Prospects for multi-messenger observations with improved gravitational-wave detectors

Hsin-Yu Chen

(NASA Einstein Fellow, MIT)

INT-22-2a program on "Neutron Rich Matter on Heaven and Earth", July 2022

Have we resolved the cosmic tensions? What astrophysical sites produced the heavy elements in ancient stars? How did galaxies form **Does primordial black/hole exist?**

We have learned a lot about how the Universe work from theories, experiments and observations, but there are still big questions to be answered.

Hsin-Yu Chen / MIT

NASA/WMAP Science team

The properties of extreme matter in neutron stars

What are the properties of the ultra-dense and low/finite temperature matter in neutron stars? What is the structure of neutron star?

CE Horizon Study, arXiv:2109.09882

Weber et al., MPLA (2014)

The origin(s) of heavy elements

Where are the production sites of heavy elements: neutron star mergers, collapsars, magnetorotational core-collapse supernovae, or somewhere else?

Foucart, PRD (2014)

Siegel et al, Nature (2019)

Mösta et al., ApJ (2018)

Known electromagnetic emissions of neutron star mergers

Short gamma-ray burst Energetic and can be observed at higher redshifts, however they are narrowly beamed.

Kilonova

More isotropic and are easy to observe in the local Universe, but they are dimmer.

NASA's Goddard Space Flight Center/CI Lab

The emission mechanisms of GRBs and kilonovae

What is the central engine of short gamma-ray bursts? What is the "correct" kilonova emission model (and the origins of the diversity of emissions) ?

Future gravitational-wave detectors will be critical to address these questions.

Multi-band gravitational-wave observatories planned in 2G+ GW frequency

NanoHz mHz deciHz >1Hz

- -<u>Ground-based (nanoHz)</u>:
- Next-generation pulsar timing array
- -<u>Space-based (mHz):</u>
- LISA, TianQin
- -<u>Ground-based, space-based (deciHz)</u>:

DECIGO, BBO, TianGO, Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS), Lunar Gravitational-Wave

- Antenna (LGWA)
- -<u>Ground-based (>1Hz)</u>:

Einstein Telescope, Cosmic Explorer, Voyager, Neutron Star Extreme Matter Observatory (NEMO) 8

Upgrade of ground-based detectors

Upgrade of ground-based detectors

-Underground in Sardinia or Netherlands.

-Six detectors in a triangle (10-10-10km).

-Can observe down to a few Hz.

Upgrade of ground-based detectors

Hsin-Yu Chen / MIT

LIGO Lab/LIGO Document T1500293

The detection of post-merger signals

In 3G, we expect a few binary neutron star mergers a year with post-merger detections.

Takami et al, PRD (2015)

CE Horizon Study, arXiv:2109.09882

More precise measurements of the tides

	$\Delta \Lambda$	~2	0	0	
--	------------------	----	---	---	--

Δ**Λ~1**00

$\Delta \Lambda < 20$

Chatziioannou, PRD (2022)

SNR=32.4

O(10-100) events/yr O(100-1000) events/yr with SNR>100 with SNR>100

Borhanian&Sathyaprakash, arXiv:2202.11048

Golden events v.s. full populations

<u>Chen</u> et al, CQG (2021), Abbott et al., LRR (2020), Evans et al., 2109.09882

Use of the population properties

The origin(s) of heavy elements

Neutron star-neutron star Neutron star-black hole

-What are the conditions for binary mergers to produce gold?
-Do LIGO-Virgo binary mergers satisfy these conditions?

What kind of <u>neutron star-black hole mergers</u> produce more heavy elements?

-Neutron star tidal radius > Black hole innermost stable circular orbit

What kind of <u>neutron star-black hole mergers</u> produce more heavy elements?

-Neutron star tidal radius > Black hole innermost stable circular orbit

Black hole mass distribution

-Inferred from LIGO-Virgo binary black hole merger observations.

Hsin-Yu Chen / MIT

Abbott et al., ApJ (2021)

What kind of <u>neutron star-black hole mergers</u> produce more heavy elements?

-Neutron star tidal radius > Black hole innermost stable circular orbit

Inferred black hole spins

Abbott et al., ApJL (2021)

The black hole spins didn't show too much support to the aligned component.

Different sources of uncertainties

-Numerical simulations of the amount of ejecta, and the analytical formula fitted to the simulations

-Neutron star equation-of-state.

