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• Ideally start from QCD, particularly for studying high density/temperatures 

• At modest densities and temperature, start from interacting nucleons, 
    mostly (or all) neutrons 

• Solve quantum Many-Body problem for (mostly) neutrons: 
 
              

• Fit two-nucleon interaction to NN scattering data 

• Fit three-neutron interaction to light nuclei, masses, beta decay, etc. 

• How high in density is this appropriate? What limits are important? 
     Additional degrees of freedom (pions, kaons, hyperons, deltas, …) 
     What can we reliably compute

H = ∑
i

Ti + ∑
i<j

Vij + ∑
i<j<k

Vijk + . . .

Neutron Matter and Many-Body Physics
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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FIG. 2. Chiral expansion of neutron-proton scattering as represented by the phase shifts in S, P , and D waves and mixing parameters
ε1 and ε2. Five orders ranging from LO to N4LO are shown as denoted. A cutoff " = 500 MeV is applied in all cases. The filled and open
circles represent the results from the Nijmegen multienergy np phase-shift analysis [80] and the GWU single-energy np analysis SP07 [102],
respectively.

Our fit procedures differ also substantially from the ones
used in the recent chiral NN potential constructions of
Refs. [23,24], where the potentials are fitted to phase shifts.
Already in the early 1990s, the Nijmegen group has pointed
out repeatedly and demonstrated clearly [96] that fitting to
experimental data should be preferred over fitting to phase
shifts, because a seemingly good fit to phase shifts can result
in a bad reproduction of the data. Note that phase shifts are not
experimental data.

C. Results for NN scattering

The χ2/datum for the reproduction of the NN data at various
orders of chiral EFT are shown in Table V for different energy
intervals below 290 MeV laboratory energy (Tlab). The bottom
line of Table V summarizes the essential results. For the close
to 5000 pp plus np data below 290 MeV (pion-production
threshold), the χ2/datum is 51.4 at NLO and 6.3 at NNLO.
Note that the number of NN contact terms is the same for
both orders. The improvement is entirely due to an improved
description of the 2PE contribution, which is responsible for
the crucial intermediate-range attraction of the nuclear force.
At NLO, only the uncorrelated 2PE is taken into account,
which is insufficient. From the classic meson-theory of nuclear
forces [101], it is well known that π -π correlations and nucleon

resonances need to be taken into account for a realistic model
of 2PE that provides a sufficient amount of intermediate
attraction to properly bind nucleons in nuclei. In the chiral
theory, these contributions are encoded in the subleading πN
vertexes with LECs denoted by ci . These enter at NNLO and
are the reason for the substantial improvements we encounter
at that order. This is the best proof that, starting at NNLO, the
chiral approach to nuclear forces is getting the physics right.

To continue on the bottom line of Table V, after NNLO, the
χ2/datum then further improves to 1.63 at N3LO and, finally,
reaches the almost perfect value of 1.15 at N4LO—a fantastic
convergence.

Corresponding np phase shifts are displayed in Fig. 2,
which reflect what the χ2 have already proven, namely, an
excellent convergence when going from NNLO to N3LO and,
finally, to N4LO. However, at LO and NLO there are large
discrepancies between the predictions and the empirical phase
shifts as to be expected from the corresponding χ2 values.
This fact renders applications of the LO and NLO nuclear
force useless for any realistic calculation (but they could be
used to demonstrate truncation errors).

For order N4LO (with " = 500 MeV), we also provide
the numerical values for the phase shifts in the appendix.
Our pp phase shifts are the phase shifts of the nuclear plus
relativistic Coulomb interaction with respect to Coulomb
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FIG. 2. Chiral expansion of neutron-proton scattering as represented by the phase shifts in S, P , and D waves and mixing parameters
ε1 and ε2. Five orders ranging from LO to N4LO are shown as denoted. A cutoff " = 500 MeV is applied in all cases. The filled and open
circles represent the results from the Nijmegen multienergy np phase-shift analysis [80] and the GWU single-energy np analysis SP07 [102],
respectively.

Our fit procedures differ also substantially from the ones
used in the recent chiral NN potential constructions of
Refs. [23,24], where the potentials are fitted to phase shifts.
Already in the early 1990s, the Nijmegen group has pointed
out repeatedly and demonstrated clearly [96] that fitting to
experimental data should be preferred over fitting to phase
shifts, because a seemingly good fit to phase shifts can result
in a bad reproduction of the data. Note that phase shifts are not
experimental data.

C. Results for NN scattering

The χ2/datum for the reproduction of the NN data at various
orders of chiral EFT are shown in Table V for different energy
intervals below 290 MeV laboratory energy (Tlab). The bottom
line of Table V summarizes the essential results. For the close
to 5000 pp plus np data below 290 MeV (pion-production
threshold), the χ2/datum is 51.4 at NLO and 6.3 at NNLO.
Note that the number of NN contact terms is the same for
both orders. The improvement is entirely due to an improved
description of the 2PE contribution, which is responsible for
the crucial intermediate-range attraction of the nuclear force.
At NLO, only the uncorrelated 2PE is taken into account,
which is insufficient. From the classic meson-theory of nuclear
forces [101], it is well known that π -π correlations and nucleon

resonances need to be taken into account for a realistic model
of 2PE that provides a sufficient amount of intermediate
attraction to properly bind nucleons in nuclei. In the chiral
theory, these contributions are encoded in the subleading πN
vertexes with LECs denoted by ci . These enter at NNLO and
are the reason for the substantial improvements we encounter
at that order. This is the best proof that, starting at NNLO, the
chiral approach to nuclear forces is getting the physics right.

