

Multi-messenger constraints on heavy elements produced by neutron star mergers

Collaborators: Jocelyn Read, Philippe Landry, Daniel Siegel

Hsin-Yu Chen The University of Texas at Austin

INT 22r-2a Neutron Rich Matter on Heaven and Earth, June 2023

1 H		big	bangi	fusion			cosr	nic ray	r fissio	n •	.						2 He
3 Li	4 Be	mer	ging r	eutro	n stars	? Mina	exploding massive stars 📓					5 B	υO	7 2	8 0	9 F	10 Ne
11 Na	12 Mg	dyin	ng low	mass :	stars	0	exploding white dwarfs 🧖					13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Та	74 W	75 Re	76 Os	77 lr	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

http://www.astronomy.ohio-state.edu/~jaj/nucleo/

http://www.astronomy.ohio-state.edu/~jaj/nucleo/

http://www.astronomy.ohio-state.edu/~jaj/nucleo/

³ Candidate r-process element production site: Binary neutron star or neutron star-black hole mergers

Hsin-Yu Chen / UT Austin

Credit: Robin Dienel/Carnegie Institution for Science

Compare to r-process elements observations

Compare to r-process elements observations

Chemical patterns

Compare to r-process elements observations

Chemical patterns

Evolution history

Milky Way chemical evolution

Milky Way chemical evolution

Milky Way chemical evolution

6

Milky Way chemical evolution

1 H		big	bangi	fusion			cos	mic ray	y fissio	n •							2 He
3 Li	4 Be	mer	ging r	eutro	n stars	? //////	exploding massive stars 📓					5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	dyin	ng low	mass	stars	0	exploding white dwarfs 🌌					13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

5859606162636465666768697071CePrNdPmSmEuGdTbDyHoErTmYbLu9091929394Very radioactive isotopes; nothing left from starsThPaUNpPuVery radioactive isotopes; nothing left from stars

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/

.а

89

Ac

Hsin-Yu Chen / UT Austin

Astronomical Image Credits: ESA/NASA/AASNova

Milky Way chemical evolution

Milky Way chemical evolution

8

Milky Way chemical evolution

8

Milky Way chemical evolution

8

Milky Way chemical evolution

Hotokezaka et al., Int. J. Mod. Phy. (2018) / Siegel et al., Nature (2019)

Iron

Hotokezaka et al., Int. J. Mod. Phy. (2018) / Siegel et al., Nature (2019)

Hotokezaka et al., Int. J. Mod. Phy. (2018) / Siegel et al., Nature (2019)

Hotokezaka et al., Int. J. Mod. Phy. (2018) / Siegel et al., Nature (2019)

Hotokezaka et al., Int. J. Mod. Phy. (2018) / Siegel et al., Nature (2019)

Hotokezaka et al., Int. J. Mod. Phy. (2018) / Siegel et al., Nature (2019)

Hotokezaka et al., Int. J. Mod. Phy. (2018) / Siegel et al., Nature (2019)

Inferred from multi-messenger observations

10

Inferred from multi-messenger observations

Binary neutron star merger rate history

10

Inferred from multi-messenger observations

Binary neutron star merger rate history

10

Amount of r-process ejecta from each merger

¹¹ **A. Binary neutron star merger rate across the history**

¹¹ **A. Binary neutron star merger rate across the history**

Inferred from observations: 12 A. Binary neutron star merger rate across the history

Inferred from observations: 12 A. Binary neutron star merger rate across the history

A. Binary neutron star merger rate across the history

• Merger rate in the local Universe

LVK Collaboration, PRX (2023)
A. Binary neutron star merger rate across the history

A. Binary neutron star merger rate across the history

• Merger delay time distribution

Hsin-Yu Chen / UT Austin

Hsin-Yu Chen / UT Austin

Adapted from Zevin et al., ApJL (2022)

Adapted from SAGA database, Suda et al. (2008)

17

Inferred from observations: B. Amount of r-process ejecta from each merger

Adapted from SAGA database, Suda et al. (2008)

17

Inferred from observations: B. Amount of r-process ejecta from each merger

• Neutron star equation-of-state

Stiffer neutron star equation-of state could lead to more ejecta.

• Neutron star mass distribution

LVK Collaboration, PRX (2023)

Hsin-Yu Chen / UT Austin

Observations:

• Neutron star mass distribution

Neutron star mass distribution

Gravitational-wave and pulsars observations allows for estimation of the amount of r-process ejecta from each merger.

One-zone model

One-zone model

Gravitational wave, short gamma-ray burst, pulsar

Adapted from SAGA database, Suda et al. (2008)

24

Comparing to Milky Way chemical evolution

-In the model: observables for SNe, fraction of r-process ejecta that enters ISM, r-process element chemical pattern etc.

-In the model: observables for SNe, fraction of r-process ejecta that enters ISM, r-process element chemical pattern etc.

