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Massive Continuum (Euclidean) QFTs

Quantum Critical Point
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Massive QFTs emerge by tuning relevant couplings
near a quantum critical point of a lattice field theory

When critical points are “free” often no fine tuning Is necessary



The most interesting theories have marginally relevant couplings

Examples: 2d O(N) models, 4d Yang-Mills, ...
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Universal continuum physics

Non-universal, I
non-continuum

| o Challenge is to reproduce this physics!
lattice phyisics



Universal physics of a massive QFT can be studied via
the Step Scaling Function (SSF)
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Qubit Regularization of QFTs

A new type of regularization of QFTs where we begin with a
Hamiltonian formulation on a lattice with a finite local Hilbert space.

e
local lattice Hilbert space:  Hey = Ho

On a finite lattice volume, the QFT is replaced by quantum
mechanics of a system with a finite Hilbert space!

Continuum QFT emerges through a limiting process.

continuum limit a — 0

Thermodynamic limit L — oo

We may not

Traditional Hilbert space limit Q — 00 +—— need this limit!



Qubit Regularization: RG view point

Quantum Critical Point
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Qubit Regularization unifies HEP and NP with CMP.
Design a Condensed Matter system to study QFT’s of interest
The idea of course is quite well understood in limited cases...

We know of several examples of critical phenomena in the IR
can be reproduced by lattice quantum spin-systems.

RN

Classical spin models at The k=1 SU(2) WZW theory
second order phase can be reproduced by a
transitions can be recovered quantum spin-1/2 chain.

by quantum spin models

. | Haldane, Affleck,
Assaad, Scalapino, Sandvik, ...

But can the whole SSF of a massive QFT be reproduced?



What if the UV theory is Gaussian?

Qubit Model physical physical
(some fixed Q) << UVlength scales << IR length scale
(Gaussian Theory!) (mass gap)

Simple examples of QFTs exist where this can indeed be shown!

Classical Stat. Mech.

N\

Qubit Models Euclidean QFTs

~_

Quantum Stat. Mech.



Example: 2D O(3) Non-linear Sigma Model

Action:

5(¢) — % / dT dX {atgx(t) ) 8t$x(t) _I_ axgx(t) ) axgx(t)}

() - dx(t) = 1
Massive QFT (like Yang Mills theory or QCD)
Asymptotically Free
Exactly Solvable!

Studied extensively on the lattice using Lagrangian methods

A 2-qubit model can reproduce this physics!



Local site Hilbert space
describes a quantum
particle on a surface of
a unit sphere
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Basis of the full Hilbert space Hrun
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Po
Qubit Regularization:  Hrul = Hq



View the local Hilbert space is a direct sum of symmetry representations:

Traditional Hilbert Space: Hrun = 69 Vi

Introduce the projector Pgo = Z Z

where Q — {61,62,83, }

Qubit Regularized Hilbert Space Hg = 69 Vi
e q



Traditional quantum Fields: @, (position)

Canonical commutation relations
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Qubit regularized quantum fields:

Easy to verity:
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Symmetry relations maintained!
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A simple qubit regularization scheme is @ = {0, 1}

(dim(Hg) = 4) Two qubits per lattice site 6 n

Model: Heisenberg-Comb

Bhattacharya, Buser, SC, Gupta, Singh ]
PRL (2021) 2 305 221
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Quantum Critical Point:
J — 0

Step scaling function: Heisenberg comb

! Ve Traditional lattice model
Y [Caracciolo et al, 1995]
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Qubit Regularization of SU(N) Gauge Theories

Hanging Liu, SC Symmetry 14 (2022) 2 305,

Local link Hilbert space
describes a quantum
particle on the surface
of the SU(N) group
manifold

Basis of the full Hilbert space Hrun
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‘position basis”
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A labels distinct irreps of SU(N)
‘momentum basis”



Relating the momentum basis to the position basis

DY) = / dg] V/dx D(g) le)
1

SU(N) irrep A
Gauge transformations are implemented by “left” and “right” translations

Left group generators [

Right group generators R |
e 't g) = |n(@)g) e N |g) = [g hTi(a))
e L DYy = Dyp(h™X(d)) |Dy) e @R |D}) = |Dj) D(h(a))

Each irrep is an invariant subspace under gauge transformations



The subspace of each irrep is given by

{ID7), i,j=1,2,..d\} €Hx dim(Hy) = (dy)?

