IIIT

Bayesian constraints on

 initial condition in HI CollisionsINT Workshop 23-1a, Feb 72023

Prologue: Bayesian Analysis

Also see talk by Christian Drischler and Xilin Zhang on Monday \& J-F week 1

The problem of Heavy Ions

MODEL

Problem of code-base alleviated by e.g. JETSCAPE framework

Large amount of moving pieces
\rightarrow parameters

Often different codes

Computing intensive

Quickly becomes non-practical

Rigorous model-data comparison

"Silver-bullet measurements" (rarer)

More precise data \& sophisticated models

Rigorous model-data comparison

"Silver-bullet measurements" (rarer)

Data

More precise data \& sophisticated models

Physics

The basic idea

Encodes information from data and we can learn about the parameters

The Bayes' formalism

Bayesian likelihood
Prior knowledge
$P(\vec{\theta} \mid$ data $)=\frac{P(\text { data } \mid \vec{\theta}) P(\vec{\theta})}{P(\text { data })}$
Bayesian evidence
Posterior: probability density of parameter $\vec{\theta}$ being "true" given the observed data

The Bayesian analysis

Bayesian analysis = ways to write down the posterior in a computationally traceable and physically well-controlled way

Data

Under the hood...

Under the hood...

Won't go into details here Happy to discuss more if interested

Advantages of the approach

- Computing requirements do not scale directly with volume of parameter space
- Great for tackling complex problems that are hard to solve otherwise
- Rigorous control of analysis precision
- Systematically improvable if higher precision on calculation is required

Limitations on the approach

- Requires a good enough model to begin with
- The analysis look for "best fit" within the parameter space associatedc with the model
- Computing intensive: we can do a lot more but some things are still a bit out of reach with current methods

Some recent efforts

See also Shuzhe Shi talk Monday on Ru/Zr studies See also Wilke van der Schee talk Monday on neutron skin

Initial state modeling variations

Nucleon location within nucleus generally sampled with WoodsSaxon with minimum distance $d_{\text {min }}$

With \& without substructure Transverse profile
= Gaussian

$$
p / n
$$

The Trento Ansatz

Thickness function: how much "interacting stuff" as a function of transverse location

Trento Ansatz
entropy $\propto T_{12}=\left(\frac{T_{1}^{p}+T_{2}^{p}}{2}\right)^{1 / p}$
$\min \left(T_{1}, T_{2}\right)$
$\sqrt{T_{1} T_{2}}$
$-\infty$
$\left(T_{1}+T_{2}\right) / 2$
$\max \left(T_{1}, T_{2}\right)$
1

The Trento Ansatz: example

Toy example

$\min \left(T_{1}, T_{2}\right)$
$-\infty$

Larger p ~more diffuse

$\underset{1}{\left(T_{1}+T_{2}\right) / 2} \underset{\infty}{\max \left(T_{1}, T_{2}\right)} p$

Sensitivity analysis

Explore sensitivity of parameters to observables

Build physics intuition and guide future efforts

Sensitivity analysis

Explore sensitivity of parameters to observables

Example

w ${ }^{\prime}$ fmp

Build physics intuition and guide future efforts

The parameter p : examples

The Trento p parameter seems quite consistent across the board?

Two flavors of parameter p

- Original parametrization

$$
\frac{d S}{d y} \propto\left(\frac{T_{1}^{p}+T_{2}^{p}}{2}\right)^{1 / p} \xrightarrow{p=0}\left(T_{1} T_{2}\right)^{1 / 2}
$$

- Some work choose to use
$\frac{d E}{d \eta} \propto\left(\frac{T_{1}^{p}+T_{2}^{p}}{2}\right)^{1 / p} \xrightarrow{p=0}\left(T_{1} T_{2}\right)^{1 / 2}$
\rightarrow more diffuse in general for same $p=0$

Generalization of the Ansatz

Participant scaling $T_{12} \sim T_{1} T_{2}$ not included in original Ansatz

Generalized:
 $\frac{d S}{d y} \propto T_{12}=\left(\frac{T_{1}^{p}+T_{2}^{p}}{2}\right)^{q / p}$

The toy example from before
Reduced thickness T_{12}

\sim sharper for larger q

Generalization of the Ansatz

Participant scaling $T_{12} \sim T_{1} T_{2}$ not included in original Ansatz

$$
\begin{aligned}
& \text { Generalized: } \\
& \begin{array}{l}
\frac{d S}{d y} \propto T_{12}=\left(\frac{T_{1}^{p}+T_{2}^{p}}{2}\right)^{q / p} \\
q=2(\& p=0) \\
\rightarrow T_{12} \sim T_{1} T_{2} \text { disfavored }
\end{array}
\end{aligned}
$$

What about nucleon width?

