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Prologue: 
Bayesian Analysis

Also see talk by Christian Drischler and Xilin Zhang on Monday & J-F week 1



The problem of Heavy Ions
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Initial State Hard Process

Hydrodynamics Energy loss / 
showering

Hadronization

Hadron gas

MODEL

(partial list)

Large amount of 
moving pieces 
→ parameters

Often different codes

Computing intensive

Quickly becomes 
non-practicalProblem of code-base alleviated 

by e.g. JETSCAPE framework



Rigorous model-data comparison
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Data Physics

“Silver-bullet measurements” (rarer)

More precise data & sophisticated models

Data

Physics

Model



Rigorous model-data comparison
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The basic idea
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Data

Model

 = how “likely”  is trueP(θ) θ

Encodes information from data and 
we can learn about the parameters



The Bayes' formalism
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P( ⃗θ |data) =
P(data | ⃗θ)P( ⃗θ)

P(data)

Prior knowledgeBayesian likelihood

Bayesian evidence

Posterior: probability density of parameter  
being “true” given the observed data

⃗θ



The Bayesian analysis
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Posterior

Bayesian analysis = 
ways to write down the posterior 

in a computationally traceable and 
physically well-controlled way

Fun

P(θ)

Model

Data



Under the hood…
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Compatibility Physics

Calculation

Data

Posterior

Model

Prior

Interpolation
Choice of prior?

How to interpolate? (GP!) 
Uncertainty?

Frameworks

Central value, 
Uncertainty, 
Correlations

Choice of 
“compatibility”

Visualize 
multidimensional 

space 
(MCMC!)

fun

Which data?

Design point

Dimension 
reduction



Under the hood…
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Compatibility Physics

Calculation

Data

Posterior

Model

Prior

Interpolation
Choice of prior?

How to interpolate? (GP!) 
Uncertainty?

Frameworks

Central value, 
Uncertainty, 
Correlations

Choice of 
“compatibility”

Visualize 
multidimensional 

space 
(MCMC!)

fun

Which data?

Design point

Dimension 
reduction

Won’t go into details here 
Happy to discuss more if interested



Advantages of the approach

• Computing requirements do not scale directly with 
volume of parameter space 

• Great for tackling complex problems that are hard 
to solve otherwise 

• Rigorous control of analysis precision 

• Systematically improvable if higher precision on 
calculation is required
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Limitations on the approach

• Requires a good enough model to begin with 

• The analysis look for “best fit” within the parameter 
space associatedc with the model 

• Computing intensive: we can do a lot more but 
some things are still a bit out of reach with current 
methods
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Some recent efforts

See also Shuzhe Shi talk Monday on Ru/Zr studies 
See also Wilke van der Schee talk Monday on neutron skin



Initial state modeling variations
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With & without substructure 
Transverse profile

 controls “peakiness”χ

Nucleon location within nucleus 
generally sampled with Woods-

Saxon with minimum distance dmin

p/n

(Some use pregenerated profile, e.g. )16O

= Gaussian

nc

w



The Trento Ansatz

151412.4708

T1
T2

Thickness function: how much 
“interacting stuff” as a function 

of transverse location

entropy ∝ T12 = (
Tp

1 + Tp
2

2 )
1/p

Trento Ansatz

T1T2 (T1 + T2)/2 max(T1, T2)min(T1, T2)

0 1 ∞−∞ p

See also W. Ke talk last week



2 and T
1

Input T

2− 1.5− 1− 0.5− 0 0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

0.6

a.
u.

1T
2T

2 and T
1

Input T 12Reduced thickness T

2− 1.5− 1− 0.5− 0 0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

0.6

a.
u.

