

STAR: spectra results and net-proton fluctuations from BES-II/FXT

See talks by Hanna and Cameron this afternoon for HBT and flow results.

Daniel Cebra University of California, Davis

The Goals of the Beam Energy Scan Program:

- 1) Find the disappearance of QGP signatures
- 2) Find evidence of a first-order phase transition
- 3) Find the possible Critical Point

Motivation for Energy Scans

Onset of deconfinement; nature of the phase transition; Critical Point; Partonic Matter

BES-II Whitepaper 2014

Studying the Phase Diagram of QCD Matter at RHIC

A STAR white paper summarizing the current understanding and describing future plans 01 June 2014

Beam Energy Scan II (2018-2021)

Select the most important energy range → 3 to 20 GeV (Add fixed-target program)

Improve significance

→Long runs, higher luminosity (electron cooling)

Refine the signals

→ Detector improvements (iTPC, eTOF, EPD)

STAR Beam Energy Scan II – Mapping the QCD Phase Diagram **The Experimental Plan**

Daniel Cebra 12/5/2022

University of Washington - INT

- We have a lot of data.
- All collider energies have 10-20 times higher statistics compared to BES-I
- All FXT energies have at least 100 million events (500 million at 7.2 eV, 2 billion at 3.0 GeV)

Fixed-Target (FXT) Program at STAR

- Test run with gold target in 2015
- First physics runs at $\sqrt{s_{NN}}$ = 3.0 GeV and 7.2 GeV in 2018
- Now have data at √S_{NN} of 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, and 7.7 GeV (and 9.2, 11.5, and 13.7 GeV)

Challenges for FXT

- Shifting asymmetric acceptance wrt midrapidity
- At 7.7 GeV midrapidity moves to edge of Time Projection Chamber (TPC) acceptance
- Boost at higher energies shifts PID to rely more on TOF than TPC identification

The FXT part of the program is dominated by participant baryons, while the collider part sees mostly the fireball

Daniel Cebra 12/5/2022

The Path to Publication

Acquisition of the BES-II/FXT data went very well, even leaving some time for some opportunity systems.

Calibration, Production, and Postproduction QA take some time, but teams are in place and data sets are becoming available for the analysis teams. With all data likely available for physics analysis within a year.

STAR plans to publish final results once all energies are available (with the exception of the 3.0 GeV FXT data).

I will focus on the 3 GeV Results

Daniel Cebra 12/5/2022

2018	Start	Stop	Good	Target	Status
27 GeV	May 10 th	June 17 th	555 M	700 M	Final
3.0 FXT	May 30 th	June 4 th	258 M	100 M	Final
7.2 FXT	June 11 th	June 12 th	155 M	none	Final
2019	Start	Stop	Good	Target	Status
19.6 GeV	Feb 25 th	April 3 rd	478 M	400 M	Preliminary
14.6 GeV	April 4 th	June 3 rd	324 M	310 M	Preliminary
3.9 FXT	June 18 th	June 18 th	52.7 M	50 M	Centrality
3.2 FXT	June 28 th	July 2 nd	200.6 M	200 M	Centrality
7.7 FXT	July 8 th	July 9 th	50.6 M	50 M	Centrality
200 GeV	July 11 th	July 12 th	138 M	140 M	Centrality
2020	Start	Stop	Good	Target	Status
11.5 GeV	Dec 10 th	Feb 24 th	235 M	230 M	December
7.7 FXT	Jan 28 th	Jan 29 th	112.5 M	100 M	Centrality
4.5 FXT	Jan29 th	Feb 1 st	108 M	100 M	Centrality
6.2 FXT	Feb 1 st	Feb 2 nd	118 M	100 M	Centrality
5.2 FXT	Feb 2 nd	Feb 3 rd	103 M	100 M	Centrality
3.9 FXT	Feb 4 th	Feb 5 th	117 M	100 M	Centrality
3.5 FXT	Feb 13 th	Feb 14 th	115.6 M	100 M	Centrality
9.2 GeV	Feb 24 th	Sep 1 st	161.8 M	160 M	January
7.2 FXT	Sep 12 th	Sep 14 th	317 M	None	2022
2021	Start	Stop	Good	Target	Status
7.7 GeV	Jan 31 st	May 1 st	100.9 M	100 M	Quality Assurance
3.0 FXT	May 1 st	June 28 th	2103 M	2.0 B	2022
9.2 FXT	May 6 th	May 6 th	53.9 M	50 M	2022
11.5 FXT	May 7 th	May 7 th	51.7 M	50 M	2022
13.7 FXT	May 8 th	May 8 th	50.7 M	50 M	2022
17.3 GeV	May 25 th	June 7 th	256.1 M	250 M	2022
7.2 FXT	June 3 rd	July 3 rd	88.6 M	None	2022

The only "final" results are from 2018 data.