-In the Galactic observations: different stellar observation database.

-In the model: observables for SNe, fraction of r-process ejecta that enters ISM, r-process element chemical pattern etc.

-In the Galactic observations: different stellar observation database.

-More realistic models.

Other r-process element production candidates:

28

Collapsar

Siegel et al, Nature (2019)

Accretion disk

Other r-process element production candidates: Collapsar Magnetorotational core-collapse supernova

Siegel et al, Nature (2019)

Accretion disk

Hsin-Yu Chen / UT Austin

Magnetic jet drives neutronrich materials away from the proto-neutron star Mösta et al., ApJ (2018)

Summary

Summary

-Multi-messenger observations allow for inference of r-process elements progenitor.

Summary

-Multi-messenger observations allow for inference of r-process elements progenitor.

-Binary neutron star mergers may not be able to account for Galactic r-process element observations.
Thank you!

0

00

0

•

•

•

V

Hsin-Yu Chen / UT Austin

11

0

•

00

.

A. Binary neutron star merger rate across the history

• Merger delay time distribution

Hsin-Yu Chen / UT Austin

A. Binary neutron star merger rate across the history

• Merger delay time distribution

Hsin-Yu Chen / UT Austin

33

Observational and numerical uncertainties are still very large

-Considering very large numerical uncertainties

33

Observational and numerical uncertainties are still very large

-Considering very large numerical uncertainties

-Varying neutron star EoS

Observational and numerical uncertainties are still very large

-Considering very large numerical uncertainties

-Varying neutron star EoS

-Varying merger rates

33

Comparing the total amount of ejecta

Black hole mass

Black hole spin

Label	m_1	$ \chi_1 $	Tilt	$M_{ m ej,NSBH}/M_{ m ej,Total}$
Gap+aligned spin	Uniform in log, $[5, 40]M_{\odot}$	Uniform in [0,0.95]	Aligned	30%
Gap+BBH-like spin	Uniform in log, $[5, 40]M_{\odot}$	BBH-like	BBH-like	1%
No gap+aligned spin	Uniform in log, $[m_{\rm TOV}, 40] M_{\odot}$	Uniform in [0,0.95]	Aligned	49%
No gap+aligned spin	Uniform in log, $[m_{\rm TOV}, 40] M_{\odot}$	BBH-like	BBH-like	1 1%
EBH-like mass+aligned spin	BBH-like	Uniform in [0,0.95]	Aligned	77%
BBH-like mass+spin	BBH-like	BBH-like	BBH-like	35%

Comparing the total amount of ejecta

Black hole mass

Black hole spin

Label	m_1	$ \chi_1 $	Tilt	$M_{ m ej,NSBH}/M_{ m cj,Total}$
Anniel immedienter	Haifanna in lan [5 40] M	TIN: former in [0.0.05]	A 1:	2007
dap. arrenta opin			migned	0070
Gap+BBH-like spin	Uniform in log. $[5, 40]M_{\odot}$	BBH-like	BBH-like	1%
				100
No RahiarrEnea shin	$0 \mod 1000 \mod 1000, [mm] 000, 40] m_{\odot}$	Omorni in [0,0.30]	Angneu	4370
No gap+aligned spin	Uniform in log, $[m_{\rm TOV}, 40] M_{\odot}$	BBH-like	BBH-like	11%
BBH-like magateligned onin	DDU III.	$II_{1}:f_{2}$ in [0.0.05]	A 1: manual	770%
DDIT		[0,000]		
BBH-like mass+spin	BBH-like	BBH-like	BBH-like	35%
		-		

34

Comparing the total amount of ejecta

Black hole mass

Black hole spin

Label	m_1	$ \chi_1 $	Tilt	$M_{ m ej,NSBH}/M_{ m cj,Total}$
(low to 1 i much on in	Uniform in low [F 40] M	Listens in [0.0.05]	A 1:	2007
adb. arrEnca obru	01110111 11 108, [0, 10]11.0		migned	0070
Gap+BBH-like spin	Uniform in log, $[5, 40]M_{\odot}$	BBH-like	BBH-like	1%
		TT 10 1 [0.0.0F]		1007
No gaptarighed spin	$0 \mod 1000, [m_{\rm TOV}, 40] m_{\odot}$	[0,0.35]	Angheu	4370
No gap+aligned spin	Uniform in log, $[m_{\rm TOV}, 40] M_{\odot}$	BBH-like	BBH-like	1 1%
BBH-like magateligned onin	DDU lileo	Uniform in [0.0.05]	Alimond	770%
DDII		0		
BBH-like mass+spin	BBH-like	BBH-like	BBH-like	35%
		-		

Despite the uncertainties, binary neutron star mergers likely produce more heavy elements than neutron star-black hole mergers in the past 2.5 billion years.

