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Scope of Heavy Flavor Production

@ focus on charm and bottom production

@ hadrons include mesons (D, B),
baryons, onia (¢ and 7')

e produced through QCD/QED processes

@ in hh, v, and eTe™ collisions

Color Evaporation Model (CEM) for total charm cross section

g = Z /dX]_dX2fl- (X].,,U'F)f (X27MF)JU7
iJ=q,q,8

In PRC.87.014908, an attempt to reduce the uncertainty on the total
charm cross section,

@ m. was fixed at 1.27 £ 0.09 GeV (MS scheme)

o up/me =2.17322 and pr/me = 1.67513
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Quarkonium production

CEM [Fritzsch 77; Halzen 77; Gliick, Owens, Reya 78; Gavai et al.
95; Schuler, Vogt 95]

-4mf_l
o = Fo ) / 2 dM/dX1dX2ﬁp(X1,uF)CP(X2aMF)&Ua
o g = _J4m
1,J=9q,9,8

o me=127+0.09 GeV, up/my = 2.17332, and pugr/mr = 1.67313

e where mr = /m2 + p%, p% = 0.5(p%. + p3;)
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Quarkonium Production Models

Improved CEM (ICEM) [Ma, Vogt 16]

__m
Pce= 771
W

2mpy
o = FQZ/ dM/dX,'def,'(X,',/LF)ﬂ'(XﬁMF)d(AfijﬁcEJrX(Pc&/iR) P
— J My,
I,J b
where M, is the mass of the charmonium state, .
@ first new advance in the basic CEM model since 1990s

@ able to describe relative production of ¢(2S) to J/v, where the ratio is flat
in the traditional CEM

@ distinction between the momentum of the ¢C pair and that of charmonium
so that the p7 spectra will be softer and thus may explain the high pr data
better

@ employed to calculate production and polarization of all S states, and
relative production of y states
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Quarkonium Production Models

C0|0r S|ng|et MOde| (CSM) [Berger, Jones 81; Baier, Riickl 81, Schuler 94, Lansberg 11]

@ constrains the production of QQ to the color singlet state only

o the produced QQ pair does not change its color and spin between
production and hadronization

do[Q+ X] =

X

IR(O)* .

Z / axiadxifi(xi, E) G0, )67y iy (QG) x(1Rs 1F)
i

Ye
_ _ ye
gbo-tarb
T .
o Hr-g3) . 7 7 (r7+gg +bb)
— o < ——> D I
RIS O e 13 s L(Frgg-2wb) S I3 3
r 3
b @ }, ....... obg
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Quarkonium Production Models

Non Relativistic QCD (NRQCD) [Bodwin, Braaten, Lepage 95]

an Effective Field Theory where production is described as an
expansion in powers of as and the heavy quark velocity, v/c

At each order, the production is further factorized into perturbative
Short Distance Coefficients and non-perturbative Long Distance
Matrix Elements (LDMEs); e.g. for J/v, 0/ = >, ch[,,]<OJ/"5’[n]>

Oce[n) are cross sections in a particular color and spin state n
calcuated by perturbative QCD

including 351[1] (singlet), and 3P58],351[8] and 15([)8] (octets)
(O0?/¥[n]) are the LDMEs that describe the conversion of c¢[n] state

into final state J/4, assuming that the hadronization does not change
the momentum

LDMEs are conjectured to be universal and the mixing of LDMEs are
determined by fitting to data
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Models are tested against the data

Events / GeV

CMs
s =7 TeV
1 L =40pb”

int

Dimuon mass (GeV/c?)

o S states (JP¢ = 177) decay to £T¢~, so they can be observed as
peaks in dilepton mass spectra

o x(nP) states (JP¢ = J*1) can be reconstructed by matching an
S state with a low momentum photon

@ 7 and 7y states (JP¢ = 0~7) decay hadronically

Vincent Cheung (LLNL) INT 22-3 Oct 10, 2022 8/45



Discovery and Production Models

Discovery of J/p Discovery of Y Nonrelativistic QCD
BNL/SLAC Fermilab (NRQCD)
1974 1977 1980 1995 2016 >
Color Evaporation Model ~ Color Singlet Model ICEM
(CEM) (CSMm)

Color Evaporation Model [Fritzsch 77; Halzen 77; Gliick, Owens, Reya 78] |
@ spins and colors are averaged

CO|0F S|ng|et Model [Berger, Jones 81; Baier, Riickl 81, Schuler 94, Lansberg 11] |
@ only color singlet contribution is considered

Nonrelativistic QCD (NRQCD) [Bodwin, Braaten, Lepage 95] |

@ separate all spin and color states
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Highlights in the CSM