To continue on the bottom line of Table V, after NNLO, the
χ2/datum then further improves to 1.63 at N3LO and, finally,
reaches the almost perfect value of 1.15 at N4LO—a fantastic
convergence.

Corresponding np phase shifts are displayed in Fig. 2,
which reflect what the χ2 have already proven, namely, an
excellent convergence when going from NNLO to N3LO and,
finally, to N4LO. However, at LO and NLO there are large
discrepancies between the predictions and the empirical phase
shifts as to be expected from the corresponding χ2 values.
This fact renders applications of the LO and NLO nuclear
force useless for any realistic calculation (but they could be
used to demonstrate truncation errors).

For order N4LO (with " = 500 MeV), we also provide
the numerical values for the phase shifts in the appendix.
Our pp phase shifts are the phase shifts of the nuclear plus
relativistic Coulomb interaction with respect to Coulomb

024004-10

• Cutoff 450-500 MeV typically fit to NN data < 350 MeV 
Nonlocal regulator - no contribution of short-range three-nucleon interaction 

• Parameters in NN fit to ~4000 pieces of NN data 
• Two 3N parameters cD and cE fit to few-body observables
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FIG. 2. Chiral expansion of neutron-proton scattering as represented by the phase shifts in S, P , and D waves and mixing parameters
ε1 and ε2. Five orders ranging from LO to N4LO are shown as denoted. A cutoff " = 500 MeV is applied in all cases. The filled and open
circles represent the results from the Nijmegen multienergy np phase-shift analysis [80] and the GWU single-energy np analysis SP07 [102],
respectively.

Our fit procedures differ also substantially from the ones
used in the recent chiral NN potential constructions of
Refs. [23,24], where the potentials are fitted to phase shifts.
Already in the early 1990s, the Nijmegen group has pointed
out repeatedly and demonstrated clearly [96] that fitting to
experimental data should be preferred over fitting to phase
shifts, because a seemingly good fit to phase shifts can result
in a bad reproduction of the data. Note that phase shifts are not
experimental data.

C. Results for NN scattering

The χ2/datum for the reproduction of the NN data at various
orders of chiral EFT are shown in Table V for different energy
intervals below 290 MeV laboratory energy (Tlab). The bottom
line of Table V summarizes the essential results. For the close
to 5000 pp plus np data below 290 MeV (pion-production
threshold), the χ2/datum is 51.4 at NLO and 6.3 at NNLO.
Note that the number of NN contact terms is the same for
both orders. The improvement is entirely due to an improved
description of the 2PE contribution, which is responsible for
the crucial intermediate-range attraction of the nuclear force.
At NLO, only the uncorrelated 2PE is taken into account,
which is insufficient. From the classic meson-theory of nuclear
forces [101], it is well known that π -π correlations and nucleon

resonances need to be taken into account for a realistic model
of 2PE that provides a sufficient amount of intermediate
attraction to properly bind nucleons in nuclei. In the chiral
theory, these contributions are encoded in the subleading πN
vertexes with LECs denoted by ci . These enter at NNLO and
are the reason for the substantial improvements we encounter
at that order. This is the best proof that, starting at NNLO, the
chiral approach to nuclear forces is getting the physics right.

To continue on the bottom line of Table V, after NNLO, the
χ2/datum then further improves to 1.63 at N3LO and, finally,
reaches the almost perfect value of 1.15 at N4LO—a fantastic
convergence.

Corresponding np phase shifts are displayed in Fig. 2,
which reflect what the χ2 have already proven, namely, an
excellent convergence when going from NNLO to N3LO and,
finally, to N4LO. However, at LO and NLO there are large
discrepancies between the predictions and the empirical phase
shifts as to be expected from the corresponding χ2 values.
This fact renders applications of the LO and NLO nuclear
force useless for any realistic calculation (but they could be
used to demonstrate truncation errors).

For order N4LO (with " = 500 MeV), we also provide
the numerical values for the phase shifts in the appendix.
Our pp phase shifts are the phase shifts of the nuclear plus
relativistic Coulomb interaction with respect to Coulomb
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Density  
[fm-3]

kF  

[fm-1]
Elab (2 kF) 

[MeV]

0.08 1.33 138

0.16 1.67 210

0.32 2.11 320

0.48 2.42 400

Neutron Matter Densities, Energies
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FIG. 1. Neutron-matter EOS as obtained from the AV6P+UIX
(upper panel) and AV18+UIX (lower panel) Hamiltonians.

component gτ (r)

1 + 1
3
ρ

∫
d3r gτ (r),

should vanish to guarantee equal numbers of protons and
neutrons. The corresponding integral with the spin compo-
nent gσ (r) is not constrained when tensor forces are present.
Instead, its deviation from unity provides a measure of the
strength of the tensor (or spin-space) correlations in the
system.