Results from the 19.6, 14.6, and 200 GeV data sets will be coming out soon.

The full FXT energy scan data have been produced and completed Quality Assurance

7.7 GeV Collider data have been given a high priority.

3.0 GeV Spectra: pions and kaons

At 3.0 GeV, we have acceptance, with good particle identification from target to center-of-mass rapidity Spectra are analyzed for all rapidities, and for all centralities

3.0 GeV Spectra: protons

- What we notice with the proton spectra, is that the extrapolation to low p_T is very important.
- We are using the Heinz blast wave for extrapolation → But we know that this is wrong as it assumes boost invariance.

3.0 GeV Spectra: light nuclei, Λ , K_{S}^{0}

For light nuclei, the low p_T extrapolation is even more important. \rightarrow We need a blast wave model that works at low energy

From the spectra, rapidity densities have been generated for:

- π⁺
- π⁻
- K⁺
- K⁰_s
- K⁻
- ¢
- P
- Λ
- Ξ
- †
- h
- α
- 3 L
- ${}^{3}_{\Lambda}H$ • ${}^{4}_{\Lambda}H$
- ${}^{4}_{\Lambda}$ He

Daniel Cebra 12/5/2022

Particle Production at $Vs_{NN} = 3.0$

University of Washington - INT

Pion Production at 3 GeV

Pions measured at similar energies during the AGS heavy-ion program. What is new? And What do we learn?

- Measurements at full rapidity
- Measurements at all centralities → Can study the Coulomb potential as a the source gets smaller
- The goal is to about the size of the system at freeze-out

(kp/Np)

20

Kaon Production at 3 GeV

Kaons measured at similar energies during the AGS and SIS heavy-ion program. What is new? And What do we learn?

- Measurements at all rapidities
- Measurements at all centralities
- These results can help us understand the role of stopping and associated production

Proton Production at 4.5 GeV

protons measured at similar energies during the AGS heavy-ion program. What is new? And What do we learn?

- Measurements at all rapidities → Stopping
- Measurements at all centralities → Stopping as a function of centrality → Can probe how stopping changes as the number of collisions per nucleon changes
- Can better understand the mechanisms of stopping

Daniel Cebra

12/5/2022

One thing that this slide illustrates is that we need a better understanding of stopping. Simple Gaussians to model the participants suggest that there would be proton yields backward of target rapidity.

Consistent with AGS results (*)

Light Nucleus Production at 3.0 GeV

- Light nuclei are well described by models and by coalescence.
- The differences between 3He and tritons is due to the neutron to proton ratio in gold, and this needs to be added to the coalescence modeling.

Strange Particle Production at 3.0 GeV

The comparison of strange particle yields to UrQMD continues to be a challenge.

Daniel Cebra 12/5/2022

Lessons learned from spectra and rapidity densities at 3 GeV:

- The low p_T pions are strongly effected by the coulomb potential of the source.
- The charged kaons mostly comes from associated production.
- The Heinz blast wave needs to be modified to work in an environment which is not boost invariant.
- We need a better understanding of stopping.
- Light nuclei and produced through coalescence.
- Strange particle production is not well represented by UrQMD.

Further lessons we can be learned at 3 GeV:

With rapidity densities for almost all particles, we can add up the total charge, baryon number (and energy) to test conservation. → We note that our total baryon number exceeds the predicted number of participants for all centralities.

\rightarrow Is something wrong? Efficiencies? Low p_T extrapolation? Maybe Glauber is "wrong"?

