

Bayesian constraints on initial condition in HI Collisions

Yi Chen (MIT) INT Workshop 23-1a, Feb 7 2023

The MITHIG's work is supported by US DOE-NP

Prologue: Bayesian Analysis

Also see talk by Christian Drischler and Xilin Zhang on Monday & J-F week 1

The problem of Heavy lons

Large amount of moving pieces → parameters

Often different codes

Computing intensive

Quickly becomes non-practical

Rigorous model-data comparison

More precise data & sophisticated models

Rigorous model-data comparison

The basic idea

6

The Bayes' formalism

Posterior: probability density of parameter θ being "true" given the observed data

The Bayesian analysis

Under the hood...

Under the hood...

Frameworks

Won't go into details here Happy to discuss more if interested

Which data?

Choice of "compatibility"

Central value, Uncertainty, Visualize multidimensiona space (MCMC!)

Advantages of the approach

- Computing requirements do not scale directly with volume of parameter space
 - Great for tackling complex problems that are hard to solve otherwise
- Rigorous control of analysis precision
 - Systematically improvable if higher precision on calculation is required

Limitations on the approach

- Requires a good enough model to begin with
- The analysis look for "best fit" within the parameter space associatedc with the model
- Computing intensive: we can do a lot more but some things are still a bit out of reach with current methods

Some recent efforts

See also Shuzhe Shi talk Monday on Ru/Zr studies See also Wilke van der Schee talk Monday on neutron skin

Initial state modeling variations

Nucleon location within nucleus generally sampled with Woods-Saxon with minimum distance d_{\min}

With & without substructure Transverse profile

 χ controls "peakiness"

The Trento Ansatz

See also W. Ke talk last week

The Trento Ansatz: example

Sensitivity analysis

Explore sensitivity of parameters to observables

Example

Build physics intuition and guide future efforts

Sensitivity analysis

Explore sensitivity of parameters to observables

Build physics intuition and guide future efforts

The parameter *p*: examples

The Trento *p* parameter seems quite consistent across the board?

Two flavors of parameter p

• Original parametrization $\frac{dS}{dy} \propto \left(\frac{T_1^p + T_2^p}{2}\right)^{1/p} \xrightarrow{p=0} (T_1 T_2)^{1/2}$

• Some work choose to use $\frac{dE}{d\eta} \propto \left(\frac{T_1^p + T_2^p}{2}\right)^{1/p} \xrightarrow{p=0} (T_1 T_2)^{1/2}$ \rightarrow more diffuse in general for same p = 0

Generalization of the Ansatz

Participant scaling $T_{12} \sim T_1 T_2$ not included in original Ansatz

Generalized: $\frac{dS}{dy} \propto T_{12} = \left(\frac{T_1^p + T_2^p}{2}\right)^{q/p}$

~sharper for larger q

Generalization of the Ansatz

Participant scaling $T_{12} \sim T_1 T_2$ not included in original Ansatz

Generalized: $\frac{dS}{dy} \propto T_{12} = \left(\frac{T_1^p + T_2^p}{2}\right)^{q/p}$

 $\begin{array}{l} q=2 \;(\&\; p=0) \\ \rightarrow \; T_{12} \sim \; T_1 T_2 \; \text{disfavored} \end{array}$

What about nucleon width?

A study with σ_{pA} and σ_{AA}

In addition to using the usual observables, add also total inelastic cross section σ_{pA} and σ_{AA}

larger w
→ diffuse nucleon
→ smaller cross section

Additionally weight observable based on "trust": ones we believe should model better are weighted more heavily $0.62^{+0.17}_{-0.18}$ and $1.04^{+0.15}_{-0.17}$ (90% CI)

A study with σ_{pA} and σ_{AA}

Testing the Bayesian analysis outcome on correlation observables

Indeed including cross section improves the description

2206.13522

cf. $(p_T - v_n^2)$ correlation before

Effect on viscosity

Opportunity

Notes

 Remember one of the main features of the Bayesian analysis: it searches for the best parameters within a predefined model + parameter space

 Only by systematically including/designing/checking more and more observables and physics into models can we hope to see the full picture

95%

Measurements vs truth

Looking foward

Many things can be improved

Data uncertainty correlation

Prediction

Correlation is key!

Agreement depends on uncertainty correlation

- Fully Correlated: 1σ
- Non-correlated: 2σ
- Anti-correlated: $>2\sigma$

Faithfully capturing the correlation is crucial

Capture Correlations

cf. pdf fits & statistics

Impact of the Correlation Between Data Sets <u>(</u>**Ξ**(x,Q²)/xΞ(x,Q²)_{re} $Q^2 = 10000 \text{ GeV}^2$ ATLAS ATLAS $Q^2 = 10000 \text{ GeV}^2$ HATLASpdf21, T=1 H No uncertainty correlation HATLASpdf21, T=1 between data sets No uncertainty correlation between data sets 1.2 Sea 0.95 Valence 0.8 10⁻² 10^{-3} **10**⁻¹ 10^{-2} 10⁻¹ 10^{-3} When the correlations of the systematic uncertainties between V+jets, ttbar, inclusive jets are not applied, substantial difference wrt the nominal PDFs is observed at 10,000 GeV², a scale relevant for precision LHC physics Ratio to nominal

ICHEP 2022, Bologna Italy, July 6-13, 2022

Zhiqing Zhang, IJCLab, Orsay

Effect of inter-dataset correlation

Dip at ~resolution Wake at 2x resolution etc.

Common feature After unfolding

7/12

Many things can be improved

Interface?