C. AFDMC

The AFDMC method [45] projects out the ground state of
the system |$0〉 evolving a starting trial wave function |$T 〉
in imaginary time τ as

|$0〉 = lim
τ→∞

|$(τ )〉 = lim
τ→∞

e−(H−ET )τ |$T 〉, (34)

where ET is an estimate of the true ground-state energy E0.
The imaginary-time propagator e−(H−ET )τ is broken down and
evaluated stochastically in N small time steps δτ , with τ =
Nδτ . At each step, the generalized coordinates X ′ are sampled

FIG. 2. Single snapshot of a Metropolis random walk for VMC
calculations. The variational wave functions are optimized with the
NV2-Ia two-body force alone (upper panel) and including the three-
body force NV2+3-Ia (lower panel) which leads to the formation of
neutron droplets.

from the previous ones according to the short-time propagator

G(X ′, X, δτ ) = $I (X ′)
$I (X )

〈X ′|e−(H−E0 )δτ |X 〉, (35)

where $I (X ′) is the importance-sampling function. Simi-
larly to Refs. [87,88], we mitigate the fermion-sign problem
by first performing a constrained-path diffusion Monte
Carlo propagation (DMC-CP), in which we take $I (X ) ≡
$T (X ) and impose Re[$T (X ′)/$T (X )] > 0. The solution
obtained from the constrained propagation is not a rig-
orous upper-bound to E0 [89]. To remove this bias, the
configurations obtained from a DMC-CP propagation are fur-
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Quantum Many-Body Methods (Fermions)

No Exact General method for Many-Fermion Methods 

• Integral Equations- Variational (FHNC) 
• Brueckner Hartree Fock 
• Quantum Monte Carlo 
• Many-Body Perturbation Theory 

Lovato, et al, PRC (2022)

data base. At a density of one nucleon per fm3 the CD-Bonn
model @17# gives the largest xp of 0.15, while the Nijmegen
I model @15# gives the smallest value of 0.10. The spread in
these values is comparable with the difference between VCS
and LOB results for A18 of xp5 0.09 and 0.14 at this den-
sity.
The dv term and the three-nucleon interaction increase

the symmetry energy, and push the xp barely above the Urca
limit at high densities. For the A181dv1UIX* model the
threshold is at a density of r50.78 fm23, and, as discussed
in the next section, stars must have a mass .2.0M( to
achieve such a density. However, this density is at the limit
of our calculations and of the input physics. For example,
admixtures of quark matter with hadronic matter, considered
in the next section, may affect the Urca process in matter at
such densities.
The U14-DDI ~FPS! model predicts values for xp that are

much smaller than those predicted by all other models con-
sidered here, and in fact go to zero for r;1 fm23. It is
based on the U14 NN interaction, also used in the U14
1UVII model. However, instead of adding the UVII three
nucleon interaction to obtain the empirical saturation density
of nuclear matter, it uses a density dependent modification
~U14-DDI! of the U14 NN interaction @9# chosen to repro-
duce the energy, density and compressibility of equilibrium
nuclear matter. Unlike the UVII interaction, this modification
reduces the symmetry energy, and thus the xp , at high den-
sity. The main advantage of using three-nucleon interactions,
instead of density dependent modifications of the two-
nucleon interaction, is that the former can be tested via ac-
curate calculations of the light nuclei. Unfortunately, the
available results @30# indicate that the UIX model may be
overestimating the repulsion between three neutrons, thus
overestimating the xp ; an improved version of the UIX
model is currently being developed.

V. NEUTRON STARS

Using the methods just described we obtain for each
model the EOS for cold, catalyzed beta-stable matter. At a
baryon number density of 0.1 fm23 they are joined onto an
earlier EOS in which properties of the crust material has
been treated more accurately @11#. The Oppenheimer-
Volkoff general relativistic equations for a spherically sym-
metric ~nonrotating! neutron star @1# are

dP
dr 52

~ r̃1P/c2!G„m~r !14pr3P/c2…L~r !

r2
,

m~r !5E
0

r
4pr2r̃dr , ~5.1!

where L(r)5@122Gm(r)/rc2#21. The corresponding
equations for obtaining the moment of inertia, for a slowly
rotating star, are given in Appendix B. Starting from some
central mass-energy density r̃c , or equivalently from a cen-
tral number density rc , these equations are integrated out-
wards to a radius r5R , at which P is zero, thus yielding
the stellar radius, R , the gravitational mass of the star,
M5m(R), and the moment of inertia I .

The dependence of the neutron star mass on central
baryon density rc for the four models is shown in Fig. 11. In
order to estimate the effect of beta-stability on these results,
we show also the trajectories obtained by using the pure
neutron matter EOS for densities greater than 0.1 fm23,
joined to the crust results of Ref. @11#. Earlier results with the
FPS EOS @11# are included for comparison. For the same set
of results, the neutron star mass is plotted against the star
radius in Fig. 12.
The maximum masses for the five models illustrated in

Figs. 11 and 12 are listed in Table XI. While the models
based on only two-nucleon interactions have maximum
masses at or below 1.8M( , those for the two models con-
taining three-nucleon interactions have maximum masses
well above 2M( . The model that we believe includes most
of the necessary physics is A181dv1UIX*, which yields a
maximum mass of 2.2M( . This model achieves its maxi-
mum mass for a central baryon density rc51.14 fm23,

FIG. 11. Neutron star gravitational mass, in solar masses, vs
central baryon density, for the four models described in the text.
The full curves are for beta-stable matter, and the dotted lines are
for pure neutron matter. The vertical lines show the density above
which the matter is superluminal. The dashed curve, FPS, is from
@11#.