∞p = 
p = 4
p = 1
p = 0
p = -1

∞p = -

12Reduced thickness T

The Trento Ansatz: example
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T1T2 (T1 + T2)/2 max(T1, T2)min(T1, T2)

0 1 ∞−∞
p

Toy example Larger  ~more diffusep

1412.4708



Sensitivity analysis

17

Explore sensitivity of parameters to observables

Build physics intuition and guide future efforts

Example

Trento p
Nucleon size

2010.15134



Sensitivity analysis
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Explore sensitivity of parameters to observables

Build physics intuition and guide future efforts

Example

2010.15134



The parameter : examplesp
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The Trento  parameter seems quite 
consistent across the board?

p

T12 = (
Tp

1 + Tp
2

2 )
1/p

1804.06469

2011.01430

2111.08145

1808.02106

2010.15130

2110.13153

0.0042-0.0098



Two flavors of parameter p
• Original parametrization 

  

• Some work choose to use 

 

→ more diffuse in general for same 

dS
dy

∝ (
Tp

1 + Tp
2

2 )
1/p

p=0 (T1T2)1/2

dE
dη

∝ (
Tp

1 + Tp
2

2 )
1/p

p=0 (T1T2)1/2

p = 0
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Generalization of the Ansatz
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dS
dy

∝ T12 = (
Tp

1 + Tp
2

2 )
q/p

 
 disfavored

q = 2 (& p = 0)
→ T12 ∼ T1T2

Participant scaling  
not included in original Ansatz

T12 ∼ T1T2

Generalized:

van der Schee + collaborators

12Reduced thickness T

2− 1.5− 1− 0.5− 0 0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

0.6

a.
u.

p = 0, q = 0.5
p = 0, q = 1.0
p = 0, q = 1.3
p = 0, q = 2.0

12Reduced thickness T
The toy example from before

~sharper for larger q



Generalization of the Ansatz
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dS
dy

∝ T12 = (
Tp

1 + Tp
2

2 )
q/p

 
 disfavored

q = 2 (& p = 0)
→ T12 ∼ T1T2

Participant scaling  
not included in original Ansatz

T12 ∼ T1T2

Generalized:

van der Schee + collaborators



What about nucleon width?
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Discrepancy observed 
across analyses

Also they are huge!?
Proton charge radius ~0.84 fm
IP-Glasma uses a smaller value

0.4    0.7    1.0

1808.02106
1605.03954

2111.08145
2011.014302010.15134

2110.13153

See also 2208.06839



A study with  and σpA σAA
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In addition to using the usual observables, add also 
total inelastic cross section  and σpA σAA

Additionally weight 
observable based on 

“trust”: ones we believe 
should model better are 
weighted more heavily

 + weightσ

 + no weightσ No  + weightσ
No  + no weightσ

larger  
→ diffuse nucleon 

→ smaller cross section

w

2206.13522



A study with  and σpA σAA

25

Testing the Bayesian analysis outcome 
on correlation observables

Indeed including cross section improves the description

2206.13522



cf.  correlation before(pT − v2
n)

262111.06106



Effect on viscosity
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With ,  ~ 0.5 fmσAA/σpA w
Without ,  ~ 1.0 fmσAA/σpA w

Compensating effect rippling through QGP parameters
2011.014302206.13522



Opportunity
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QGP transport 
e.g. ζ/s

Initial condition 
e.g. w

Hard 
probes?

See Y.-J. Lee 
talk Thursday



Notes
• Remember one of the main features of the Bayesian 

analysis: it searches for the best parameters within a 
predefined model + parameter space 
 

• Only by systematically including/designing/checking 
more and more observables and physics into models 
can we hope to see the full picture
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68%
95%



Measurements vs truth
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Looking foward



Many things can be improved

32

Da
ta

M
odel

Analysis

e.g. 
Newer models

e.g. 
better utilization of 
computing resources

e.g. 
New observables 
Uncertainty 
reporting



Data uncertainty correlation
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Correlation is key! • Anti-correlated: >2σ

• Fully Correlated: 1σ
• Non-correlated: 2σ

Prediction

Agreement depends on 
uncertainty correlation

Faithfully capturing the correlation is crucial



Capture Correlations
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 (GeV)
T

p
1 10 210

AAR
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

30-50%

 and lumi. uncertaintyAAT
|<1η|

 (5.02 TeV PbPb)-1bµ (5.02 TeV pp) + 404 -127.4 pb

CMS
CMS 5.02 TeV
CMS 2.76 TeV

TAA

Luminosity

Other Systematic 
Uncertainties

Statistical Uncertainty

Many uncertainties with different correlations

More information from experiments will be nice
As much as reasonably possible!



cf. pdf fits & statistics
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Dip at ~resolution

Effect of inter-dataset correlation
Common feature 
After unfolding

Valence
Sea

Ratio to nominal

Wake at 2x resolution
etc.