= 100 direct direct
- R — FSreely prompt ATLAS y] < 0.75 —] 100 F) xpromp\LHCb25<y<40 I
Fai prompt CDF Run Il i prompt Y|
3 10 “""‘w arwx NNEO* — s 10 erecxpmmmGMs‘yl<12 s = _“"_+ R q—
g 1 3 NLO (0] 1 NNLO® |y| < 1.0 ) (5 10 L NLO
g _8 NLO |y| < 1.0 .8
@ ol = o041 g
[i7]
g oot % 0.01 1% !
ha Y —
> 0.001 So1
< 0.0001 Fgirect: 64+/-6% 3 0.001 % ’
5 O direct’ 64+/-6% > Fec'= 64 +1-6 % ° FIrect_ 64 4/-6 %
8 1e05 0.0001 0.01
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@ LO and NLO calculations underestimate the Tevatron pt distributions

@ Recent advancements in CSM show that by adding real-emission
contribution at NNLO, CSM can describe the distributions!!]
(NNLO*)

1).P. Lansberg, J. Phys. G 38, 124110 (2011).
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VemtseTev
10} mi<os

TR W e i 2
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2M. Butenschoen and B. A. Kniehl, Nucl. Phys. Proc. Suppl. 222-224, 151 (2012).

3M. Klasen et. al, DESY 01-202.




Results in the CEM4]

e one fitting factor (Fg) for each quarkonium state (Q)

@ great consistency with experimental results over large range of /s

J/ > T's

L

|

—_
o)
g e =
Na2 E 3
— 3
S ]
R ]
L,
» B —
e E 3
© 3
. (b) m = 1.27 GeV sets 1 100 —
10 — £ E
ot Ll el el et 1 et LBl il g
10! 102 108 10% 10 50 100 500 1000 500010000
Vs (GeV) Vs (GeV)

*R. E. Nelson, R. Vogt and A. D. Frawley, Phys. Rev. C 87, 014908 (2013).
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Results in the CEMI5:0]

o)y (nb/Ge)

suu) o/t

Bdo/dy (nb)

(b) Iyl<0.35

Bdo/2mp,dydp, (nb/GeV?)

ot | | | RSN ot | | L BN
v i v i T 0
Py (GeV)

@ overall less rigorous, but accurate predictions

__@ no advances in the basic model since 1990s
°R. E. Nelson, R. Vogt and A. D. Frawley, Phys. Rev. C 87, 014908 (2013).
®G. A. Schuler and R. Vogt, Phys. Lett. B 387, 181 (1996).

Vincent Cheung (LLNL)

INT 22-3 Oct 10, 2022

13 /45



Results in the ICEM

dpr

doy(P) _ F, ]QMD M do.-(M,P")

a
Mﬂ) dep/T P (M/My)pr

;] Ma and Vogt, PRD 94, 114029 (2016).

ICEM
- Js=02Tev)yl<0.35 1wl 1l

0 S =7TeV,2.5<y<4
@ explicit charmonium mass

: " N dependence — the ratio of
‘ cross sections is no longer

I S S L B mr B o e pr-independent

pr (GeV) pr (GeV)

L nesamn B @ distinction between the

e momentum of the cC pair
M § and that of charmonium —
N p1 spectra will be softer and
! thus may explain the high
pT data better

do,,/dptdy(nb/GeV)
3
d0,,/dpdy(nbiGeV)

ICEM

- - [S-oztevpioss

da,ldptidy(nb/GeV)
=

do,,/dptidy(nb/GeV)
3

0 2 " 6 8 0o 2 4 6 8 10 12 14
pr(GeV) pr (Gev)
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Y. Q. Ma and R. Vogt, Phys. Rev. D 94, 114029 (2016).
8V. Cheung and R. Vogt, Phys. Rev. D 98, 114029 (2018) and 99, 034007 (2019).



Tests of Models

o CEM and NRQCD remain the most commonly used models today.

@ They can predict yields and relative production of different
quarkonium states.

@ What about the relative production of different spin projection states
of the same quarkonium state? — Polarization

(I)CEM

@ Less rigorous

NRQCD

@ More rigorous

° i :
Fewer fit parameters A Do ( pRrameiess

@ Applied extensively to only

@ Applied to all collision systems
hadroproduction (so far) PP Y -

Vincent Cheung (LLNL) INT 22-3 Oct 10, 2022 16 / 45



Polarization and Angular Distribution

) =aalde=-1)+a |l =0)+an[)=+1), YlaLlP=1
_ 1-3ag)? __ 2Relajia’ ] _ V2Rela}(ay—a_)]
A= Tilal Ao = “Tifal Moo = T

d 1
ﬁ x W 1+ Agcos? 9 + A, sin? 0 cos(2¢) + Ap,, sin(20) cos gp]

@ For a single elementary process, the
polarized-to-total cross section can be
calculated as ay,'s. Combinations of a,'s gives
different angular distributions.

