Probing the equation of state of nuclear matter with heavy ion collisions

Zbigniew Chajęcki

for the HiRA Collaboration

Anatomy of Neutron Stars

Neutron stars are a rich playground for the EoS and symmetry energy

- Inner crust: $\rho < \rho_0$
 - Mix of neutron gas and lattice of finite nuclei
 - S(ρ) determines the thickness of the crust, frequency of star quakes
- Boundary region \rightarrow pasta
- Outer core: $\rho > \rho_0$
 - Neutron-rich nuclear matter
 - Determines radii, moments of inertia
- Inner core \rightarrow ????

Need to know the symmetry energy $S(\rho)$ at both high and low density to understand neutron stars. Laboratory measurements allow us to probe the nuclear matter at various densities.

EOS: Symmetry energy

To probe the EOS of asymmetric nuclear matter (neutron stars) we need to be able to study the nuclear matter at **various densities** and **asymmetries**

The only way we can do it in the laboratory is via heavy ion collisions:

- nucleus nucleus collisions at higher densities ⇒ require higher beam energies and new detectors
- Increase sensitivity to symmetry energy by increasing δ (asymmetry between the # of neutrons and protons)
- To obtain S(ρ), P(ρ), .. we need theory.

$$\mathbf{E/A} (\boldsymbol{\rho}, \boldsymbol{\delta}) = \mathbf{E/A} (\boldsymbol{\rho}, 0) + \delta^2 \cdot \mathbf{S}(\boldsymbol{\rho})$$
$$\delta = (\boldsymbol{\rho}_n - \boldsymbol{\rho}_p) / (\boldsymbol{\rho}_n + \boldsymbol{\rho}_p) = (\mathbf{N} - \mathbf{Z}) / \mathbf{A}$$

Modeling heavy ion collisions

Our tool: Transport models

- BUU Boltzmann-Uehling-Uhlenbeck
- QMD Quantum Molecular Dynamics
- AMD Antisymmetrized Molecular Dynamics
- Simulates the time-dependent evolution of the collision

Danielewicz, Acta. Phys. Pol. B 33, 45 (2002) Danielewicz, Bertsch, NPA533 (1991) 712

Main ingredients

- Nucleons in mean-field
- Symmetry energy
- Momentum (in-)dependent nuclear interaction
- effective mass
- In-medium cross section
- Cluster production

Importance of clusters in AMD

Multiplicity in heavy ion collisions Without (left) and with (right) dynamical cluster production

What we hope to learn?

Momentum Dependence of Symmetry Energy Potential

Effective mass

 The effective mass describes how the potential energy depends on the momentum

$$m^* = \frac{m}{1 + \frac{m}{p}\frac{\partial V}{\partial p}}$$

- At saturation density this reduction is ~70% from the free nucleon mass
- In asymmetric matter the potentials that neutrons and protons feel are expected to be different → effective-mass splitting

$$\Delta m_{np}^* = \frac{m_n^* - m_p^*}{m_N}$$

Constraints on the effective mass

- Optical model energy dependence: constrains m* for $\rho \le \rho_0$
- Elliptical flow: constrains m^{*}_s at ~2ρ₀
- ISGQR and IVGQR: constrains m_s^* and m_v^* at $\rho_0 (m_n^* m_p^*) \propto (m_s^* m_v^*)$
- n/p spectral ratio in heavy ions
 - Constrains Δm*_{np} both above and below saturation density

Thermal properties of proto-neutron stars are sensitive to effective mass m^{*} which changes the temperature

- Changes neutrino spectrum
- Changes neutrino mean free path (& cross section)
- Changes neutron flux from (v,n) reactions (r-process)
- *m*^{*}_{np} also affects equilibrium ratio of n and p in Big Bang Nucleosynthesis, neutrino opacity in supernovae and neutron stars, and level densities

Effective mass in simulations

ImQMD, Zhang et al. PLB 732, 186 (2014)

Effective mass in simulations

ImQMD, Zhang et al. PLB 732, 186 (2014)

Experiment

¹¹²Sn+¹¹²Sn and ¹²⁴Sn+¹²⁴Sn at 50 and 120 MeV/A

measure emitted neutrons, protons and light clusters from central collisions

$$E/A (\rho, \delta) = E/A (\rho, 0) + \delta^2 \cdot S(\rho)$$
$$\delta = (\rho_n - \rho_p) / (\rho_n + \rho_p) = (N-Z)/A$$

¹¹²Sn: 50 protons, 62 neutrons δ ~0.10 ¹²⁴Sn: 50 protons, 74 neutrons δ ~0.19

D. D. S. Coupland *et al*, PRC **94**, 011601 (R) (2016)

Constraining Δm^*_{np} in experiment

D. D. S. Coupland et al, PRC 94, 011601 (R) (2016)

Current approach:

- Look at the coalesce spectra
 - So we can compare to transport models*

Z. Chajecki, WMU - INT, Dec 5-9, 2022

12

Constraining Δm^*_{np} in experiment

Cluster production and in-medium x-section

What can we learn from the data?

What can we learn from data?

Single particle ratios

Chemical potential scaling

"pseudo" neutron spectra

Pseudo neutron yields

Calculating pseudo neutron spectra from charge-particle spectra introduces 10% uncertainties (within systematics of measuring neutrons)

Summary

- Heavy ion collisions provide a unique probe to study the physics of neutron stars in the laboratory
- Analysis suggests that $m_n^* > m_p^*$.
- Recent experiment at NSCL will allow us further constraints of symmetry energy and effective mass at various densities of nuclear matter and to validate theoretical models
- Further simulations and theoretical calculations needed to precisely determine Δm_{np}^{*} and other components of EOS
- We should take full advantage of unique opportunities at new facilities (FRIB, FAIR, RIKEN, ..) to study reactions and observables relevant to EOS despite the current issues with transport models

Thank you

Workshop questions

- Can we reconcile data from current and previous experiment?
 - Once we know the energy range that shows the chemical potential scaling we can "extract" neutrons from charge particle ratios
- What other observables could enable the extraction of the EOS?
 - Ultimately, we need a multidimensional analysis (spectra, ratios, flow, femtoscopy) and models should be consistent with them over a range of energies
- What improvements on the constraints on the EOS can we expect from future heavy-ion experiments?
 - Improved constraints on S0 and P above $\rho/\rho_0=1$ (at FRBI) and $\rho/\rho_0=2$ (at FRIB400)
- What development is necessary for transport codes to address the above questions?
 - Better handling of the cluster production and their dynamics at low energies