-Neutron star and black hole mass distribution.

-Black hole spin distribution.

-Astrophysical rate of binary neutron star and neutron star-black hole mergers.

Estimate the total amount of gold

<u>Chen</u>, Vitale & Foucart, ApJL (2021)

Despite the uncertainties, binary neutron star mergers likely produce more heavy elements than neutron star-black hole mergers in the past 2.5 billion years.

Further implications on the electromagnetic emission³⁰

See also Fragione, ApJL (2021)

Relative ratio of different ejecta

Detections across different redshifts

40 Mpc

Median distance 200 Mpc (z~0.1) Median distance 4 Gpc (z~1.5)

<u>Chen</u>&Holz, arXiv:1612.01471

<u>Chen</u> et al., CQG (2021)

Are the GW and EM populations consistent across redshifts?

Reconstructing the heavy-element production history³³

-The Solar system is 4.6 billion years old.

Wallner et al., Nature Communications (2015)

-The r-process element enriched stars in Reticulum II ultra-faint dwarf galaxy are >10 billion years old.

The origin of ancient enrichment episodes will require higher-redshift observations.

Hsin-Yu Chen / MIT

servatories)

More precise measurements of masses

 $\Delta m \sim O(10^{-2}) M_{\odot}$

3G

Smith et al., PRL (2021) Borhanian&Sathyaprakash, arXiv:2202.11048

More precise measurement of inclination

GW170817

25° uncertainty

Median uncertainty is 3°

Sathyaprakash, arXiv:2202.11048

Can we resolve the emission geometry of short gamma-ray bursts and kilonovae?

Searching for electromagnetic counterparts is challenging

-We don't know where it is on the sky.

-The counterpart emissions fade away.

Search for counterparts: More precise localizations

2	8	d	lea	2
			- 3	

5 events localized in 10 deg² a year. 1,000 events localized in 1 deg², few thousands in 10 deg² a year.

<u>Chen</u>&Holz, arXiv:1612.01471

Mills et al., PRD (2018)

Search for counterparts: Early warnings

40min after mergers.

event localized within
 few hundred deg²
 15s before merger.

O(1-10) events localized within 10 deg² 5min before mergers.

Magee et al., ApJL (2021)

Nitz&Dal Canton, ApJL (2021)

Is there any precursor/early emission?

What kinds of electromagnetic facilities do we need?

Multi-band electromagnetic-wave telescopes 40 in the future EM frequency

- Radio Infared Optical UV X-ray γ-ray
- -<u>Radio</u>: SKA, ngVLA
- -Infared: JWST, Roman Space Telescope
- -<u>Optical</u>: Vera Rubin Observatory
- -<u>UV</u>: Hubble?
- -<u>X-ray</u>: Athena, TAP
- -<u>γ-ray</u>: Fermi-like–AMEGO-X / Swift-like–STAR-X
- Hsin-Yu Chen / MIT

How do these telescopes help GW-EM multi-messenger science?

Which of these telescopes are more important?

Chen, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) The EM detection efficiency drops rapidly as the ⁴³ distance increases

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) **Number of joint detections in 2.5-3G era**44

Tension in the Hubble constant measurement

Independent measurement of the cosmological parameters— Standard siren method

Hsin-Yu Chen / MIT

Schutz, Nature (1986) / Holz & Hughes, ApJ (2005)

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) 48 **Cosmological constraints from bright sirens in 2.5-3G**

-A+ and Voyager still at percent level. Subpercent level precision is possible in CE era.

-Kilonovae are better than GRBs for H₀ constraint.

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) 49 **Cosmological constraints from bright sirens in 2.5-3G**

-GRBs are better than kilonovae to constrain Ω_m and w.

-One order of magnitude fewer GRBs (with beaming) is needed to achieve the same precision as kilonovae.

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) 50

Cosmological constraints from bright sirens in 2.5-3G

-Swift-like GRB telescope with larger field-of-view and better sensitivity is in need in the CE era.

-Otherwise, dedicated VRO-like telescope is needed in absence of the GRB telescope described above.

Final thoughts

-What will be the key EM facilities?

-What else can we learn from GW-EM multimessenger nuclear physics?

-What will be the limitations in the 2.5G/3G era?

Thank you!

0

00

0

•

•

•

V

Hsin-Yu Chen / MIT

111

0

•

.

.