Glauber Model

Glauber Model:

- Nucleons distributed with Woods-Saxon
- Nucleons do not scatter during collisions
- Collisions are determined by the inelastic σ_{pp}
- Particle production with negative binomial
- Crude hardness parameter (x)

→ N = x Ncoll + (1-x) (Npart/2)

- The Glauber model has been used to determine centrality by RHIC and LHC experiments since 2001
- The Glauber model considers particle production, not stopping of participant nucleons
- Hadron production in centered at the center-of-mass rapidity
- Closer to target rapidity, most charged hadrons are "stopped protons"
- Center-of-mass rapidity shifts through the FXT energy range → Can not use RefMult

→ The basic question is, does the Glauber model work for the STAR FXT systems? [Centrality bins? N_{part}?]

Should we worry about Glauber?

Inelastic, elastic, and total cross sections are very different. At 3 GeV:

> σ_{tot} = 42 mB $\sigma_{inelatic}$ = 28 mB $\sigma_{elastic}$ = 14 mB

pp and np cross sections are different.

Cross sections change rapidly with energy in the FXT regime.

Cross sections will change after each collision.

INT Wor

Can We use FXTmult and the Glauber Model to Measure Cross-sections (centrality bins)?

- In our methodology, we "measure" cross sections by comparing the observed multiplicity distributions to those expected using the two component (N_{part} and N_{coll}) negative binomial.
- The challenge is always what fraction of the cross section are you missing at low multiplicity.
- We performed a number of test to convince ourselves that the Glauber method was OK for centrality bins.
 - Comparison to E895 → Fractions of total cross section are OK.
 - Study of HADES analysis → Glauber matches their multiplicity distributions.
 - Study of Zero-bias triggered data → Our understanding of the trigger bias is OK.
 - Comparison to UrQMD
 → Predicts significantly more participating nucleons.

Centralities using Glauber are fine, but N_{part} and N_{coll} are questionable.

The Search for the Critical Point Proton Fluctuations – $\kappa\sigma^2$

Are we consistent with final HADES result .

STAR had decided not to release preliminary results for this observable.

Our ability to study net-proton fluctuations is critically dependent on at particle identification and the acceptance

The analysis will get significantly more challenging for higher energy FXT data sets.

- A volume fluctuation correction method is tested on data
- Most central centrality are least affected by volume fluctuation correction

Braun-Munzinger, P. et al Nuclear Physics A 960, 114 (2017)

3.0 GeV Result is final → no critical point at 3.0 GeV.

- Pre-preliminary results are already available at 3.2, 3.5, 3.9, 4.5, 14.6, 19.6, and 27 GeV.
- Study will be done at all energies
- At high (2B) statistics data was taken at 3 GeV – those data will be available this fall. The will allow studies of C6 and C8

- The suppression of C₄/C₂ is consistent with fluctuation driven by baryon number conservation which indicates a hadronic dominant region in the top 5% central Au+Au collisions at 3 GeV
- The QCD critical point, if discovered in heavy ion collisions, could only exist at energy higher than 3 GeV

Acceptance with Particle Identification for each FXT Energy

12/5/2022

eTOF is Critical for Mid-rapidity Analysis at Higher FXT Energies

ETOF Details

- CBM-TOF group provided ETOF system
- Provides particle identification over 1.55<η<2.2
- Collected data for the Fixed-Target Program
- Calibrations still in progress.

The "Overlap" Energy, 7.7 GeV, with both Collider and FXT data

- Acceptance overlap at 7.7 GeV for FXT and collider data provides a unique opportunity to benchmark our understanding of FXT methodologies against collider data
- This will not be a standard fluctuation analysis window, and will not be a part of the cumulant energy scan, but
 is important for building confidence in comparisons between the fixed-target program and collider results

The Significance of a Fluctuation Result at Higher FXT Energies will be Limited

- Significance of C_4/C_2 goes as $\sim \langle N_p^3 \rangle$
- Proton yields from E895 with expected detector acceptances+efficiencies can be used to predict (N_p) for FXT

Online Event Display – Collider Event

Online Event Display – FXT Event

Summary

- Data taking for the STAR BES-II/FXT program was completed 2018 to 2021
- Au+Au collisions at seven collider and twelve FXT energies (with four FXT energies overlapping with the four lowest collider energies)
- Calibrations, data production and QA take time to get right and to date, only results from 3.0 and 27 GeV have been presented. New results from 19.6, 14.6, and FXT energies will be available soon.
- Spectra analysis have shown the need for a improved Blast Wave, a better understanding of stopping, and an improved Glauber model.
- Proton fluctuation results showed no critical behavior at 3.0 GeV.