1808.02106

Also they are huge!? across analyses

Proton charge radius $\sim 0.84 \mathrm{fm}$
IP-Glasma uses a smaller value

A study with $\sigma_{p A}$ and $\sigma_{A A}$

In addition to using the usual observables, add also total inelastic cross section $\sigma_{p A}$ and $\sigma_{A A}$

larger w

\rightarrow diffuse nucleon
\rightarrow smaller cross section
Additionally weight observable based on
"trust": ones we believe should model better are weighted more heavily

A study with $\sigma_{p A}$ and $\sigma_{A A}$

Testing the Bayesian analysis outcome on correlation observables

```
*)
```


Indeed including cross section improves the description

cf. $\left(p_{T}-v_{n}^{2}\right)$ correlation before

Effect on viscosity

Without $\sigma_{A A} / \sigma_{p A}, w \sim 1.0 \mathrm{fm}$
Compensating effect rippling through QGP parameters

Opportunity

Initial condition
e.g. w

QGP transport
e.g. ζ / s

Notes

- Remember one of the main features of the Bayesian analysis: it searches for the best parameters within a predefined model + parameter space

- Only by systematically including/designing/checking more and more observables and physics into models can we hope to see the full picture

Measurements vs truth

ұuəuəınseəw

Measurement

Looking foward

Many things can be improved

e.g.

New observables
Uncertainty reporting
e.g.
better utilization of computing resources

Data uncertainty correlation

Correlation is key!

Agreement depends on uncertainty correlation

- Fully Correlated: 1σ
- Non-correlated: 2σ
- Anti-correlated: >2o

Faithfully capturing the correlation is crucial

Capture Correlations

Many uncertainties with different correlations
More information from experiments will be nice

cf. pdf fits \& statistics

Impact of the Correlation Between Data Sets

Con

When the correlations of the systematic uncertainties between $\mathrm{V}+\mathrm{jets}$, tbar, inclusive jets are not applied, substantial difference wrt thonominal PDFs is observed at $10,000 \mathrm{GeV}^{2}$, a scale relevant for precision LHC physics

Ratio to nominal

Effect of inter-dataset correlation

Dip at ~resolution
Wake at $2 \times$ resolution etc.

Common feature After unfolding

Many things can be improved

e.g.

New observables
Uncertainty reporting
e.g.
better utilization of computing resources

Interface?

Current efforts split things up into different phases

What are the implications?
Challenge for modeling

Many things can be improved

e.g.

New observables
Uncertainty reporting
e.g.
better utilization of computing resources

Analysis advancements

- How to perform the analysis with a similar precision but with a smaller amount of computing resources?
- Many interesting developments!
- Great opportunity for cross talk among different physics subfields and statistics/CS communities

Concluding Remarks

Concluding remarks

- Bayesian analysis is a powerful tool to help us distill more nuanced information from data
- A number of efforts in recent years extracting initial conditions and QGP transport parameters
- Trento-based initial conditions
- Interesting constraint observed
- Ripple effect across parameters
- Check obtained result on as many observables as possible
- Feedback for observable design is important

Backup Slides Ahead

Analysis in a nutshell

The 2000 ft. view

The 200 ft . view

The 20 ft . view

Calculation expensive! We interpolate to reduce CPU usage

Data

To get posterior you need
Bayes' theorem! i.e., prior
\& Bayesian likelihood (compatibility)

The 14 ft . view

Zoom back out

> Ways to write down the posterior in a computationally traceable and physically well-controlled way

Model

Data

Bayesian analysis: operational view

Bayesian analysis: operational view

Function \mathscr{D} maps parameter point to a "distance" to the data

Contains all physics we want to extract

Model
parameter space

$\mathscr{D}=$ the posterior function in the Bayes' formalism

Bayesian analysis: operational view

Function \mathscr{D} maps parameter point to a "distance" to the data

Contains all physics we want to extract

Model
parameter space

$\mathscr{D}=$ the posterior function in the Bayes' formalism

Bayesian analysis provides a way to get to \mathscr{D} efficiently

Bayesian analysis: operational view

Function \mathscr{D} maps parameter point to a "distance" to the data

Model
parameter space

$\mathscr{D}=$ the posterior function in the Bayes' formalism

Bayesian analysis provides a way to get to \mathscr{D} efficiently

Conceptual shift

Model
parameter space

Instead of single parameter, we analyze the model parameter space as a whole

Chance to test models instead of parameters \rightarrow ideas

Recent developments

Transfer learning

In addition to the nominal analysis, many developments in the analysis side as well

Transfer analysis
"knowledge" across similar tasks

Case study: transfer from 2.76 TeV Pb+Pb to $200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$

Amount of computing needed

Multi-fidelity approach

Model 1
 Cheap to run
 Does not capture full physics
 e.g. LO
 \downarrow
 Model 2
 Expensive to run Precise

Strategy: use model 1 to learn the "big structure" and model 2 to refine

Reduces CPU cost needed to achieve same level of precision

Uncertainty: tails

What about the tails?