00

More precise measurements of the inspiral tides

GW170817-like event $\Delta \Lambda \sim 100$ with A+, $\Delta \Lambda < 70$ with Voyager, $\Delta \Lambda < 20$ with CE/ET.

Chatziioannou, PRD (2022)

Louder signals

O(10-100) detections in 2G+ and O(100-1000) of detections in 3G every year with signal-to-noise ratio>100.

Borhanian&Sathyaprakash, arXiv:2202.11048

Hsin-Yu Chen / MIT

More precise measurements of masses

Most of the events will have better than $O(10^{-2})M_{\odot}$ mass measurements.

Borhanian&Sathyaprakash, arXiv:2202.11048

Multi-messenger: More precise inclination

Median uncertainty is 20°.

Median uncertainty is 3°.

<u>Chen</u> et al., PRX (2019)

Borhanian&Sathyaprakash, arXiv:2202.11048

Multi-messenger: More precise localizations

1,000 events localized in 1 deg² and a few thousands in 10 deg² every year.

Chen&Holz, arXiv:1612.01471

Hsin-Yu Chen / MIT

Mills et al., PRD (2018)

Multi-messenger: More precise localizations

1,000 events localized in 1 deg² and a few thousands in 10 deg² every year.

5 events localized in 10 deg² every year. 1.0 0.9 **Cumulative Distribution Function** 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 10² 10^{3} 10^{0} 10^{4} 10 10^{-1} 90% C.L. Area (deg²)

Chen&Holz, arXiv:1612.01471

Hsin-Yu Chen / MIT

Mills et al., PRD (2018)

Different EM observing scenarios

Scenario	GW	$R_{ m GW}^{(a)}$	EM	$t_{\rm int}^{(b)}$	$D_{L, \mathrm{lim}}^{(c)}$	$f_{20 deg^2}^{(d)}$	$f_{\rm obs}^{(e)}$	$\iota_{\text{GRB}}^{(f)}$	$\sigma^{(g)}_{\iota}$	$\dot{N}^{(h)}_{ m GW/EM}$	$\mathcal{F}_{\mathrm{obs}}^{(i)}$
-	-	(Mpc)	-	-	(Mpc)	-	-	-	-	(yr ⁻¹)	-
A+, KN (Baseline)	A+	410	Rubin	30 s ×24 +120s	575	0.8	0.4	All	N/A	12	0.0008
Voyager, KN (Baseline)	Voyager	1020	-	$30 \text{ s} \times 24 + 120 \text{s}$	575	0.8	-	-	-	28	0.002
Voyager, KN (Intermediate)	-	-	-	300 s ×24	1250	0.7	-	-	-	114	0.06
Voyager, KN (Ambitious)	-	-	-	1800 s ×24	2250	0.6	-	-	-	144	0.48
CE, KN (Baseline)	CE	12840	-	30 s ×24 +120s	575	1.	-	-	-	39	0.003
CE, KN (Intermediate)	-	-	-	300 s ×24	1250	0.95	-	-	-	321	0.18
CE, KN (Optimal)	-	-	-	600 s ×24	1550	0.95	-	-	-	572	0.6
CE, KN (Ambitious)	-	-	Rubin(+)	1800 s ×24	2250	0.9	-	-	-	300(1425)	1(4.75)
A+, GRB (Baseline)	A+	410	Swift	$<\!2\mathrm{hr}$	3000	N/A	0.03	$\lesssim 10^{\circ}$	10°	0.07	$\ll 1$
A+, GRB (Intermediate)	-	-	Swift+	-	-	-	0.15	-	-	0.35	≪1
Voyager, GRB (Baseline)	Voyager	1020	Swift	-	-	-	0.03	-	-	1	$\ll 1$
Voyager, GRB (Intermediate)	-	-	Swift+	-	-	-	0.15	-	-	5	$\ll 1$
CE, GRB (Baseline)	CE	12840	Swift	-	-	-	0.03	-	-	3	$\ll 1$
CE, GRB (Intermediate)	-	-	Swift+	-	-	-	0.15	-	-	16	$\ll 1$
CE, GRB (Ambitious)	-	-	Swift++	-	5600	-	0.15	-	-	91	≪1

Table 1. Joint GW-EM Observing Scenarios

Neutrino counterpart GW170817

-Non-detection consistent with an off-axis GRB model.

-20s: From the extended emission of GRB

-Days: Optically thick ejecta can retain the energy and lead to emission in the later stage.