Inside each irrep, the left and right gauge transformations
act on independent spaces of dual irreps, we have

Hy=Vy® Vy

This means the full link Hilbert space is give by

Hreu = 69 Vi ® V' «—— Peter-Weyl Theorem
]\

T

distinct irreps of SU(N)



Po
Qubit Regularization:  Hrul = Hq

A projector that preserves the gauge symmetry algebra

Po = Z Z: D;)(D3 QR = {1, A2, ...}

AEQ iy

Qubit Regularized Hilbert Space Hg = 69 Vi ® Vy
AEQ

dim(Hg) = 3 (dh)

AEQ

Qubit models depend on the Hilbert space Hg and the Hamiltonian.



Quantum Fields on Hgy
[? RP a=172 .. N>°—1 (momentum fields)

Uz, UNi,j=1,2,...dy  (position fields)

Uzlg) = Dj(g) |g) U)'g) = [D7(g)]" |g)
AN /

matrix representation of the irrep

Action of the link operator mixes irreps

Uy |Dy) / [dg] \/dy Dk/(g) D2 (g) |g)

A@X



Quantum Fields on Hq

L% = Pq L° Pg U™ = Po Uy Pq

Po (U7)T Pq

Rca\) Po R Pg (U;JQ'/\)T
Gauge Symmetry Algebra
[La, Lb] _ I-fabc LC, [Ra, Rb] _ I-fabc RC, [La, Rb] — 0
[L2.U2] = (T Uy, (R, UF] = — Uy (T
Non-symmetry relations in Hrul

(), U] = 0 [, @) =0 Ukt = sl

Qubit gauge fields also satisfy the gauge symmetry algebra
but violate the non symmetry relations!



A simple gubit regularization involves Q= 1{1, L1, [, ... }
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Hanging Liu, SC Symmetry 14 (2022) 2 305, T

All anti-symmetric irreps

Action of the fundamental link operator is easy }

Ul DY) = / dg] v/dx DA(g) D) lg)

AR F
4T has the desired cyclic property Eé
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Matter can be added through ®
a local Hilbert space on sites. S~

Hmatter

Hmatter Carries a representation of SU(N) that is being gauged.
An example of Hmatter IS the N colored of fermionic Fock space

Occupation basis:

dim(Hmatter) = 2"
ny, na, i) = (c))™..(cl)™0) :

(Gauge invariant operators that couple fermions with gauge fields
are also easy to construct

CI'T,X (Z/[g,xy)Jr Cjy CI'T,y (Z/{g,xy) Cj x
- *
X y




Generalized Dimer Models

The Hilbert space of a gauge theory is only completely defined
after a Gauss law charge is fixed on each lattice site.

For SU(N) gauge theories the Gauss law sectors are defined by
fixing local SU(N) irreducible representations, which often turn out

to be the trivial representation.

For U(1) and Z2 gauge theories, other Gauss law sectors can also
be interesting.

Fixing the Gauss-law forces in the “momentum” basis leads to
generalized dimer models.



‘momentum basis”
Gauge Theories — Generalized Dimer Models

Consider a qubit regularized SU(3) _ 2
Hilbert space on a single link: Q=11.3.3}

Each irrep on the link has the Hilbert space:  Hy = V), ® Vj

A=1 A =3 A =3
Link Hilbert space  @----- @ ® @ @ -
dim(Hg) = 19 1 1

Matter Hilbert space @ i i l

dim(Hg) = 8

1




Physical Hilbert space Hphys in 1d

Baryon Meson

On a L site lattice dim(Hphys) = 4" +2 comparedto (8x19)"

Physical Hilbert space Hephys in 2d without matter is interesting

A
A
A
A
A
A
¢ 4
' '
' '
¢ 4
' '
4
4 N

Site on a honeycomb lattice

These arguments can be generalized to any lattice in any dimension.



Qubit regularized gauge invariant Hamiltonians are easy to construct

H=a1) Ly lye+az) (U/g‘)'/\ ™ (US’/\)T) + -
P

A

Diagonal in Off-diagonal in
Quantum momentum momentum
dimer space space

models.