BACKUPS

Comparison to E895

E895 2.0 AGeV

HADES Centrality Analysis

INT Workshop 22-84W: Dense Nuclear Matter Equation of State

Comparison to UrQMD

Conclusions of UrQMD Study

1) UrQMD match data and Glauber model at high FXTMult

2) Slight mismatch at low FXTMult

Daniel Cebra 12/5/2022

Zero Bias Study

Zero bias data were taken in 2020

Compare the zerobias data to the min-bias data

➔ There is essentially no trigger bias above FXTMult of 40.

Beam E _T (GeV)	Beam E _k (AGeV)	Beam p _z (GeV/c)	Rapidity Y _{Beam}	√s _{NN} (GeV)	Rapidity У _{см}	Ch. Pot. μ _B (GeV)
3.85	2.92	3.73	2.10	3.0	1.05	721
4.59	3.66	4.50	2.28	3.2	1.13	699
5.75	4.82	5.67	2.51	3.5	1.25	666
7.3	6.4	7.25	2.75	3.9	1.37	633
9.8	8.9	9.44	3.04	4.5	1.52	589
13.5	12.6	13.5	3.37	5.2	1.68	541
19.5	18.6	19.5	3.73	6.2	1.87	487
26.5	25.6	26.5	4.04	7.2	2.02	443
31.2	30.3	31.2	4.20	7.7	2.10	420
44.5	43.6	44.5	4.56	9.2	2.28	372
70	69.1	70	5.01	11.5	2.51	316
100	99.1	100	5.37	13.7	2.69	276

Official (i.e. correct) FXT Variables

Nominal beam energies are often rounded to a few digits.

The correct calculations use the most precise beam energies, and the mass of the nucleon (not mass of proton on neutron)

Nominal	Single	Single	Fixed	Nominal	Single	Center of	Single	Chemical
Beam	Beam	Beam Pz	Target	FXT	Beam	Mass	Beam	Potential
Energy	Energy	(GeV/c)	Root s	Root s	Rapidity	Rapidity	Kinetic	μ_{B}
100	100	99.996	13.713	13.7	5.369	2.685	99.07	0.276
70	69.684	69.678	11.470	11.5	5.008	2.504	68.75	0.317
44.5	44.5	44.490	9.200	9.2	4.559	2.280	43.57	0.372
31.2	31.2	31.186	7.737	7.7	4.204	2.102	30.27	0.420
26.5	26.537	26.521	7.154	7.2	4.042	2.021	25.61	0.443
19.5	19.5	19.478	6.170	6.2	3.734	1.867	18.57	0.487
13.5	13.5	13.468	5.185	5.2	3.366	1.683	12.57	0.541
9.8	9.796	9.752	4.470	4.5	3.044	1.522	8.86	0.589
7.3	7.309	7.249	3.918	3.9	2.749	1.375	6.38	0.632
5.75	5.761	5.685	3.531	3.5	2.509	1.254	4.83	0.666
4.59	4.593	4.498	3.208	3.2	2.278	1.139	3.66	0.697
3.85	3.847	3.733	2.984	3.0	2.096	1.048	2.92	0.721

Daniel Cebra 12/5/2022

The STAR Detector Upgrades → BES-II

iTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage to 1.5 (2.2 for FXT)
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c
- Ready in 2019

EndCap TOF Upgrade: • Rapidity coverage is critical • PID at forward rapidity • Allows higher energy range of FXT program • CBM/FAIR • Ready 2019

EPD Upgrade:

- Improves trigger
 Reduces background
 Allows a better and independent reaction
- plane measurement critical to BES and FXT
- Ready 2018

iTPC Upgrade – Current Performance

eTOF Upgrade – Current Performance

System time resolution \rightarrow 85 ps Individual counter time resolution \rightarrow 65 ps

EPD Upgrade – Current Performance

Fixed-Target Program Exp. Setup

Gold Target:

- 250 μm foil
- 2 cm below the nominal beam axis
- 2 m from the center of STAR

The Upgrades are Important for the FXT Program

Detects Particles in the 0 < η < 2 range π , K, p, d, t, h, α through dE/dx and TOF K_{s}^{0} , Λ , Ξ , Ω , ϕ , ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H through invariant mass

Particle Identification

Because the tracks are longer, on average, for FXT events than for collider events, the resolutions for both dE/dx and $1/\beta$ are better in FXT mode than collider mode.

