A NICER Estimation of PSR J0437-4715 Parameters
(Preliminary results!)

Devarshi Choudhury
Nuclear Physics ⇔ Spacetime

Equation of state

- Nucleonic
- Quark
- Hyperonic

Dense matter physics

- Neutron
- Hyperon

Mass–radius

X-Ray data
X-PSI (github.com/xpsi-group/xpsi)

Instrument and data

Neutron star model

Statistical sampling

Neutron star parameters
Instrument and data

Statistical sampling

Neutron star model

Neutron star parameters
Neutron Star Interior Composition Explorer (NICER)

NICER X-ray Timing:

• High sensitivity in soft X-ray band (0.2 – 12 KeV)

• High time and energy resolution

Pulse profile modelling of rotation powered pulsars

NASA’s Goddard Space Flight Center
NICER’s Primary Target: PSR J0437-4715

- Closest millisecond pulsar
- Brightest NICER source
- Binary system – tight mass and inclination constraints
NICER’s Primary Target: PSR J0437-4715

• Closest millisecond pulsar
• Brightest NICER source
• Binary system – tight mass and inclination constraint
NICER’s Primary Target: PSR J0437-4715

Non-antipodal spots?

- Best data quality – invites modelling challenges – unexplained features can’t be swept off as noise!
PSR J0437-4715: Field-of-View

Bogdanov et al. 2019

Nearby AGN

PSR J0437-4715

Optimal pointing
PSR J0437-4715: Field-of-View

Nearby AGN

PSR J0437-4715

Instrument offset pointing

Bogdanov et al. 2019
PSR J0437-4715: Response Scaling

Nearby AGN

PSR J0437-4715

Instrument offset pointing

Instrument response curve

- Unscaled response
- Scaled response
PSR J0437-4715: Response Scaling

Instrument response curve

- Nearby AGN
- PSR J0437-4715
- Instrument offset pointing

Bogdanov et al. 2019

June 28, 2023

D.Choudhury@uva.nl
PSR J0437-4715: 3C50 Data Set & BKG

- Observed between 6 Jul 2017 – 12 Mar 2019
- 951 ks of observation

- Observed between 20 Jul 2017 – 11 Oct 2021
- 1.3 Ms of observation
PSR J0437-4715: 3C50 Data Set & BKG

- Observed between 6 Jul 2017 – 12 Mar 2019
- 951 ks of observation
- No BKG constraint

3C50 data set (Remillard et al. 2022)

- Observed between 20 Jul 2017 – 11 Oct 2021
- 1.3 Ms of observation
- Provides instrument BKG estimate
PSR J0437-4715: 3C50 Data Set & BKG

- Observed between 6 Jul 2017 – 12 Mar 2019
- 951 ks of observation
- No BKG constraint
- Noisier data
 - ObsID: 0060010101 -> 2060010405

3C50 data set (Remillard et al. 2022)

- Observed between 20 Jul 2017 – 11 Oct 2021
- 1.3 Ms of observation
- Provides instrument BKG estimate
- Cleaner data (some loss of source counts)
 - ObsID: 1060010104 -> 4060010638
PSR J0437-4715: 3C50 Data Set & BKG
PSR J0437-4715: 3C50 Data Set & BKG

BKG parameters (1 per channel)
Marginalised when calculating likelihood
PSR J0437-4715: 3C50 Data Set & BKG

BKG parameters
(1 per channel)

Marginalised when calculating likelihood
PSR J0437-4715: 3C50 Data Set & BKG

BKG parameters (1 per channel)
Marginalised when calculating likelihood
PSR J0437-4715: 3C50 Data Set & BKG

BKG parameters (1 per channel)
Marginalised when calculating likelihood
PSR J0437-4715: 3C50 Data Set & BKG

BKG parameters (1 per channel)

Marginalised when calculating likelihood
Instrument and data \rightarrow Statistical sampling \rightarrow Neutron star parameters

Neutron star model \rightarrow Statistical sampling \rightarrow Neutron star parameters
Modelling: Relativistic Ray Tracing

- Oblate Schwarzschild + Doppler approximation
 (Morsink et al. 2007)
Modelling: Relativistic Ray Tracing

• Oblate Schwarzschild + Doppler approximation
 (Morsink et al. 2007)

• Radio priors from Parkes Pulsar Timing Array
 (PPTA-DR4, Reardon et. al. in prep):

 • $M = 1.418 \pm 0.044 \, M_{\odot}$
 • $i = 137.506 \pm 0.016$ degrees
 • $D = 156.98 \pm 0.16$ pc
Modelling: Relativistic Ray Tracing

- Oblate Schwarzschild + Doppler approximation (Morsink et al. 2007)

- Radio priors from Parkes Pulsar Timing Array (PPTA-DR4, Reardon et. al. in prep):
 - $M = 1.418 \pm 0.044 \, M_\odot$
 - $i = 137.506 \pm 0.016$ degrees
 - $D = 156.98 \pm 0.16$ pc

Riley et al. 2019

D.Choudhury@uva.nl
Modelling: Hot Spots

Riley et al. 2019

Single-temperature
Modelling: Hot Spots

Riley et al. 2019

Single-temperature
Dual-temperature
Modelling: Hot Spots

- Single-temperature
- Dual-temperature
- Ring

Riley et al. 2019
Modelling: Hot Spots

Single-temperature

Dual-temperature

Ring

Crescent

Riley et al. 2019
Modelling: Hot Spots

- Geometrically thin, fully-ionised hydrogen atmosphere using NSX (Ho & Lai 2001)

See Tuomo’s talk on atmospheres
Nested sampling using MultiNest (github.com/JohannesBuchner/MultiNest.git)

See Serena’s talk on multimodality

F. Feroz, M.P. Hobson & M. Bridges 2009
Instrument and data

Neutron star model

Statistical sampling

Neutron star parameters
J0437 Spot Model (ST-S)

- Spot locations: Antipodal
- Temperature and size: Identical

Riley et al. 2019
ST-S Results on J0437: Inferred parameters

- Tight radius constraint
- Mass not recovered
ST-S Results on J0437: Model performance

- Tight radius constraint
- Mass not recovered
- Prominent residual structure – can’t explain data
J0437 Spot Model (ST-U)

- Spot locations: Independent
- Temperature and size: Non-identical
ST-U results on J0437: Inferred parameters

- Mass recovered only in the absence of upper limit
ST-U results on J0437: Free BKG model performance

- Mass recovered only in the absence of upper limit
- Fairly good residuals in the absence of upper limits
ST-U Results on J0437: Constrained BKG model performance

- Mass recovered only in the absence of upper limit
- Fairly good residuals in the absence of upper limits
- Prominent residuals in the presence of upper limits – deficient model
ST-U inferred BKG with lower and upper constraints
ST-U inferred BKG with no constraints

- J0437 data (+BKG)
- 3C50 instrument BKG
- AGN spectrum
- Inferred BKG
- Flat X-PSI BKG prior range
Current Best Models & Radius Constraint Level

- Good news! We have models that work! (Including IM group)
 - Involve more complex geometries
 - Data explained with and without upper BKG constraints
 - Radii consistent for different BKG constraint impositions
 - Better max. likelihood outputs and evidences

- Runs without radio priors tested
 - Radio priors are vital for J0437

- Joint fits with XMM consistent

- Current best model: ±6% radius constraint
Backup slides