Many things can be improved
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Da
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M
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Analysis

e.g. 
Newer models

e.g. 
better utilization of 
computing resources

e.g. 
New observables 
Uncertainty 
reporting



Interface?
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Current efforts split things up into different phases

“Pre-hydro” “Hydro”

What are the implications? 
Challenge for modeling

1808.02106



Many things can be improved
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Analysis advancements

• How to perform the analysis with a similar precision 
but with a smaller amount of computing resources? 

• Many interesting developments! 

• Great opportunity for cross talk among different 
physics subfields and statistics/CS communities

39



Concluding Remarks



Concluding remarks
• Bayesian analysis is a powerful tool to help us distill more 

nuanced information from data 

• A number of efforts in recent years extracting initial conditions 
and QGP transport parameters 

• Trento-based initial conditions 

• Interesting constraint observed 

• Ripple effect across parameters 

• Check obtained result on as many observables as possible 

• Feedback for observable design is important

41
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Backup Slides Ahead



Analysis in a nutshell



The 2000 ft. view

45

Analysis 
machinery Profit!

Model

Data



The 200 ft. view 
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Analysis 
machinery Physics

Calculation

Data

Posterior

Model We compare calculations, 
not models directly!

The posterior encodes all 
information about the parameters



The 20 ft. view
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Compatibility Physics

Calculation

Data

Posterior

Model

Prior

Interpolation

To get posterior you need 
Bayes’ theorem!  i.e., prior 

& Bayesian likelihood (compatibility)

Calculation expensive! 
We interpolate to reduce CPU usage



The 14 ft. view
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Compatibility Physics

Calculation

Data

Posterior

Model

Prior

Interpolation
Choice of prior?

How to interpolate? (GP!) 
Uncertainty?

Frameworks

Central value, 
Uncertainty, 
Correlations

Choice of 
“compatibility”

Visualize 
multidimensional 

space 
(MCMC!)

fun

Which data?

Design point

Dimension 
reduction



Zoom back out
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Posterior

Ways to write down the posterior 
in a computationally traceable and 

physically well-controlled way

Fun

𝒟

Model

Data



Bayesian analysis: 
operational view



Bayesian analysis: operational view
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Model 
parameter space

Data

𝒟 : ⃗θ → ℝ

Function  maps 
parameter point to a 

“distance” to the data

𝒟

Contains all physics 
we want to extract

 = the posterior function 
in the Bayes’ formalism

𝒟
Similar 
in spirit

Bayesian analysis provides 
a way to get to  efficiently𝒟



Bayesian analysis: operational view
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Model 
parameter space

Data

𝒟 : ⃗θ → ℝ

Function  maps 
parameter point to a 

“distance” to the data

𝒟

Contains all physics 
we want to extract

 = the posterior function 
in the Bayes’ formalism

𝒟
Similar 
in spirit

Bayesian analysis provides 
a way to get to  efficiently𝒟



Similar 
in spirit

Bayesian analysis: operational view
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Model 
parameter space

Data

𝒟 : ⃗θ → ℝ

Function  maps 
parameter point to a 

“distance” to the data

𝒟

Contains all physics 
we want to extract

 = the posterior function 
in the Bayes’ formalism

𝒟

Bayesian analysis provides 
a way to get to  efficiently𝒟

Example for illustrations

PRC 94, 024907 (2016)



Conceptual shift
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Model 
parameter space

Model 
parameter space

Instead of single parameter, we analyze the 
model parameter space as a whole

Chance to test models instead of parameters
ideas



Recent developments
Examples



Transfer learning
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Amount of computing needed

Pr
ec

is
io

n

In addition to the nominal analysis, many 
developments in the analysis side as well