Current efforts split things up into different phases

What are the implications? Challenge for modeling

Many things can be improved

Analysis advancements

- How to perform the analysis with a similar precision but with a smaller amount of computing resources?
 - Many interesting developments!
- Great opportunity for cross talk among different physics subfields and statistics/CS communities

Concluding Remarks

Concluding remarks

- Bayesian analysis is a powerful tool to help us distill more nuanced information from data
- A number of efforts in recent years extracting initial conditions and QGP transport parameters
 - Trento-based initial conditions
 - Interesting constraint observed
 - Ripple effect across parameters
 - Check obtained result on as many observables as possible
- Feedback for observable design is important

Backup Slides Ahead

Analysis in a nutshell

The 2000 ft. view

The 200 ft. view

The 20 ft. view

The 14 ft. view

Zoom back out

Function *(J)* maps parameter point to a "distance" to the data

Contains all physics we want to extract

D = the posterior function in the Bayes' formalism

Bayesian analysis provides a way to get to \mathcal{D} efficiently

Function *(J)* maps parameter point to a "distance" to the data

Contains all physics we want to extract

D = the posterior function in the Bayes' formalism

Bayesian analysis provides a way to get to \mathcal{D} efficiently

In the Bayes' formalism

Bayesian analysis provides a way to get to \mathcal{D} efficiently

Conceptual shift

Instead of single parameter, we analyze the model parameter space as a whole

Chance to test models instead of parameters ideas

Recent developments Examples

Transfer learning

In addition to the nominal analysis, many developments in the analysis side as well

Transfer analysis "knowledge" across similar tasks

Case study: transfer from 2.76 TeV Pb+Pb to 200 GeV Au+Au

PRC 105, 034910 (2022)

Amount of computing needed

Multi-fidelity approach

arXiv: 2108.00306

Strategy: use model 1 to learn the "big structure" and model 2 to refine

Use only model 2

Multi-fidelity approach

Reduces CPU cost needed to achieve same level of precision

Uncertainty: tails

What about the tails?

Compatibility of 1 ± 0.25 to 0?

We don't know! There is not enough information

1

μ

Especially important for small-error measurements (For example flow, etc)

Example of nontrivial tail

 $\mathscr{L} \sim c \left(H Z_{\mu} Z^{\mu} + a_2 H Z_{\mu\nu} Z^{\mu\nu} + a_3 H Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right) + \dots$

Size of CP-odd HZZ term

Size of higher order CP-even HZZ term

Guesses and missed opportunites

- Missing information needs to be specified as guesses
- Guesses need to be checked and varied!
 - Extra uncertainties in the extracted results
- Food for thought for experiments: how much information to provide? (or, how much time to invest in this?)
 - Otherwise a lot of **missed opportunities**

Other miscellaneous things

Data choice

Important to pick a scope and include ALL eligible data

*unless there are known issues (ps. tension doesn't count)

High chance of bias if only a subset is used

Generators

- What Bayesian analysis does is to find the region of phase space matching the best to the data/truth
- If generator does not have required physics it's easy to misinterpret the result
 - Case for better vacuum shower modeling (for example)
- Ratios help but not everything is multiplicative

Example new observable

FIG. 4: Charged hadron $v_2/(1 - R_{AA})$ as a function of path-length anisotropies $\Delta L/L$, for various centrality classes and temperature profiles. The value of transverse momentum is fixed at $p_{\perp} = 100$ GeV. The linear fit yields a slope of approximately 1.

Trento p

$$\tilde{T}_{R} = \begin{cases} \max(\tilde{T}_{A}, \tilde{T}_{B}) & p \to +\infty, \\ (\tilde{T}_{A} + \tilde{T}_{B})/2 & p = +1, \text{ (arithmetic)} \\ \sqrt{\tilde{T}_{A}}\tilde{T}_{B} & p = 0, \quad \text{(geometric)} \\ 2\tilde{T}_{A}\tilde{T}_{B}/(\tilde{T}_{A} + \tilde{T}_{B}) & p = -1, \quad \text{(harmonic)} \\ \min(\tilde{T}_{A}, \tilde{T}_{B}) & p \to -\infty. \end{cases}$$

Figure 3.1 Reduced thickness of a pair of nucleon participants. The nucleons collide with a nonzero impact parameter along the *x*-direction as shown in the upper right. The gray dashed lines are one-dimensional cross sections of the participant nucleon thickness functions \tilde{T}_A, \tilde{T}_B , and the colored lines are the reduced thickness \tilde{T}_R for p = 1, 0, -1 (green, blue, orange).

Modeling improvements

- 3D Trento initial condition
- The X-SCAPE project
- Improved modeling of nucleus/constituent radial profile (moving away from simple Gaussian)

Inputs to Bayesian

- Bayesian analysis is useful for uncovering complex correlations between different parameters and measurement — but —
 - Equally important, we should <u>also</u> include "pure" observables that are sensitive to only small amount of parameters
 - As well as less model-dependent observables
- Then we design more observables to feed back into the loop

Nuclear size vs substructure

The Trento Ansatz: example

The Trento Ansatz: example

Feed-down vs feed-up

Nice illustration from G. Giacalone

2208.06839

Correlation + model assumption

The Trento Ansatz

First sample to determine if nucleons collide

$$prob. = 1 - \exp\left(-\sigma_{gg}\int\rho_1(\vec{x})\rho_2(\vec{x})d\vec{x}\right)$$

If so, the nucleon adds to the nucleus' thickness function (with a gamma-distributed random weight for extra fluctuation)

75

1412.4708

Thickness function

