"particle"

Light DM: Experiment

Alvaro E. Chavarria University of Washington

- Low-energy spectroscopy for dark matter (DM) direct detection (DD).
- Dark matter (DM) direct-detection signal.
- Electronic recoils to search for light DM.
- Charge-coupled devices (CCDs) fundamentals and performance.
- DAMIC at SNOLAB and the DAMIC excess.
- DAMIC-M and other skipper CCD experiments.
- SuperCDMS and EDELWEISS HV detectors.
- Outlook.

Spectroscopy for DM DD

"Boring": No "new" physics. Theorists tend not to work on it.

Many ingredients go into the construction of the spectrum.

Many ingredients go into the construction of the spectrum.

"Boring": No "new" physics. Theorists tend not to work on it.

Signal and background spectra must be validated!

Deposited energy spectrum

Target response

Boring solid-state physics

"Boring": No "new" physics. Theorists tend not to work on it.

Dark matter signal

- Local density in ~0.3 GeV c⁻² cm⁻³.
- Interaction cross-section is small.
- low backgrounds.

DM-e scattering

Three-body final state:

Bosonic DM absorption:

- An additional e⁻ or y in the final state.
- Migdal effect (atomic e^{-}) or Bremsstrahlung (γ).
- E and p can be conserved even when e⁻ or y take most of the WIMP kinetic energy.
- Probability of e^{-1} or γ emission <10⁻⁶. Rare.
- Never observed for recoils with keV energies. Uncalibrated.
- DM particle is a boson that couples to the electron, e.g., a "dark" or "hidden" photon.
- DM is absorbed by the target electron and its rest energy released as electronic recoil K.E.

Electronic recoil result could also be interpreted as limit on DM-N scattering (Migdal) or DM absorption I will use DM-e scattering parameter space as benchmark

Other e-recoils

- Skipper-CCD detectors have the best limits.
- ► DAMIC-M LBC result released at IDM2022.

DN-e exclusion limits

- DM exclusion limits depend on the code used to generate the DM signal.
- Multiple codes available in the literature: QEDark, DarkELF, EXCEED-DM. PRD104(2021)095015

easy cryogenics (~100 K).

Sample CCD image (~15 min exposure) segment in the surface lab.

Cosmic muon

CC

7

Point-like

 β particle

Zoom

. .

.

50 pixels

15 • 20 10 25 5 Energy measured by pixel [keV]

"Skipper" readout: Perform *N* uncorrelated measurements of the same pixel.

Effect on low frequency noise:

Conventional readout

Design by S. Holland at Berkeley Lab

"Skipper" readout: Perform N uncorrelated measurements of the same pixel.

Signal

(a)

Charge [e-]

σ_e (e-)

- Extensive research program to characterize the response of CCDs: energy / z recon.
- Sources: optical photons, X rays, γ rays, neutron sources, etc.
- Detailed models, e.g., charge generation, diffusion and collection.

Characterization

17

- at low energies: PRD96(2017)042002
- Observed steps at the binding energies of the atomic shells in silicon.
- Apparent softening of the L step at 100-150 eV.
- Incorrect detector response model or physics?

• First measurement of the electronic-recoil spectrum from Compton scattering

Used original DAMIC CCDs with conventional readout. Threshold: 60 eV_{ee}.

- decreasing threshold to 23 eV_{ee}:
- Confirmed softening of the L step, observed structure in the L step.
- Detector response model is good!
- Softening reproduced with **FEFF** code, which performs full QM treatment.
- Full QM calculations may be needed to correctly describe electronic-recoil spectra.

Precision measurement with a skipper CCD improved energy resolution and arXiv:2207.00809(2022)

- γ scattering from core electrons in Si.
- Boring background.

Can the γ calibration data or **FEFF** be used to test the validity of the EXCEED-DM code?

χ scattering from core electrons in Si and Ge.
Exciting opportunity to search for DM!

Nuclear recoil response

- Detector response calibrated with 24 keV neutrons from ${}^{9}Be(\gamma,n)$ reaction.
- predicted by Lindhard model.
- Still no data or model to describe N_e probability distributions at low energies.
- No observed Migdal effect at low energies.

By comparing data and Monte Carlo spectra, ionization signal was measured to be lower than

- The amplitude of the signal is crucial to estimate the sensitivity of an experiment to DM-N elastic scattering, *i.e.*, to make meaningful comparisons between experiments.
- Lindhard model predicts the number of ionized electrons (ionization signal) from a recoiling nucleus of a given energy.
- the binding energy of the target atom).
- Not much theoretical progress since the 1960s because it's "boring."
- Recent work by Y. Sarkis (UNAM) relaxing Lindhard's assumptions shows promise: PRD101(2020)102001

Radioactive backgrounds

- Particle classification (α , β , NR) by track topology (at high E>100 keV_{ee}).
- Spatial coincidence searches to identify decay sequences: JINST16(2021)P06019
 - Cosmogenic ³²Si: ³²Si (T_{1/2}= 150 y, β) \rightarrow ³²P (T_{1/2}= 14 days, β)

 $140 \pm 30 \ \mu Bq / kg$

- Also upper limits on every β emitter in the U/Th chain.
- Measurement of the cosmogenic activation of ³H in silicon by exposing a CCD to a neutron beam: PRD102(2020)102006
- Exhaustive radio-assay program: PRD105(2022)062003