Transfer analysis 
“knowledge” across 

similar tasks

Case study: transfer 
from 2.76 TeV Pb+Pb to 

200 GeV Au+Au

PRC 105, 034910 (2022)



Multi-fidelity approach
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Model 1 
 

Cheap to run 
Does not capture 

full physics

Model 2 
 

Expensive to run 
Precise

Strategy: use model 1 to learn the 
“big structure” and model 2 to refine

Reduces CPU cost needed to 
achieve same level of precision

Use only 
model 2

Multi-fidelity 
approach}

Pr
ec

is
io

n

Computing cost (a.u.)

arXiv: 2108.00306

e.g. LO

e.g. NLO, or even NNLO



Uncertainty: tails



What about the tails?
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Especially important for small-error measurements 
(For example flow, etc)

Compatibility of  to ?1 ± 0.25 0

We don't know!  There is not enough information

10 μ



Example of nontrivial tail
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Guesses and missed opportunites
• Missing information needs to be specified as 

guesses 

• Guesses need to be checked and varied! 

• Extra uncertainties in the extracted results 

• Food for thought for experiments: how much 
information to provide? (or, how much time to invest 
in this?) 

• Otherwise a lot of missed opportunities
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Other miscellaneous 
things



Data choice
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Important to pick a scope and 
include ALL eligible data

*unless there are known issues 
(ps. tension doesn’t count)

High chance of bias if only 
a subset is used



Generators
• What Bayesian analysis does is to find the region of 

phase space matching the best to the data/truth 

• If generator does not have required physics it’s easy 
to misinterpret the result 

• Case for better vacuum shower modeling (for 
example) 

• Ratios help but not everything is multiplicative
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Example new observable

65



Trento p

66



Modeling improvements

• 3D Trento initial condition 

• The X-SCAPE project 

• Improved modeling of nucleus/constituent radial 
profile (moving away from simple Gaussian) 

• …
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Inputs to Bayesian
• Bayesian analysis is useful for uncovering complex 

correlations between different parameters and 
measurement — but — 

• Equally important, we should also include “pure” 
observables that are sensitive to only small 
amount of parameters 

• As well as less model-dependent observables 

• Then we design more observables to feed back into 
the loop

68



Nuclear size vs substructure
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1808.02106

χ =
1

χ = 0

χ = 0.5



The Trento Ansatz: example
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T1T2 (T1 + T2)/2 max(T1, T2)min(T1, T2)

0 1 ∞−∞
p

2 and T
1

Input T

1.5− 1− 0.5− 0 0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

0.6

a.
u.

1T
2T

2 and T
1

Input T 12Reduced thickness T

1.5− 1− 0.5− 0 0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

0.6

a.
u.

∞p = 
p = 4
p = 1
p = 0
p = -1

∞p = -

12Reduced thickness T

Toy example Lower  ~sharperp



The Trento Ansatz: example
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2 and T
1

Input T

1.5− 1− 0.5− 0 0.5 1 1.50
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2 and T
1
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0.6
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p = 0
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∞p = -

12Reduced thickness T

Toy example Larger  ~sharperq



Feed-down vs feed-up
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Detector level

Truth level
……

……

Bin 1 Bin 2

Bin content fixed 
by experiment

Anti-correlation across 
bins with O(resolution)



Nice illustration from G. Giacalone
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 & no substructurew ∼ 1

2208.06839



Correlation + model assumption
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A1

B

Extracted B 
assuming A = 1

Btrue

Atrue



The Trento Ansatz
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T1
T2

Thickness function

entropy ∝ T12 = (
Tp

1 + Tp
2

2 )
1/pTrento Ansatz

First sample to determine if nucleons collide

prob . = 1 − exp (−σgg ∫ ρ1( ⃗x)ρ2( ⃗x)d ⃗x)
If so, the nucleon adds to the nucleus’ thickness function

(with a gamma-distributed random weight for extra fluctuation)

1412.4708

T1T2 (T1 + T2)/2 max(T1, T2)min(T1, T2)

0 1 ∞−∞
p

See also W. Ke talk last week
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