FIG. 12. Neutron star gravitational mass, in solar masses, vs
radius, in kilometers, for the four models described in the text. The
full curves are for beta-stable matter, and the dotted ones are for
pure neutron matter. The dashed curve, FPS, is from @11#.
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below) [28], a Dirac-Brueckner-Hartree-Fock calculation
[12], a lattice chiral EFT method at next to leading or-
der [14] (see also Ref. [15]), and an approach that makes
use of chiral N2LO three-nucleon forces.[16] Of these,
Refs. [9], [28], and [16] include a three-nucleon inter-
action, though at the densities we consider, these are not
expected to be significant. Qualitatively all of these re-
sults agree within 20%.

A series of ab initio calculations for neutron matter us-
ing the AFDMC method have been published beginning
in 2005.[25] After our analysis of the finite-size e↵ects –
described for BCS in section II B and for QMC in Refs.
[32, 38] – was published in late 2007, the AFDMC group
repeated their calculations for larger systems, [28, 30]
bringing them closer to our results, though still, as can
be seen from Fig. 4 the results are distinct. Given the
ab initio nature of the powerful AFDMC method, [43] we
have attempted to compare results more extensively. The
advantage of the AFDMC approach is that it includes an
interaction which is more complete than the simpler ones
used here. The disadvantage of the AFDMC approach is
that it does not provide a variational bound to the energy,
and hence the wave functions are chosen from another
approach. In the calculations of Refs. [25, 28, 30] the
wave function was taken from a Correlated-Basis Func-
tion (CBF) approach that included a BCS-like initial
state. The pairing in that variational state is unusually
large, and in fact increases as a fraction of EF when the
density is lowered.

The QMC AV4 results use a wave function that has
been variationally optimized. QMC thus gives ener-
gies that are considerably lower than the AFDMC re-
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compared to various previous results. Despite quantitative

discrepancies, all calculations give essentially similar results.

Our lowest density corresponds to kF a = �1.

sults. As both the wave functions and the interactions
are di↵erent in the previous QMC and AFDMC results,
we have repeated our calculations using the same input
wave function [44] used by the AFDMC group (which
comes from the same Correlated-Basis Function calcula-
tion) at kF = 0.4 fm�1 and at kF a = �10. We find that
in QMC the AV4 results for the optimized wave func-
tion [0.5866(6) MeV and 0.5870(3) MeV, respectively] are
consistently lower in energy than those using the CBF as
input [0.6254(9) MeV and 0.6014(7) MeV, respectively].
This means that they are closer to the true ground-state
energy for the Hamiltonian we consider. It would be
worth studying in more detail the di↵erences arising from
the di↵erent Hamiltonians; the most important remain-
ing di↵erences are likely the spin-orbit and pion-exchange
terms in the p-wave interaction. Extensions of previous
GFMC calculations [10] to lower densities would help to
resolve these issues.

It is interesting to note that at the lowest densities con-
sidered, the AFDMC and QMC results are still distinct.
At those densities contributions of p- and higher partial
waves in the Hamiltonian should be very small, and thus
the two methods should give identical results. The three-
nucleon interaction included in the AFDMC calculations
is one possible source of the di↵erence, though this ap-
pears unlikely at the smallest densities considered. This
suggests that the CBF wave function at very low densi-
ties is problematic; additional studies with Jastrow-BCS
or other wave functions would be useful.

(b)

Figure 1: The equation of state of low-density neutron matter compared to that
of cold atoms at the same value of Fermi momentum times scattering length
(kFa). The left side compares cold atoms and neutron matter (see text), and the
right panel shows neutron matter results for di↵erent methods over a wider range
of kFa. Figures taken from (21,22).

Fermi Gas wave function. The radial form of the function �(r) and f(r) are
determined in variational calculations.

These calculations have a fixed-node approximation that implies they provide
variational upper bounds to the true energy. They have proven to be very accuate
in studies of cold atom systems, where accurate lattice calculations without a
fixed-node approximation are available (3). These calculations are also in very
good agreement with cold atom experiments (2).

The results of the equation-of-state calculations are shown in Fig. 1. The
left panel compares neutron matters and cold atoms at very low density. The
vertical axis indicates the ratio of fully interacting energy to the energy of the free
Fermi gas at the same density, the horizontal axis is the Fermi momentum times
the scattering length kFa; on the upper axis the equivalent Fermi momentum
for neutron matter is indicated. At extremely low densities, or equivalently small
value of kFa, analytic results are available (24,25), and the higher-order Lee-Yang
result is plotted as a line in the figure.

Results for cold atoms with zero e↵ective range are plotted as filled blue circles,
in the limit of infinite kFa these should approach 0.37. Cold atom results for the
dependence on the e↵ective range are also available, the equation of state can be
expanded in terms of kF :

E /EFG = ⇠ + S kF re + ..., (5)

where S = 0.12(3) is a universal constant that has been determined in the lattice
calculations and in Di↵usion Monte Carlo (3, 26). Using the above equation of
including the experimental neutron-neutron e↵ective range re gives the dashed
line in the figure.