@ However, there is no combination that would

give Ay = A\, = Ay, = 0.
@ An unpolarized production can only be
described by a mixture of sub-processes or

randomization modeling.
Vincent Cheung (LLNL) INT 22-3
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Polarization Measurement

Z
] quarkonium
yi rest frame
: " o+
production g
plane \ D

4/\‘2

® \y

X

quarkonium
rest
frame

@ There are three commonly used choices for the z-axis, namely zyx
(helicity), zcs (Collins-Soper), and zg, (Gottfried-Jackson)

@ ¥ is defined as the angle between the z-axis and the direction of
travel for the /T in the quarkonium rest frame
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Extracting Polarization

do 1
dQ 3+ )y

[1 4 A cos? 9 + Ay sin® 9 cos(2) + Ay, sin(20) cos ]

@ Polarization parameters can be obtained by fitting the angular spectra
as a function of ¥ and ¢

@ One can write py = ¢ — 5 F 7 for cosv < 0, then!®!

V2 19;;)

(-]

dw o< 1+ 375, cospy

—_ 10 [ 10

@© p+Candp+W-> iy -> HFH-() ol (c) oale (©)

Gosfeombined) Vs = 41.6 Gev 035 M B A S S,

. . ¥

k4 et} R T L I

2. GJihe = -0.185 Soasf sf s

2 : CS:Ah=-0.296 L e R Py e PN Sy

202 he=-0. {

= 015 015

: 1 1 1 1 L 1 1 L 1 1 Il L 1 1 L L L 1 1 ;\ ‘\
o 0 S0 100 150 200 250 300 350 0 50 10 |sucpezm 250 300 350

°l. Abt et al. (HERA-B Collaboration), Eur. Phys. J. C 60, 517 (2009).
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Importance of Polarization

@ Polarization predictions are 10— 310°
. == |
strong tests of production it Ty 410°
> E jom-mm} 3
[o) L —— 4
models S b e Jie2
= E e E
@ Detector acceptance depends & 1ok = i
i i i % E p+p— J/y (prompt), Vs=7TeV ¢:£
on polarization hypothesis S L+ Luobdeta (uly tansverse) if
@ Understanding polarization [ 7 tHeodaa(ulylongtudna) o
. 0" 27726 8 10 12 14
helps narrow systematic P, (GeV)
uncertainties [10]
_Polarisation hypothesis FLA1; Polarisation hypothesis T+o ’_Polprisation hy LON?
EM 314 0.9
=12 0.8 =12 0.8
<10 07 o 07
2 0.6
R 0.5
6] 0.4
0.3
. o2
0.1
% 05 1 15 2 25 05 1 15 2 25 0

05 1 15 2 25
(Absolute) J/y rapidity [11]

(Absolute) J/y rapidity

(Absolute) J/y rapidity

R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 71, 1645 (2011).

'G. Aad et al. (ATLAS Collaboration), Nucl. Phys. B 850, 387 (2011).
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Collinear Factorized Calculations

Separated different S, states
from the total production

Moved from Extracted orbital angular momentum, L

Feed down
traditional CEM — — — — — — — mechanism
to ICEM included

Explored the p, dependence
Using k,-factorization

Explored the p, dependence
Using collinear factorization

Explored cold nuclear effects

@ No polarization calculations made in the CEM family before 2017.
@ It is worth revisiting back the CEM to calculate polarized results
@ VC and Ramona Vogt made a few calculations using the (I)CEM.

k. Factorized Calculations




How we started at O(a?)

In terms of the Dirac spinors u and v, the individual amplitudes at leading

order are
Aqgq

"45835

Agg,t

Agg,u

+ o+

& 06 v (PP oK)

2
fgf{ — 2k" - e(K)[a(p")H(K )v(p)]
2k - e(K)[a(p')E(k)v(p)]
(k) - «(K)[a(p ) (K ~ Kv(p)]}

2
— BT K) (K = B+ MA)V(p) |

- fsmgﬂ(p')f(k)(k’ — P+ M)E(K)v(p)

u

e A's are separated according to the |S,S;) of the final state
@ Orbital Angular Momentum is extracted before squaring the

amplitudes
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Orbital Angular Momentum

To extract the projection on a state with orbital-angular-momentum

quantum number L, we determine the corresponding Legendre component

Ay in the amplitudes by

Ai—o

Ap—1

1 1
= / dxA(x = cos¥0) ,
2J)1

3 1
= 2/ dx xA(x = cos¥b) .

