}$  from cludes @17charge chames 75 ounting for corr them. The extraction of  $V_{us}$  from  $K_{\ell 3}$  decays req pt op the respective form factors, which are take sive parameterization from Ref. [71], consgrained by data from Refs. [72–78]. This leaves form-factor normalizations, decay

![](_page_56_Picture_14.jpeg)

 $0^+ \rightarrow 0^+ (0.031\%)$ **Neutron (0.043%)** 

 $V_{ud}$ 

![](_page_56_Figure_18.jpeg)

Twoj om alies' 

lacksquare

At face value point toward vertex corrections with  $\Lambda \sim 10 \text{ TeV}$  (hard to probe even at the HI-LUM LHC) ard to probe even at the HI-LUMI LHC). -fledged precision EW observable and cluded in global fits.

VC, Dekens, de Vries, Mereghetti, Tong, 2311.00021

![](_page_56_Figure_22.jpeg)

![](_page_56_Figure_23.jpeg)

### β decays and CKM unitarity β decays and CKM unitarity

with uncertainty entirely dominated by experiment [22]. A competitive determination requires a dedicated experimental

campaign, as planned at the PIONEER experiment [26]. The best information on  $4u_s$  Comes from usion decays,  $u_{\ell_2} =$  $K \to \ell \nu_{\ell}$  and  $K_{\ell 3} = K \to \pi \ell \nu_{\ell}$ . The former is typically analyzed by normalizing to  $\pi_{\ell 2}$  decays [27], leading to a constraint on  $V_{us}/V_{ud}$ , while  $K_{\ell 3}$  decays give direct access to  $V_{us}$  when the corresponding form factor is provided from lattice QCD<sup>a</sup>[28]. Details of the global fit to know 200 as well as the input for decay constants, form factors, and radiative corrections, are discussed in Sec. 2, leading to

$$\frac{V_{us}}{V_{ud}}\Big|_{K_{\ell 2}/\pi_{\ell 2}} = 0.23108(23)_{\exp}(42)_{F_K/F_{\pi}}(16)_{\mathrm{IB}}[51]_{\mathrm{total}},$$

$$V_{us}^{K_{\ell 3}} = 0.22330(95)_{\exp}(39)_{f_{\pm}}[68)_{\mathrm{IB}}[53]_{\mathrm{total}},$$
(7)

where the errors refer to experiment, lattice input for the matrix elements, and isospin-breaking corrections, respectively. Together with the constraints on  $V_{ud}$ , these bands give rise to the situation depicted in Eig. 1 on the hand, there is a tension between the best fit and CKM unitarity, but another tension, arising entirely from meson decays, is the to the fort 15%) the  $K_{\ell 2}$  and  $K_{\ell 3}$  constraints intersect away from the unitarity circle. Additional information on  $V_{us}$  can be derived from  $\tau$ decays [29, 30], but given the larger errors [31, 32] we will continue to focus on the kaon sector

The main point of this Letter is that given the various tensions in the  $V_{ud}-V_{us}$  plane, there is urgent need for additional information on the compatibility of  $K_{\ell 2}$  and  $K_{\ell 3}$  data, especially  $\rightarrow$ when it comes to interpreting either of the tensions (CKM Neutron (0.043%) tarity and  $K_{\ell 2}$  versus  $K_{\ell 3}$ ) integration of physics beyond the SM (BSM). In particular, the data base for GG completely GG inated by a single experiment [33], and at the same time the global fit to all kaon data displays a relatively poor fit quality. All these points could be scrutinized by a new measurement of the  $K_{\mu3}/K_{\mu2}$  branching fraction at the level of a few permil, as

 $\Delta_{\rm CKM} = |V_{\rm ud}|^2 + |V_{\rm us}|^2 + |V_{\rm ub}|^2 - 1 = -15(5) \times 10^{-4}$ 

 $V_{us}$ 

K→ πℓν (0.25%)

 $0^+ \rightarrow 0^+ (0.031\%)$ **Neutron (0.043%)** 

 $V_{ud}$ 

Figure 1: Constraints in the  $V_{ua}$  –  $V_{us}$  plane. The partially overlapping vertical bands correspond to  $V_{ud}^{0^+ \rightarrow 0^+}$  (leftmost, red) and  $V_{ud}^{n, \text{ best}}$  (rightmost, violet). The it deviates from the unitarity line by  $2.8\sigma$ . Note that the significance tends to increase in case  $\tau$  decays are include 0+(0.031%) —

Table 1, where, however, the value for  $V_{us}$  from  $K_{\ell 3}$  decays incluces @17charge charge grassounting for correlations among them. The extraction of  $V_{us}$  from  $K_{\ell 3}$  decays requires further input on the respective form factors, which are taken in the dispersive parameterization from Ref. [71], consgained by data from Refs. [72–78]. This leaves form-factor normalizations, decay

1

![](_page_57_Figure_13.jpeg)

![](_page_57_Figure_14.jpeg)

Twoj om alies' 

At face value point toward vertex corrections with  $\Lambda \sim 10 \text{ TeV}$  (hard to probe even at the HI-LUM LHC) ard to probe even at the HI-LUMI LHC). -fledged precision EW observable and cluded in global fits.