Similarities to Unitary Fermi Gas at (very) low density

H = −
∇2

i

2m
+ ∑

i,j

V(rij)

V(rij) : a → ∞ : reff → 0

At zero temperature, all quantities are in constants times free FG quanities:

  EUFG(ρ) = ξEFG(ρ)

ΔUFG = δ(EF(FG)

Equation of state versus density:

Superfluid pairing gap at T=0 (energy to flip a spin)

Contact, Spin Response, etc.

Gezerlis, JC, PRC 2010
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below) [28], a Dirac-Brueckner-Hartree-Fock calculation
[12], a lattice chiral EFT method at next to leading or-
der [14] (see also Ref. [15]), and an approach that makes
use of chiral N2LO three-nucleon forces.[16] Of these,
Refs. [9], [28], and [16] include a three-nucleon inter-
action, though at the densities we consider, these are not
expected to be significant. Qualitatively all of these re-
sults agree within 20%.

A series of ab initio calculations for neutron matter us-
ing the AFDMC method have been published beginning
in 2005.[25] After our analysis of the finite-size e↵ects –
described for BCS in section II B and for QMC in Refs.
[32, 38] – was published in late 2007, the AFDMC group
repeated their calculations for larger systems, [28, 30]
bringing them closer to our results, though still, as can
be seen from Fig. 4 the results are distinct. Given the
ab initio nature of the powerful AFDMC method, [43] we
have attempted to compare results more extensively. The
advantage of the AFDMC approach is that it includes an
interaction which is more complete than the simpler ones
used here. The disadvantage of the AFDMC approach is
that it does not provide a variational bound to the energy,
and hence the wave functions are chosen from another
approach. In the calculations of Refs. [25, 28, 30] the
wave function was taken from a Correlated-Basis Func-
tion (CBF) approach that included a BCS-like initial
state. The pairing in that variational state is unusually
large, and in fact increases as a fraction of EF when the
density is lowered.

The QMC AV4 results use a wave function that has
been variationally optimized. QMC thus gives ener-
gies that are considerably lower than the AFDMC re-
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sults. As both the wave functions and the interactions
are di↵erent in the previous QMC and AFDMC results,
we have repeated our calculations using the same input
wave function [44] used by the AFDMC group (which
comes from the same Correlated-Basis Function calcula-
tion) at kF = 0.4 fm�1 and at kF a = �10. We find that
in QMC the AV4 results for the optimized wave func-
tion [0.5866(6) MeV and 0.5870(3) MeV, respectively] are
consistently lower in energy than those using the CBF as
input [0.6254(9) MeV and 0.6014(7) MeV, respectively].
This means that they are closer to the true ground-state
energy for the Hamiltonian we consider. It would be
worth studying in more detail the di↵erences arising from
the di↵erent Hamiltonians; the most important remain-
ing di↵erences are likely the spin-orbit and pion-exchange
terms in the p-wave interaction. Extensions of previous
GFMC calculations [10] to lower densities would help to
resolve these issues.

It is interesting to note that at the lowest densities con-
sidered, the AFDMC and QMC results are still distinct.
At those densities contributions of p- and higher partial
waves in the Hamiltonian should be very small, and thus
the two methods should give identical results. The three-
nucleon interaction included in the AFDMC calculations
is one possible source of the di↵erence, though this ap-
pears unlikely at the smallest densities considered. This
suggests that the CBF wave function at very low densi-
ties is problematic; additional studies with Jastrow-BCS
or other wave functions would be useful.

(b)

Figure 1: The equation of state of low-density neutron matter compared to that
of cold atoms at the same value of Fermi momentum times scattering length
(kFa). The left side compares cold atoms and neutron matter (see text), and the
right panel shows neutron matter results for di↵erent methods over a wider range
of kFa. Figures taken from (21,22).

Fermi Gas wave function. The radial form of the function �(r) and f(r) are
determined in variational calculations.

These calculations have a fixed-node approximation that implies they provide
variational upper bounds to the true energy. They have proven to be very accuate
in studies of cold atom systems, where accurate lattice calculations without a
fixed-node approximation are available (3). These calculations are also in very
good agreement with cold atom experiments (2).

The results of the equation-of-state calculations are shown in Fig. 1. The
left panel compares neutron matters and cold atoms at very low density. The
vertical axis indicates the ratio of fully interacting energy to the energy of the free
Fermi gas at the same density, the horizontal axis is the Fermi momentum times
the scattering length kFa; on the upper axis the equivalent Fermi momentum
for neutron matter is indicated. At extremely low densities, or equivalently small
value of kFa, analytic results are available (24,25), and the higher-order Lee-Yang
result is plotted as a line in the figure.

Results for cold atoms with zero e↵ective range are plotted as filled blue circles,
in the limit of infinite kFa these should approach 0.37. Cold atom results for the
dependence on the e↵ective range are also available, the equation of state can be
expanded in terms of kF :

E /EFG = ⇠ + S kF re + ..., (5)

where S = 0.12(3) is a universal constant that has been determined in the lattice
calculations and in Di↵usion Monte Carlo (3, 26). Using the above equation of
including the experimental neutron-neutron e↵ective range re gives the dashed
line in the figure.