It H contains only diagonal terms, then we get “classical” stat. mech.
models, which can also lead to interesting Euclidean QFTs.

 Models containing only Up and (Up)' lead to
Remember! | classical lattice gauge theories in Hgy,
| since they are diagonal in “position” space.




A massive continuum QFT
via a classical dimer model

It is well known that the classical 2D lattice XY model undergoes a
BKT transition from a critical phase to a massive phase.

Action: S = —0 Z cos(0x — 0, )

(xy)
massive critical
-9
Be
Massive QFT

This massive QFT can be obtained using a classical
closed packed dimer model without fine tuning.

Desai, Pujari and Damle, PRE 042136 (2021)
Maiti, Banerjee, SC, Marinkovic (in progress)



Each dimer Is oriented with constraints on the sites, such that
each site can only contain one oriented dimer.

Further the dimer orientations satisfy Qx = (—1)*

An example of a closed pack dimer configuration

Configuration weight: W (c) = AN+

This model can be viewed as a qubit regularized U(1) lattice gauge theory



Consider the U(1) link Hilbert space:

- - - - ®----- L
Electric Field Operator:
Eo |+) =1+, Eg|=) = — 1), E|0) =0
Gauge charge: Qx = (V- E),

Consider a cubical lattice with dimensions L x L x 2 which is
periodic In two dimensions but not in the third dimension.

Fix the Gauss law sector: @y = (—1)*

Choose a Hamiltonian that is diagonal in the Electric flux basis
and has the appropriate Boltzmann weight for each basis state.



The massive QFT
at the BKT transition

Preliminary Results

Classical
A= 0 L=00 5o Mode
;——\/——J
The limits do

not commute!

UV fixed point
Hasenbusch, 2008
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Preliminary Results
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Preliminary Results
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A massive continuum QFT
via a quantum dimer model

Hamiltonian (a Z2 gauge theory)
Frank, Huffman, SC, PLB 806, 135484 (2020)

H = Z — (CJ-TCJ'_|_1 +cf+1cj) of — hoj

/ ]

gauge fields
o—9O

Massive continuum QFT J i+1

Phase diagram | | |
o confined massive fermions

T h
h=0
(deconfined massless fermions)



Define new operators

X X X _
| fb:CO 6—0-0 0-1"'0-_]'—1C./
fermions T T : :
X X X
f — CO 75 —O-O 0-1...0-j_1Cj
Wilson loop c x5 ;
and its conjugate Wi-1 =05 07...01_4 El-1=07_4
.‘.
z z f.'f;
Local gauge charges @ = o7 ;07 (—1)% 7

In terms of the new operators and W; =1, j=0,1,2..L -2
H o= —t(Ffa+Ff ) W —h EL1Qo(—1)"Qy(—1)"...Q;(—1)"

f' i r

Free fermions Non-local interaction!

We get free deconfined massless fermions at h = 0!



To study the theory at non-zero values of h we compute three mass scales.

chiral order parameter gauge mass winding mass

b = < (_1)j‘|‘CjTCj > M, = \/h (o7 ) <W2>/5 ~ Be—MulL

Scaling of the three mass scales with h

All three scale as a
single power of h!

M ~ hP

Fitting the data
we found

p ~ 0.579

| | | | |
0.01 0.01 0.03 0.05 0.10 0.15

h




Understanding the massive quantum field theory

S = /d2X (@(X)Jué’uw(x) + h (9;,)

1
[h] = — ~0.73
p
Effect of the gauge
interactions!

more relevant than mass!

Borla and Moroz (TU Munich) suggest that bosonization leads to
the massive Sine-Gordon field theory with

S = /d2x{8i7rau¢ Ou¢ — a h cos (%)}

This predicts p = 0.75

The Z2 gauge symmetry affects the periodicity of the angular variable.



Conclusions

Qubit Regularization is a new way to explore QFTs. All QFTs can
be qubit regularized in a systematic way.

Qubit regularizations naturally suggest that we reformulate lattice
gauge theories In a "'momentum” or “representation” basis.

The gauge invariant Hilbert space of gauge theories naturally
describes the configuration space of “generalized dimer” models.

Both classical and quantum dimer models have critical points
and can lead to massive QFTs, at least in low dimensions.

Exploring similar and other models motivated by SU(N) gauge
theories in various dimensions could be exciting.