-1

L = 2 amplitudes are not needed for S and y states production.

Vincent Cheung (LLNL)
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Feed Down Production!?

CEM polarization calculations assume two pions are emitted from an S
state feed down and a photon is emitted from a P state feed down.

J,=0 J: p J,=0 Jr pds
RJ/w = ch,sw R 18)—ZCT5 R,

U,Jz T,J,

Q Mg (GeV) cq SF=° sF=!

J/% 3.10 062 1 0
¥(25) 3.69 008 1 0
Ye1(1P) 3.51 016 0 1/2
xe2(1P) 3.56 014 2/3 1/2
T(15) 9.46 052 1 0
T(25) 10.0 0.1 1 0
T(35) 10.4 002 1 0
xb1(1P) 9.89 013 0 1/2
xb2(1P) 9.91 013  2/3 1/2
Yb1(2P) 103 005 0 1/2
xb2(2P) 10.3 0.05 2/3 1/2

125 Digal, P. Petreczky, and H. Satz, Phys. Rev. D 64, 094015 (2001).
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Comparing xg Dependence with Fixed-Target Data'3

CEM polarization calculation using collinear factorization:

g E
;—:205?
P 41— S 061
J7 =1" (S states) osf
02
sy
E -
1 - 3RJ270 025 ’,-/’ prompt Y(1S) p+Cu |5, = 38.8 GeV
e —
A/ﬂ — _ —0.4F CEMLO 4.5 GeV < m, < 5.0 GeV CTEQ6LL
1 + RJZZO o6 [E=] CEMLO 45 GeV <m, < 5.0 GeV GRV98 LO
y E [E-] cEM LO Q12 < < 2Q CTEQ6LL
08 = FNALES66
| S P I U T WU I B I

Xg (x1 — x2) Dependence (EPS09 for Cu PDFs)

e longitudinally polarized at small |xg| and transversely polarized at
large |xg|
@ prediction is consistent with the ~ 0 polarization for T(1S)

13C. N. Brown et al. (NuSea Collaboration), Phys. Rev. Lett. 86, 2529 (2001).
Vincent Cheung (LLNL) INT 22-3 Oct 10, 2022

25 /45



Calculation at O(a?2) using kr-factorization

In our calculations using kr-factorization, we compute the scattering
amplitdues A(RR — QQ):

A(RR — Qa) = E(k)ue(k/)VA;w(gg — Qa) )
kr

e(k)ﬂ = (07 ﬁu

0),
A’s are separated according to the |S, S;) of the final state. We then
determine the corresponding Legendre component A; in the amplitudes by

1
Ai—o = ;/ dxA(x = cos¥) ,
-1

3 1
A1 = 2/ dx xA(x = cosf) .
-1
L = 2 amplitudes are not needed for S and y states production. Only
Agg's are used in the ky-factorization approach
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Production in kr-factorized ICEM

Production cross section |

o = FQ/4de5/dX1/dx2/dklr /dk2 /d¢1/d¢2

®1(x1, k17, Q1) P2(x2, ko1, Q2)6(R + R — QQ)
X 5(S—X1X25+’k17-—|—k27-| )

X

Parameters used |

o We used JH-2013[%] unintegrated (transverse-momentum-dependent)
PDF set for ®(x, k1, Q)

@ factorization scale set at Q = mt
@ 1.27 < m. < 1.50 GeV, 4.5 < mp < 5.0 GeV
° 3 < <2
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Charmonium production in kr-factorized ICEM!14

p+P—> ¥(2S), Vs =1.96 TeV ] 10°
IyI<08, F o =017 E
s m ICEM 11
3 N = CDF data (prompt) 3
_% Prp— Iy, V5=7Tev
< 20<y<45F, 700215\\ 710
- B cem12%m c<15 k|
k<] I:IICEMOS<“—<2 N 41
8 I:IICEMO.5<F:<2 1
= LHCb data (fully transverse) 5 107
= LHCb data (fully longitudinal) E
-1 L L L L
W™ 27724 6 8 10 12 14 5 10 1 20 25 30

5
p, (GeV) p, (GeV)

@ We obtained F/y, while assumming a constant direct-to-inclusive
ratio of 0.62 for J /4.

@ We also compare our directly produced 1(2S) to the prompt
production of 1)(2S) to obtain Fy(ag).

@ The ICEM with kt-factorization is able to describe the yield, but
having a strong dependence on factorization scale at high pr.