Gandolfi, Gezerlis, JC (2015)



Higher DensitiesNUCLEAR AND NEUTRON-STAR MATTER FROM LOCAL … PHYSICAL REVIEW RESEARCH 2, 022033(R) (2020)

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32

n fm−3

−25

−20

−15

−10

−5

0

5

10

15

20

25

30

35

40

E
/A

[M
eV

]

(a)

N2LO E

N2LO Eτ

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32

n fm−3

0

5

10

15

20

25

30

35

40

45

50

55

60

S
(n

)
[M

eV
]

(b)

N2LO E

N2LO Eτ

FIG. 1. (a) Equation of state of PNM (triangles) and SNM (circles). (b) Nuclear symmetry energy. Red solid symbols (blue empty symbols)
are AFDMC results for the N2LO local chiral potentials with coordinate-space cutoff R0 = 1.0 fm and the E1 (Eτ ) parametrization of the
three-body force. The EOS curves are fit to AFDMC results using Eqs. (2) and (3) (see parameters in Table I). Colored bands represent the
uncertainties of the many-body calculations, which include both statistical Monte Carlo errors and the uncertainties coming from the truncation
of the chiral expansion. In panel (a), the green box indicates the empirical saturation point [16]. In panel (b), we show experimental constraints
on the symmetry energy below saturation density from Ref. [41], at saturation [42], and twice saturation density [for S(nsat ) = 31 MeV] [43].
The dashed black curve is the Fermi gas result.

The solid curves in Fig. 1 are fit to the AFDMC results
according to the relations [44,45]

EPNM(n) = a
(

n
nsat

)α

+ b
(

n
nsat

)β

, (2)

ESNM(n) = E0 + K0

2!

(
n − n0

3n0

)2

+ Q0

3!

(
n − n0

3n0

)3

+ Z0

4!

(
n − n0

3n0

)4

+ O
(

n − n0

3n0

)5

, (3)

where nsat = 0.16 fm−3 is the empirical saturation density, n0
and E0 are saturation density and saturation energy for the
given Hamiltonian, and K0, Q0, and Z0 are the incompress-
ibility, skewness, and kurtosis parameters. For SNM we fit the
AFDMC energies above n = 0.12 fm−3, since clustering is
expected to appear at lower densities. Assuming that the sys-
tem behaves as uniform matter over the whole density range,
which is not a realistic picture for low-density nuclear matter
(hence the dashed curves in Fig. 1), we enforce ESNM(0) = 0
by adjusting Z0 accordingly. All the fitting parameters, to-
gether with the empirical values, where available, are reported
in Table I.

In Fig. 1, colored bands represent the uncertainties of the
many-body calculation, which include both statistical Monte
Carlo errors and the uncertainties coming from the truncation
of the chiral expansion. The latter is evaluated according to the
prescription by Epelbaum et al. [46]. In this work we consider

the average momentum scale p =
√

3/5 kF [20], kF being the
Fermi momentum of PNM or SNM, and $b = 500 MeV [10].
The difference of the two bands indicates an additional source
of uncertainty due to the regularization scheme.

The EOS of SNM for the E1 potential saturates at a
slightly higher density n = 0.22(1) fm−3 and higher energy
E = −13.96(8) MeV compared to the empirical point, while
the incompressibility K0 = 223(16) MeV lies within the ex-
pected range [44]. The skewness parameter is poorly con-
strained, but is consistent, for instance, with the analysis car-
ried out in Refs. [44,47], where the authors considered terms
up to n4 to fit the SNM EOS. Note that, by considering in
Eq. (3) only terms up to n3, and by constraining the skewness

TABLE I. Fitting parameters for Eqs. (2) and (3), where the
errors originate in the statistical Monte Carlo uncertainties only.
Empirical values from Refs. [16,44] are shown for comparison.

Par. N2LO E1 N2LO Eτ Empirical

a 13.9(2) MeV 13.9(3) MeV −
α 0.54(1) 0.54(2) −
b 2.3(2) MeV −1.0(4) MeV −
β 2.6(1) 4(1) −
n0 0.22(1) fm−3 0.36(1) fm−3 0.164(7) fm−3

E0 −13.96(8) MeV −17.29(9) MeV −15.86(57) MeV
K0 223(16) MeV 184(64) MeV 230(20) MeV
Q0 252(390) MeV 1110(1491) MeV 300(400) MeV
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TABLE II. Nuclear symmetry energy and its slope (in MeV)
at different densities. Uncertainties are at the 1σ confidence level.
Empirical values are also reported.

Density Obs. N2LO E1 N2LO Eτ Empirical

nsat S 30(3) 27(3) 31.6(2.7) [42]
SPNM 33(1) 29(1)
L 59(9) 33(9) 58.9(16.0) [42]
LPNM 40(4) 11(5)

2nsat S 45(5) − 46–54 [43]
L 67(44) − −

parameter to impose the passage to zero, n0, E0, and K0 stay
within the previously identified ranges, while Q0 changes to
−145(108) MeV. This value is similar to that extracted from
Skyrme parametrizations, where a similar EOS up to n3 terms
is used (see, for instance, Ref. [48]).

The new PNM EOS is consistent with earlier AFDMC
results using local chiral interactions [10], where simplified
wave functions were used and the unconstrained propagation
was not performed. Hence, the PNM EOS for the E1 interac-
tion remains stiff enough to be compatible with astrophysical
observations, while the Eτ potential is too attractive at high
density, resulting in negative pressure above 0.20 fm−3. This
behavior is similar to the SNM case, where saturation is
reached at high density [n = 0.36(1) fm−3], with an energy
below the empirical saturation value [−17.29(9) MeV]. The
incompressibility [K0 = 184(64) MeV] is within the expected
range, but the uncertainty is large. The skewness parameter is
also very poorly constrained.