Acceptance for the FXT Program

FXT Energy √s _{NN}	Single Beam E _T (GeV)	Single beam E _k (AGeV)	Center-of- mass Rapidity	Chemical Potential µ _B (MeV)	Year of Data Taking	
3.0	3.85	2.9	1.05	721	2018	
3.2	4.59	3.6	1.13	699	2019	
3.5	5.75	4.8	1.25	666	2020	
3.9	7.3	6.3	1.37	633	2020	
4.5	9.8	8.9	1.52	589	2020	
5.2	13.5	12.6	1.68	541	2020	
6.2	19.5	18.6	1.87	487	2020	
7.2	26.5	25.6	2.02	443	2018	
7.7	31.2	30.3	2.10	420	2020	
9.1	44.5	43.6	2.28	372	2021	
11.5	70	69.1	2.51	316	2021	
13.7	100	99.1	2.69	276	2021	

BES-II Physics Goals and statistics

	Collision Energy (GeV)			7.7	9.1	11.5	14.	5 1	9.6		
Total of 7 collider energies	$\mu_{\rm B}$ (MeV) in 0-5% central c	ollisio	ns	420	370	315	260	0 2	205	Added two energies: 17.3 and 27	
	Observables										
	R_{CP} up to $p_{\rm T} = 5 \ {\rm GeV}/c$			-	-	160	125	õ	92	-	
	Elliptic Flow (ϕ mesons) Chiral Magnetic Effect			80	120	160	160) 3	320	QM poster 19.6	
				50	50	50	50		50	QM talk – 27 GeV	
	Directed Flow (protons) Azimuthal Femtoscopy (protons)			20	30 3!	35	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		50	QM talk, 2 poster	
				35	40	50			80	QM poster Preliminary results – 27 GeV	
	Net-Proton Kurtosis Dileptons			70	85	100	170) :	840		
				100	160	230	300	$\frac{1}{2}$	100	QM talk – 27 GeV	
	$>5\sigma$ Magnetic Field Significance			50	80	110	150	5 5	200	QM poster	
	Required Number of Ev	ents		100	160	230	300) 4	100		
	$\sqrt{s_{NN}}$ (GeV)	3.0	3.2	3.5	3.9	4.5	5.2	6.2	7.7	Added four energies:	
Total of 12 FXT energies	Single Beam Energy (GeV)	3.85	4.55	5.75	7.3	9.8	13.5	19.5	31.2	7.2. 9.2. 11.5. 13.5	
	$\mu_{ m B} \ ({ m MeV})$ Rapidity y_{CM}	$721 \\ 1.06$	$\frac{699}{1.13}$	$\frac{666}{1.25}$	$633 \\ 1.37$	$\frac{589}{1.52}$	$\frac{541}{1.68}$	$\frac{487}{1.87}$	$\frac{420}{2.10}$	Added high statistics at 3 GeV	
	Observables										
	Elliptic Flow (kaons)	300	150	80	40	20	40	60	80	QM 2 posters 3	
	Chiral Magnetic Effect Directed Flow (protons)	70 20	60 30	50 35	50 45	50 50	70 60	80 70	100	-	
	Femtoscopy (tilt angle)	20 60	50 50	40	40 50	50 65	70	80	100	QM poster	
	Net-Proton Kurtosis	36	50	75	125	200	400	950	NA		
	Multi-strange baryons Hypertritons	$\frac{300}{200}$	$\frac{100}{100}$	60 80	$\frac{40}{50}$	$\frac{25}{50}$	$\frac{30}{60}$	$\frac{50}{70}$	$\frac{100}{100}$	QM talk (3,19.6, 27), 3 posters	
	Requested Number of Events	300	100	100	100	100	100	100	100	-	
Danial Cohra		0/1/1/- 1	Jonco	Nuclea	vr Matte	r Faula	tion of	Ctata		QM talk – Light nuclei 3, 19.6, 27, poster	

Daniel Cebra 12/5/2022 INT Workshop 22-84W: Dense Nuclear Matter Equation of State University of Washington - INT QM talk – Light nuclei 3, 19.6, 27, poster QM talk – pi,K,p 3 GeV 52 QM talk – strange hdrons, poster 3