V. Cheung and R. Vogt, Phys. Rev. D 98, 114029 (2018) and 99, 034007 (2019).
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Ye production in kr-factorized ICEMI[!]

s 9 9 s
10 PSSR 10 ST A R
< y<0.75,F, =0.18 < yI<075,F, =02
8 106 e e 8 ek e 102
g K = ATLAS data (prompt) 8 = ATLAS data (prompt)
k- 5
X X
g 10 10 g 10 10
) B
S 8
1 L L L L L L L 1 ]
74716 18 20 22 24 26 28 30 14716 18 20 22 24 26 28 30
p, (GeV) P, )
1
r p+p— 1, Vs=7TeV
g-:, yi<0.75 ,g‘z
% o [E rcem 0
[+3]
? o7k Jo7
& 0.6 *  ATLAS data (prompt) ) ¢
g* o }
3 gsF—t ] ]
T 050 =05
oL L T T E|
@ 0.4?1H t —F—Jo4
o 03f o3
S 02 o2
(RS o1
0157476 18 20 23 24 26 28 30
p;'=pr (GeV)

@ We also compare our results to . production at ATLAS to obtain
the Fg's as well.
@ We found the relative production is stable at high pr. This is

consistent with the data.
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Prompt and inclusive J/1 in kr-factorized ICEM!4]

v OF ALICE, cusive J1g, 25 < <4
> uL 5018l Eu. Py CT7 01T mo 92, =620 ot 5%
10 - 10¢ [0] E —6~ pp 8 TeV, Eur. Phys. J. C76 (2016) no4 184, LY. 12p0", g\uba\sysls fo
E N pp7TeV, Eur PhstCMrZDMJ 1082974, =14 pb" global syst 5%
LHCb data E ‘é e STl =120 gl 19
~ -
10 =10 5 ' 3
s E o P
3 F E
) ] L
% 102 E R
c E E 0
£ F . 3 5 F
g 10k 10 F
o E p+p—> J/y (prompt), Vs = 7 TeV " 3 el
8 F [ ICEM k;, 2.0 <y < 45, fitted F 's E
1E [ CEM, 25<y <4 EL I [ CEM 1 Creng et FONL) p5 Tl
F [T Icem collmear 25< y <4 1 1% ] IGEM V. Cheung et al + FONLL (07 TeV) .
107" L L L L I [0 ICEM (V. Cheung et al. + FONLL) (3 8 TeV)
0 2 4 6 8 10 12 14 [ 1CEM (V. Cheung etal+ FONLL) (p 13 Tel) — -2
p. (GeV) r
T ™ I R N R SRR SR R N N

e With all the Fg's fitted for all S states and P states, the prompt J /1)
yield can be calculated.

@ The kr-factorized ICEM agrees with previous collinear (I)CEM
calculations.

@ When B feed-down is also added using FONLL, we found agreement
with inclusive J/1 production in a large range of beam energies.
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J /1) polarization in kr-factorized ICEM!!4]

Polarization is independent of Fg and scales, mass is the only uncertainty

1 1 2
r +p— Jy, s =7.0TeV 7 =
g'g Z.op< y xx.ss(cs vramee) 20'2 STAR (a)
04 (oM s [ O Jy-e'e, HX, [yl<1.0
0.2 * LHCbdata —o.2 1 @ J/y-p, HX, |y|<0.5

Y

“\‘\‘\ i\\),%c\)‘\‘\‘\‘\
¥
)\9

-0.4
-0.6| 0.6
-0.8 -0.8
B o R S T
p, (GeV) -1 (] ICEM(prompt) 1.2 <m < 1.5 GeV

@ We found the prompt production of J/1) is slightly longitudinally
polarized in the CS frame.

@ Slightly transversely polarized in the HX frame.

@ Agreement with polarization data is frame-dependent at low pr.

Vincent Cheung (LLNL) INT 22-3 Oct 10, 2022 31/45



T production in kr-factorized ICEM14]

— 10 p+p—>Y(18), /s =7 TeV 10 310
> <24,F =00141 3
8 % ICEM?5 < m, <5 Gev ]
£ 1 i 1 ]
re) [0 1cEM05 <oE <2 —
= e g
= [T 1cEM05 <52 <2 , 2
= 107 i 107 =
Y = CMSdata [id]
g ~ X
& 10° 102 3
©
X S
g 10° 10°
B
©
107 3 4 102
P, (GeV) y

@ The py-distributions for T production also have a strong dependence
on factorization scale at high pr.

@ When the factorization scale is set at mt, both pr and y
distributions are described.
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Collinear Polarized ICEM at O(a2)!®!