The nuclear symmetry energy S and its slope L as a
function of the density are defined as

S(n) = EPNM(n) − ESNM(n), (4)

L(n) = 3n
∂S(n)
∂n

. (5)

Please note, that the symmetry energy as defined in Eq. (4) is
similar to the quadratic term in the isospin asymmetry expan-
sion if quartic contributions are small as expected [49,50]. The
AFDMC results for the symmetry energy are reported in the
right panel of Fig. 1 for both the local chiral interactions con-
sidered in this work. The E1 potential predicts values of the
symmetry energy compatible with the available constraints at
both saturation [42] and twice saturation density [43] (see also
Table II). For the Eτ model, compatibility is only marginal at
saturation density, and deteriorates at higher density due to the
behavior of the corresponding PNM EOS above 0.20 fm−3.

In Table II we report the values of the symmetry energy
and its slope at nsat and 2nsat as obtained from Eqs. (4) and
(5). For the E1 interaction, L is compatible with the empirical
values, within the estimated uncertainties. The Eτ potential,
instead, predicts a too low value for L, as a consequence of the
corresponding too soft PNM EOS. If the empirical saturation
was achieved for the employed interactions, n0 ≡ nsat, the
symmetry energy and its slope at nsat would be completely
determined by the PNM EOS: SPNM = a + b − Esat, with
Esat = −15.86 MeV, and LPNM = 3(aα + bβ ), see values in
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FIG. 2. S vs L (red) and SPNM vs LPNM (purple) at the empirical
saturation density nsat for the E1 potential compared to experimental
constraints from nuclear masses [51], the neutron-skin thicknesses
of Sn isotopes [52], the dipole polarizability of 208Pb [53], giant
dipole resonances (GDR) [54], isotope diffusion in heavy ion col-
lisions (HIC) [55], and from isobaric analog states and isovector
skin (IAS + &R) [56]. The areas denoted by red-dashed lines are
theoretical constraints from Ref. [1] (HS) and Ref. [2] (GCR), while
the area denoted by black-dashed lines is the inference of Ref. [3]
(SG). The thick black line shows the unitary-gas constraint from
Ref. [57]. Figure adapted from Ref. [57].

Table II. Differences between (S, L) and (SPNM, LPNM), due to
extra energy and pressure contributions from the SNM EOS,
are clearly shown in Fig. 2, where L is plotted versus S at the
empirical saturation density. Shaded areas are calculated by
sampling thousands of curves within the uncertainty bands of
PNM and SNM, calculating S and L from these samples, and
plotting the resulting densities. Colored bands with labels are
experimental constraints as in Ref. [57].

Finally, in Fig. 3, for the E1 interaction we show the
pressure as a function of the density for PNM (red solid
curve) and β-equilibrated matter (red dashed curve), where
the latter is obtained consistently from our results for PNM
and SNM, including the uncertainty bands. The green area
is the pressure extracted by the LIGO-Virgo collaboration
from the GW signal GW170817 [58]. At low densities, the
LIGO extraction is stitched to the SLy EOS, which is why the
uncertainty band decreases. We find that our calculations lead
to pressures that are compatible with but at the lower bound
of the LIGO extraction.

Summary. We have performed QMC calculations of sym-
metric nuclear matter and the symmetry energy using realistic
nuclear interactions from chiral EFT. For our local chiral
interactions at N2LO, we find saturation at ≈1.4nsat and
≈−14 MeV, but our results overlap with the empirical satura-
tion point within uncertainties. Our results for the symmetry

022033-4
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uncertainties are sizable at 2n0, we shall find that PNM
calculations still provide useful constraints. The phenomenologi-
cal AV8′+UIX interaction will also be analyzed in the same
density interval for comparison. Even though the expansion
parameter ;kF/ΛB only increases by about 25% when the
density is increased from n0 to 2n0, we have chosen 2n0 as an
upper limit to the validity of nuclear Hamiltonians for the
following reasons. First, the previous discussion of uncertainties
and the order-by-order convergence of the energy per particle and
pressure in neutron matter has shown that while the convergence
for the energies is consistent with EFT expectations, the situation
is less satisfactory for the pressure at 2n0. Second, the accuracy of
chiral nuclear interactions in describing typical momenta in nuclei
and nucleon–nucleon scattering data decreases with increasing
density. Third, at higher densities, additional degrees of freedom,
e.g., hyperonic dof, might appear(e.g., Ambartsumyan &
Saakyan 1960; Glendenning 1982; Lonardoni et al. 2015; Gal
et al. 2016). Fourth, at densities above 2n0, typical momenta in
neutron matter are comparable to the cutoff scales employed in
the calculation, which further increases the size of regulator
artifacts. Based on these reasons, we believe that 2n0 is a
reasonable upper bound for calculations with the local chiral
Hamiltonians that we employ here.