112 ± 24 atoms / kg /day

CCD Box

Cryostat insert

DANIC at SNOLAB

In shield

External shield

- First array of CCDs operated underground for a DM search. Since 2012.
- 7 CCDs (6.0 g, 16 Mpix) cooled to 140 K.
- Total (bulk) background rate: ~10 (5) d.r.u.
- Low pixel noise 1.6 e-with conventional readout.
- Extremely low leakage current: 2 x 10⁻²² A cm⁻².
- DM-e⁻ scattering results: PRL123(2019)181802
- "WIMP search" with 11 kg-y exposure: Exclusion limit: PRL125(2020)241803 Full details: PRD105(2022)062003

DANIC at SNOLAB

DANIC Excess

- Constructed full background based on extensive knowledge about radioactive background sources and detector response.
- Performed a fit to the data ionization events with the background model in (E, σ_x) parameter space.
- Excess of 17.1 ± 7.6 events with 50-200 eV_{ee}, 3.7σ significance.
- If not addressed, limiting background for next generation experiments.

Research highlights:

PRL125(2020)171802

- First DM-search with skipper CCDs at Fermilab.
- Simulation studies on physical origins of singleelectron / photon backgrounds. PRX12(2022)011009
- Experimental studies on instrumental effects to understand origin of single-e⁻ backgrounds.

PRAppl17(2022) 014022

SENSEI at SNOLAB:

- ► 10 skipper CCDs (~25g) deployed already.
- Performance test runs before science run!
- Packaged and tested at Fermilab.
- Final goal: 100 g traget with 5 d.r.u. background.

Single photon backgrounds in **CCD** detector:

DANC-M

- 52 CCD modules in LSM (France) for kg-year target exposures.
- Skipper readout for 2 or 3 e⁻ threshold.
- Background reduction to a fraction of d.r.u. (improved design, materials, procedures).
- Main challenges: cosmogenic activation, surface contamination, backside CCD response.
- Besides DM-e searches, DM-N result may have comparable sensitivity to HV detectors of SuperCDMS SNOLAB.

Prototype detectors

- Four 24 Mpixel DAMIC-M prototype skipper CCDs.
- Two deployed in DAMIC at SNOLAB, two in the LBC.
- Low Background Chamber (LBC) test setup for DAMIC-M at LSM for performance and background studies.
- Single-e⁻ resolution, 2×10^{-3} e⁻/pix/day, 10 d.r.u., 18 g.
- Understand DAMIC excess, **DM search results**.

- Pixel distribution from 115 g-d of data.
- ~10% of the CCDs.
- Background model: leakage current in the CCDs (ionization events are negligible).
- Signal model: QEDark to generate differential rate of DM signal, ionization model from PRD 102 (2020) 063026, diffusion model from our surface calibrations.
- Fit distribution to set 90% C.L. upper limits in cross section-DM mass parameter space.
- Observe one 4e⁻ event with probability of 15%.

DANIC-M LBC result

Image selection; mask high E ionization events, regions of elevated leakage current (defects)

- R&D: scale the existing technology towards a 10 kg experiment.
- Goal: 30 kg-yr exposure with background level of 0.01 d.r.u.
- ► 28 Gpix in full Oscura instrument! c.f. LSST camera's 3.2 Gpix.
- Cold front-end electronics required for multiplexing and signal processing from ~24,000 channels.

16-CCD Multi Chip Module (MCM)

arXiv:2202.10518(2022)

16 MCMs in EFCu

Full payload 100 SMs: 10 kg!

SuperCDMS / EDELWEISS HV

- Cryogenic calorimeters.
- Amplification of heat signal from charges drifting in electric field:

$$E_{heat} = E_{recoil} + E_{Luke} = E_{recoil} + N_p \Delta V$$
$$E_{heat} = E_{recoil} (1 + \frac{\Delta V}{\epsilon}) \text{ particle-ID dependent}$$

- Amplification proportional to ionization signal and to applied bias
- No ER/NR discrimination as heat is dominated by ionization signal.
- Heat-only events are a source of backgrounds.
- Strategies to reject surface events: multiple electrodes, timing.

- HVeV detectors "best in class:" 2.7 eV baseline resolution, 9.2 eV threshold, large dynamic range, 1-g target.
- Running underground in NEXUS at Fermilab (300 m.w.e.)
- Four science runs with progressively lower backgrounds.

SuperCDMS HVeV

EDELWEISS

RED30: 42 eV baseline resolution, 0.53 e-. Operated underground at LSM.

Better exclusion limit than SuperCDMS HVeV because of larger exposure, lower surface-to-volume and lower background environment (despite x10 noisier).

• Plans for CRYOSEL: 30g Ge detector, σ_{phonon} = 20 eV, sustaining 200 V bias.

Outlook

- Electronic recoil searches allow us to search for even lighter DM.
- For DM-e scattering, ~MeV masses. Also Migdal, DM absorption.
- Require sensitivity to only a few charges ionized in the target.
- CCD detectors are scaling to kg-scale targets with single-charge resolution and correspondingly low backgrounds.
- Broad research program to understand the response of CCD detectors to the DM signal and backgrounds.
- Significant progress in single-charge resolution in cryogenic calorimeters.
- Active experimental program with orders-of-magnitude improvement in sensitivity in the coming years.

Conclusions