Production distribution

d?c 2my . .
dp dy = FQ Z / dM?;‘l'/dedeX2f;'/p(X1aMz)fj-'/p(xhMz)dUU—>66+X 5
T ij={a.a.6}" Mo

@ We consider all 16 diagrams from gg— ccg, 5(+5) from gq(g)— <€ q(q),
and 5 from qg— cCg with the projection operator applied at the diagram
level.

@ The c€ produced are the proto-J/1 before hardonization.

@ We used the CT14 PDFs in our calculations.

@ kr-smearing is applied to the initial state partons to provide better
description at low pr

@ First pr-dependent polarization results using collinear factorization

@ 1.18 < m. < 1.36 GeV, up/mr = 217532, ug/mr = 1.67915

@ same set of variations used in MV (2016) and NVF [PRC 87, 014908 (2013)]

13V, Cheung and R. Vogt, PRD 104, 094026(2021).
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Collinear ICEM Unpolarized Cross Sections!'®!

@ _ 10t 4 4
103 2\ p+p— Jiy, Vs =7 TeV 5103 10 10
_ 102 [ ICEM (25 <y < 4) 310 103 10°
S 10 [0 1CEM (yl < 2) ERLEPN
g 1w = ALCEdata(25<y<4) 310 @ 2
s = ATLASdata(yl<2) ) 10 10
- 3 ~ N
-§ 107" o é o 10LP+p—> Iy, Vs=7Te 10
5 102 — R E % 20<y<45
L . \‘Q”Q.N 3, . O [CEM collinear (polarize
o 10 et e 5 10 1¢ [II] ICEM k, (poliarized) 3’
107 e 107 [T ICEM collinear (unpolarized)
1075 L 1 L 1 -~ 1071 L 1
0 20 40 60 80 100 0 5 10 15 20
p, (GeV) P, (GeV)

@ a small kick of < k%- >~ 1 GeV? given to each initial state parton.

@ The uncertainty band[®! is constructed by varying the charm quark
mass, factorization scale, and renormalization scale.

o We find agreement with the pr-distribution measured by the
LHCblel,

e We also find agreement with the unpolarized ICEM calculations [MV

(2016)].
1°R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 73, 2631 (2013).
Vincent Cheung (LLNL) INT 22-3 Oct 10, 2022 34 /45




Invariant Polarization Parameter in Collinear ICEMI(®]

p+p— Jiy, Vs =7.0 TeV ' [N E:‘7 Ty
[ ICEM I

0.8 0.8 08- Bl o8
o8 Sllicbsac20y<4s Tos ol B G EaE U e Jos
o LHCbdata (HX) 20 <y <4.5 P ocusaR Wod .

0.4 = ALICEdata(CS)25<y<4 —0.4 0.4f o CMSdata (HX) 0.6 <lyl < o4
0.2 o ALICE data (HX)25<y<4 ] Jo2

ICEM (p7 = 12 GeV) LHCb data (10 < pr < 15 GeV)
. o Y Ag+3A

@ The frame-invariant polarization parameter \ = %
©

@ Comparing the frame-invariant polarization paremeter removes
frame-induced kinematic dependencies

e We find agreement with the invariant polarization at LHCb!®! but
discrepancy between high pr data at CMS[7].
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J /1 production in Pb+Pb collisions

How different is J/4 in Pb+Pb compared to in p + p collisions

@ Suppression

higher mass states suppressed first

color singlets and color octets could have different suppression rates
@ Regeneration from uncorrelated cc pairs

at low p7 and particularly at midrapidity

What J/1 polarization in Pb+Pb collisions can teach us

@ If hadronization is a fast process, then polarization should not be significantly different
thanin p+p

@ If it takes longer, then the polarization can be different as color singlets and octets have
different polarization

What we can do in ICEM (now)?

@ Cold Nuclear Matter Effects

kr-broadening
nPDFs
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Polarization in Pb+Pb using the ICEM Approach
PRC.105.055202 (2022).

Production distribution

d%c

dprdy

2my
Z / de/dgdxld)Qf;'/A(Xl»N2)G/A(X27M2)d&ijacE+X,

ij={q,3.8}" )

@ We consider all diagrams that produces ¢ with a parton.

@ The c€ produced are the proto-J/1 before hardonization.

@ We used the CT14 PDFs and EPPS16 nuclear modifications in our
calculations.

@ ky-smearing (gaussian) is applied to the initial state partons to provide
better description at low pr.

(k%) =1+ (1/12)In(y/s/20 GeV)

An additional kick of 0.41 GeV? is added to partons from Pb nuclei.