VC, Dekens, de Vries, Mereghetti, Tong, 2311.00021

horizontal band (green) corresponds to  $V_{us}^{K_{\ell^3}}$ . The diagonal band (blue) corresponds to  $V_{us}^{K_{\ell^3}}$ . The diagonal band (blue) corresponds to  $V_{us}^{K_{\ell^3}}$ . sponds to  $(V_{us}/V_{ud})_{K_{\ell 2}/\pi_{\ell 2}}$ . The unitarity circle is denoted by the black solic CD+QED) and nuclear decays (EFT + ab initio n.s.) line. The 68% C.L. ellipse from a t to all four constraints is depicted in yel-low  $(V_{ud} = 0.97378(26), V_{us} = 0.2422(36), \chi^2/dof = 6.4/2, p-value 4.1\%),$ 

> Experimental opportunities in neutron decay,  $0^+ \rightarrow 0^+$ ,  $\pi$  & K decays, all with clear target goals. EIC?

![](_page_57_Picture_20.jpeg)

## The Intensity Frontier and the EIC

- IF in the 2023 NSAC Long Range Plan (NP)
  - Searches for rare / SM-forbidden processes:
    - LNV: 0vββ
    - EDMs: neutron, nuclei
  - Precision measurements of SM-allowed processes:
    - Muon g-2
    - Weak charged current (mesons, neutron, nuclei)
    - Weak neutral current (PVES)
  - Search / characterization of light weakly coupled particles  $\bullet$ Search / characterization of light weakly coupled particles ullet
    - Absolute neutrino mass
    - Sterile neutrinos
    - Neutrino scattering

### The EIC not on the map yet.

- IF in the 2023 P5 report (HEP)\*\* (my very rough 'binning')
  - Searches for rare / SM-forbidden processes:
    - LFV in muon (Mu2e) and tau decays (Belle-II)
    - Flavor physics: Belle-II, LHCb
    - EDMs: proton  $\bullet$
  - Precision measurements of SM-allowed processes:
    - High-Luminosity LHC (ATLAS, CMS)
    - Higgs factory  $\bullet$
    - . . .

- Neutrino oscillations  $\bullet$
- Forward physics facility at LHC
- • • •

![](_page_58_Picture_26.jpeg)

![](_page_58_Figure_27.jpeg)

## The Intensity Frontier and the EIC

- IF in the 2023 NSAC Long Range Plan (NP)
  - Searches for rare / SM-forbidden processes:  $\bullet$ 
    - LNV: 0vββ
    - EDMs: neutron, nuclei •
  - Precision measurements of SM-allowed processes:
    - Muon g-2
    - Weak charged current (mesons, neutron, nuclei)
    - Weak neutral current (PVES)

Search / characterization of light weakly coupled particles  $\bullet$ 

- Absolute neutrino mass
- Sterile neutrinos
- Neutrino scattering lacksquare

- IF in the 2023 P5 report (HEP)\*\* (my very rough 'binning')
  - Searches for rare / SM-forbidden processes:
    - LFV in muon (Mu2e) and tau decays (Belle-II)
    - Flavor physics: Belle-II, LHCb
    - EDMs: proton  $\bullet$
  - Precision measurements of SM-allowed processes:
    - High-Luminosity LHC (ATLAS, CMS)
    - Higgs factory lacksquare
    - . . .

lacksquare

• • •

 $\bullet \bullet \bullet$ 

- Search / characterization of light weakly coupled particles
  - Neutrino oscillations  $\bullet$
  - Forward physics facility at LHC

The EIC not on the map yet. But can directly or indirectly lead to advances in several areas.

![](_page_59_Picture_28.jpeg)

![](_page_59_Figure_29.jpeg)

## The Intensity Frontier and the EIC

- IF in the 2023 NSAC Long Range Plan (NP)
  - Searches for rare / SM-forbidden processes:
    - LNV: 0vββ
- $e^{-}p \rightarrow \mu^{+}X \quad e^{-}p \rightarrow \tau^{+}X$  ?
- EDMs: neutron, nuclei •
- Precision measurements of SM-allowed processes:
  - Muon g-2
  - Weak charged current (mesons, neutron, nuclei)
  - Weak neutral current (PVES)

Search / characterization of light weakly coupled particles  $\bullet$ 

- Absolute neutrino mass
- Sterile neutrinos
- Neutrino scattering lacksquare

- IF in the 2023 P5 report (HEP)\*\* (my very rough 'binning')
  - Searches for rare / SM-forbidden processes:
    - LFV in muon (Mu2e) and tau decays (Belle-II)
    - Flavor physics: Belle-II, LHCb
    - EDMs: proton  $\bullet$
  - Precision measurements of SM-allowed processes:
    - High-Luminosity LHC (ATLAS, CMS)
    - Higgs factory
    - . . .

lacksquare

• • •

 $\bullet \bullet \bullet$ 

- Search / characterization of light weakly coupled particles
  - Neutrino oscillations  $\bullet$
  - Forward physics facility at LHC

The EIC not on the map yet. But can directly or indirectly lead to advances in several areas.

![](_page_60_Picture_29.jpeg)

![](_page_60_Figure_30.jpeg)

# Concluding comments

Experiments at the Intensity Frontier are exploring uncharted territory in the search for new physics, in Shedding light on open questions a complementary way to other frontiers

![](_page_61_Figure_2.jpeg)

![](_page_61_Figure_4.jpeg)

I/Coupling

- Vibrant experimental program probes BSM physics related to "big questions"
- The EIC can and should play a role in this exciting area