Compatibility of 1 ± 0.25 to 0 ?

We don't know! There is not enough information

Especially important for small-error measurements (For example flow, etc)

Example of nontrivial tail

$$
\mathscr{L} \sim c\left(H Z_{\mu} Z^{\mu}+a_{2} H Z_{\mu \nu} Z^{\mu \nu}+a_{3} H Z_{\mu \nu} \tilde{Z}^{\mu \nu}\right)+\ldots
$$

Size of CP-odd HZZ term

Size of higher order CP-even HZZ term

Guesses and missed opportunites

- Missing information needs to be specified as guesses
- Guesses need to be checked and varied!
- Extra uncertainties in the extracted results
- Food for thought for experiments: how much information to provide? (or, how much time to invest in this?)
- Otherwise a lot of missed opportunities

Other miscellaneous things

Data choice

Important to pick a scope and include ALL eligible data
*unless there are known issues (ps. tension doesn't count)

> High chance of bias if only a subset is used

Generators

- What Bayesian analysis does is to find the region of phase space matching the best to the data/truth
- If generator does not have required physics it's easy to misinterpret the result
- Case for better vacuum shower modeling (for example)
- Ratios help but not everything is multiplicative

Example new observable

FIG. 4: Charged hadron $v_{2} /\left(1-R_{A A}\right)$ as a function of path-length anisotropies $\Delta L / L$, for various centrality classes and temperature profiles. The value of transverse momentum is fixed at $p_{\perp}=100$ GeV . The linear fit yields a slope of approximately 1 .

Trento p

$$
\tilde{T}_{R}= \begin{cases}\max \left(\tilde{T}_{A}, \tilde{T}_{B}\right) & p \rightarrow+\infty, \\ \left(\tilde{T}_{A}+\tilde{T}_{B}\right) / 2 & p=+1, \quad \text { (arithmetic) } \\ \sqrt{\tilde{T}_{A}} \tilde{T}_{B} & p=0, \quad \text { (geometric) } \\ 2 \tilde{T}_{A} \tilde{T}_{B} /\left(\tilde{T}_{A}+\tilde{T}_{B}\right) & p=-1, \quad \text { (harmonic) } \\ \min \left(\tilde{T}_{A}, \tilde{T}_{B}\right) & p \rightarrow-\infty .\end{cases}
$$

Figure 3.1 Reduced thickness of a pair of nucleon participants. The nucleons collide with a nonzero impact parameter along the x-direction as shown in the upper right. The gray dashed lines are one-dimensional cross sections of the participant nucleon thickness functions $\tilde{T}_{A}, \tilde{T}_{B}$, and the colored lines are the reduced thickness \tilde{T}_{R} for $p=1,0,-1$ (green, blue, orange).

Modeling improvements

- 3D Trento initial condition
- The X-SCAPE project
- Improved modeling of nucleus/constituent radial profile (moving away from simple Gaussian)

Inputs to Bayesian

- Bayesian analysis is useful for uncovering complex correlations between different parameters and measurement - but -
- Equally important, we should also include "pure" observables that are sensitive to only small amount of parameters
- As well as less model-dependent observables
- Then we design more observables to feed back into the loop

Nuclear size vs substructure

The Trento Ansatz: example

Toy example

$\min \left(T_{1}, T_{2}\right)$	$\sqrt{T_{1} T_{2}}$	$\left(T_{1}+T_{2}\right) / 2$	$\max \left(T_{1}, T_{2}\right)$
$-\infty$	0	1	∞

The Trento Ansatz: example

Toy example

Larger q ~sharper
Reduced thickness T_{12}

Feed-down vs feed-up

Nice illustration from G. Giacalone

Correlation + model assumption

The Trento Ansatz

First sample to determine if nucleons collide

$$
\text { prob. }=1-\exp \left(-\sigma_{g g} \int \rho_{1}(\vec{x}) \rho_{2}(\vec{x}) d \vec{x}\right)
$$

If so, the nucleon adds to the nucleus' thickness function