1.18 < me < 1.36 GeV, ue/mr = 217233 ug/mr = 167315

same set of variations used in MV [2016] and NVF [PRC 87, 014908 (2013)]
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Polarization in Pb+Pb compared to p+p

1 1 1 1 1 —
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@ Note that there is a 40% difference in collision energy per nucleon.

@ No significant differences between the p + p and Pb+Pb.

@ Choosing another shadowing set will not change the polarization.

@ Similar lack of system and energy dependence is also expected from
CGC+NRQCD approach (PRD 104, 034004)
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Invariant Polarization

4'7 ICEM PbPb — Jiy, |5, = 5.02 TeY]
0.8/ = ICEM pp — J/y, Vs =7 TeV Jo.s
o G TN
0'65 = ALICE gb‘:Pb data (CS) j0.6
0.4(2 0 ALICE Pb+Pb data (HX) To.a
0.2~ p— 0.2

= 0 SN i —0
-0.2- T -0.2
0.4 1-04
-0.61~ —-1-0.6
-0.8- —-1-0.8

L L L
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@ The polarization parameters shown on the previous slide (Ayg, Ay, Ag,)
depend on the frame.
@ |t is possible to construct an invariant polarization parameter because

the angular distribution is rotationally invariant:

o iz e

e ltis possiT)Ie to remove the frame-induced kinematic dependences
when comparing theoretical predictions to data by comparing \.
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Discussions

Lack of system and energy dependence in ICEM polarization
@ Polarization parameters depend on the ratio of the polarized cross
sections
@ The numerator and denominator of the polarization parameters are
affected similarly

@ Although yields can be very different, polarization parameters are
similar.

There are effects that are not modeled |

@ No feed down are included, but data in this region are unable to tell
the effect of potential loss of feed down due to large uncertanties

@ Hot effects such as regeneration are neglected, but regeneration is
concentrated at low p7 and more important at midrapidity than at
forward rapidity.

@ Suppression by comovers is neglected.
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Discussions

What the experimental results are showing

@ The polarization in these two systems is consistent within
uncertainties

@ Feed down from excited states does not strongly affect the prompt
J /1 polarization

Possible further investigations

@ Polarization of regenerated quarkonium states
o Centrality dependence of polarization
preliminary results from ALICE: no dependence
PoS HardProbes2020, 095 (2021)
@ Extending the Pb+Pb polarization data to pr > 10 GeV where
regeneration is no longer important
@ 1(2S) polarization as an independent check
much more difficult due to strong suppression
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Photoproduction in ICEM at O(aa?)!!]
Production distribution

d 2my X
dp2 dW2dz Fo Z / dMy, /dde2 fyre(y, Q? )fi/p(32, 2)d0”\/j*>CE+X )
j={a.a.g} " Me

@ Currently all 8 diagrams from vg — ccg channel are included

@ The c¢ produced are the proto-J/¢ before hardonization.

@ We used the CT14 PDFs and Weizsacker-Williams approximation in our
calculations.

@ kr-smearing is applied to the hadronic initial state partons

@ First photoproduction results in the ICEM

@ 1.18 < mc < 1.36 GeV, pup/mr = 217532, ur/mr = 167515

@ Preliminary results are compared to low Q2 measurements

17V, Cheung and R. Vogt, in progress.
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Photoproduction Results in ICEM!17]

W2 =(q+p)* z=(ps-P)/(q-P)

10° 10° 10° 10°
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@ Our preliminary results find agreement with the pr and W
distribution at HERA[8],

@ and fair agreement with the z distribution.

@ The fit parameter in the model, Fg, is about 2%, consistent with
previous CEM results in hadroproduction.

18F_ D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 68, 401-420 (2010).
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Photoproduction Results in ICEM!17]
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@ In the CS frame, the polarization is slightly transverse at low pt, then
slightly longitudinal at moderate pr, and becomes slightly transverse
again as pr grows.

@ In the HX frame, the polarization is transverse at low pt, then
becomes longitudinal as pt grows.

@ These trends from our preliminary results are consistent with the
HERA-B datal*®]
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Conclusion and Future

In this talk, | |

@ showed recent attempts the describe quarkonium production using the
(HCEM

@ showed expansions of our approach beyond p + p collisions

We are working on
@ including effects from feed down production.
@ production in ep via photo-production.
@ photo-production in CGC+NRQCD and CGC+ICEM.
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How |J, J;) states are formed

Two helicity combinations that result in S, = 0 are added and normalized

to give contribution to the spin triplet state (S = 1). We calculate the

amplitudes for J = 0,1, 2:
Aj=1,0,—+1
Aj=1,0,=0 =

Aj—0,s,—0 =

Ajm1,0,=41 =

Aj14,=0 =
Aj=z j=42 =

Aj=z j=+1 =

Aj—s j,—0 =

Vincent Cheung (LLNL)

Al=0,1,=0;5=1,5,=+1 , (S States)
AL:O,Lz:O;Szl,SZ:O ,(5 States)

1
- \/;-AL:LLZ:O;Szl,Szzo , (xo States)

1
—Al—11,-0:5=1.5,—+1 , States
$\ﬁ [=1,0,=0:5=1,5,=+1 » (X1 )

0, (x1 States)

0, (x2 States)

1
EAL:I,LZ:O;S:LSZ::I:I , (x2 States)

2
\/;AL:LLZ:O;S:I,SZ:O . (x2 States)
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Production formula in collinear CEM at O(a?)

CEM using collinear factorization approach
4m,2_,
o = FQ Z / , d§/dX1dX2f;'/p(X1,/Lz)G/p(XQ,/L2)5','J'(§)(5(§ - X1X25) s
N M

Convoluted with the CTEQ6L1 parton distribution functions (PDFs)

a is calculated at one-loop level

1.27 < m. < 1.50 GeV, 4.5 < mp < 5.0 GeV

Assumed that the polarization is unchanged by the transition from
the parton level to the hadron level

o
o
@ We took the factorization and renormalization scales to be p? = §
o
o
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Presenting Polarization

@ The tendency for quarkonium states of spin J to be in a particular
|J, J;) state is known as polarization

For S state (J = 1) quarkonium, if J, = 0, then it is longitudinally
polarized

If J, = 41, then it is transversely polarized

It is typical to represent the polarization in terms of the polarization
parameter, Ay, which ranges from -1 to +1

@ For the S states, Ay = —1 refers to pure longitudinal production while
Ay = +1 refers to pure transverse production

JP =17 (S states)[**]

ole=F1 4 gli=—1 _ 0;4:=0

A =
9 O'Jz:+1 + O-Jz:*]- _.I_ 2O-Jz:+0

9P Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, Eur. Phys. J. C 69, 657 (2010).
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Presenting Polarization

@ For the x1 (J =1) and x2 (J = 2) states, the polarization parameter
is defined as the polarization parameter of the product J/v or T(nS)
if production comes purely from y state feed down

® xc = J/Y 4+, xp = T(nS) +v

JP = 1% (x; P states)!’]

25de=0 _ gle=t1 _ jhe=—1

2074:=0 4 3gJz=+1 4 35/2=-1

Ay

JP = 2% (x, P states)!0l

—607-=0 — 3g5-=H1 4 6g=12 — 3571 4 o J-=2

A =
v 100%:=0 + 9gz=+1 + 65/:=+2 + 9g-=—1 + 65 =2

2P Faccioli et al., Phys. Lett. B 773, 476 (2017).
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z

§:
*
@

Ag =+1/5
A, =+1/5

A, +1/3

@ Calculating invariant A removes frame-induced kinematic

dependencies




Polarization Puzzlel?!]

Difficult to describe both the yields and polarizations simultaneously
within a given approach (e.g. NRQCD)

pp pr pp
Included in fits ete ep distribution polarization
Butenschon|s-s
& Kniehl |3 *
pr >3 GeV|t I
05 1 o
Gong etal. "
pr>5GeV = ‘
. . N
- ; e oo -
i o, T E R R

ZIN. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014)
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CGC+NRQCDI22]

@ is a solution to the polarization puzzle where gluon distribution is
calculated using CGC and the conversion of QQ is described by
NRQCD formulation

@ able to describe all polarization parameters for pr < 15 GeV

1.0 T T T T T T T 1.0 T T T T T T T
08l = LHCbdata7 Tev ] 08l = LHCbdata7 Tev ]
: 4 ALICE data 7 TeV (inclusive J/y), : 4 ALICE data 7 TeV (inclusive J/y)
06 * ALICE data 8 TeV (inclusive J/y)[q 06 e ALICE data 8 TeV (inclusive J/y) /]
0al CGC+NRQCD ] 0al | CGC+NRQCD ]
0.2 - 1 0.2 1
® - ® o
< o0t i prei &+ # e | < oot ER== E
T -~ : - ‘—F
02} 1 - 02} %Jf' * s + p
04t : 04t + i j
-0.6 - 1 -0.6 B
08} 25<y<4 NS=T7orgTev ] 08} 25<y<4, Vs=7or8Tev ]
Collins-Soper frame recoil (helicity) frame
ol \ \ qolb— ] \ .
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
pr [GeV] pr [GeV]

Y. Q. Ma, T. Stebel, R. Venugopalan, JHEP12 (2018) 057.
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