2.2. The EOS of NS Matter

Matter in NS is in β—equilibrium, and at the relevant densities
a small fraction of protons will be present. The proton fraction,
denoted by x, increases with density but remains small and
x10% even at 2n0. Although the proton contribution to the
EOS can be expected to be small compared to the intrinsic
uncertainty associated with the nuclear Hamiltonian discussed
earlier, we shall extend the PNM results to finite proton fraction.
To achieve this, we use the parameterization introduced by

Hebeler et al. (2013), given by
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where T n m3 2 2 N0
2

0
2 3 2p= ( ) ( ) is the Fermi energy of

noninteracting symmetric nuclear matter at saturation density,
x=np/n is the proton fraction (np is the proton density), and
α, αL, η, ηL, and γ are parameters that are fit to the neutron-
matter results and the saturation point of symmetric nuclear
matter, n , 0.5 16 MeVE

A 0
nuc

= -( ) , and Pnuc(n0, 0.5)=0. The
saturation point determines α and η, while the parameters αL,
ηL, and γ are determined by the PNM results. This
parameterization provides a faithful reproduction of the PNM
results obtained using AFDMC for densities up to 2n0, and has
also been shown to provide a good representation of results for
asymmetric nuclear matter obtained in many-body perturbation
theory(Drischler et al. 2014).
Using the parameterization in Equation (4), we follow Tews

(2017) to construct a consistent crust model up to the crust-core
transition density, ncc≈n0/2. For densities between ncc and
the chosen transition density ntr, we extend the PNM results to
β equilibrium. From this procedure, the neutron-star equation
of state P(ò) and the speed of sound c nS

2 ( ) are determined. In
Figure 3, we show the speed of sound in NS matter up to two
times nuclear saturation density for the chiral N2LO TPE-only
(green band), N2LO TPE+VE, (red band), and AV8′+UIX
(black line) interactions.

3. Speed-of-sound Extension to Higher Densities

To obtain the mass–radius relation of NSs we need to extend
our EOS of NS matter to higher densities. A common approach
is to use a polytropic extension (see, e.g., Hebeler et al. 2013;
Kurkela et al. 2014, and Raithel et al. 2016 for more details). In
such an approach, the higher-density EOS is parameterized by a
set of piecewise polytropes, that are matched to the microscopic
calculations. The polytropic indices and the transition densities
between the individual segments are then varied to sample many
possible EOS curves. This approach is rather general but it leads
to discontinuities in the speed of sound.
In this work, we shall restrict our analysis to scenarios for

which the speed of sound is continuous for densities
encountered inside NS, allowing us to directly parameterize
the speed of sound and use it to construct the EOS. Although
this may be less general than EOSs constructed from piecewise
polytropes, our choice is motivated by the following observa-
tion. Our calculations of the nuclear EOS up to 2n0 show that it
is relatively soft with a rather small speed of sound. To obtain a
maximum NS mass M 2max > Me, the EOS at higher density
needs to stiffen significantly. This disfavors strong first-order
phase transitions inside NS above 2n0, and models of high-
density matter where new Fermionic or bosonic degrees of
freedom appear suddenly to produce discontinuities in the
energy density (note that the pressure is continuous and

Figure 3. Speed of sound as a function of density for NS matter based on the
local chiral N2LO TPE-only (green lower band) and TPE+VE, (red higher
band) interactions of Lynn et al. (2016) and the AV8′+UIX interaction (black
line) for comparison. The arrow indicates the region of the crust-core transition.
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• At extremely high densities, pQCD gives (cS / c)2 = 1/3 exactly. 
• Speed of sound decreases at very high but finite density 
• Related to maximum mass of neutron star 
• Reconcile with few times saturation density? 
• Many more degrees of freedom enter at high densities

As stated before, we analyze the results for two different
transition densities and generate a few thousand accepted
parameter sets for each transition density. We show histograms
for the resulting speed of sound, the mass–radius relation, and
the EOS in Figures 8 and 9 for both transition densities. For the
mass–radius histograms, we also show the average radius for
each mass as well as 68% confidence intervals.

We find that the speed of sound increases rapidly in a small
density range above ntr. This increase is more drastic for softer
nuclear interactions. For stiffer interactions, cS increases slowly

and peaks at higher densities. In all cases, for a large fraction of
parameterizations, the speed of sound increases to values
around cS≈0.9. For the smaller transition density, there exist
parameterizations that observe the conformal limit at all
densities, while for the higher transition density all parameter-
izations violate this bound, consistent with our previous
findings.
For the mass–radius relation, we find a rather broad radius

distribution at lower transition densities that narrows with
increasing transition density. This highlights the fact that PNM
calculations at densities ∼2n0 provide valuable information
despite sizable uncertainties. We highlight this fact in
Figure 10, where we show the radius of a typical 1.4Me NS
as a function of ntr for the chiral EFT interactions. At ntr,1, we
find a radius range of 9.4–14.0 km (10.0–14.1 km) with a 68%
confidence interval of 12.0±1.0 km (12.3± 0.9 km) for the
TPE-only (TPE+VE,) interaction. This range reduces to
9.4–11.8 km (10.2–12.3 km) with a 68% confidence interval
of 10.7±0.5km (11.5 0.4

0.3
-
+ km) for ntr,2.

For the phenomenological interaction, the mass–radius
relation is much narrower than for the chiral interactions
because the EOS is much stiffer and uncertainties associated
with the interaction are unknown. For a typical NS, we find a
radius range of 11.4–14.3 km with a 68% confidence interval of
12.7 0.6

0.7
-
+ for ntr,1 and a very narrow range of 12.8–12.9 km

for ntr,2.
In all histograms, we compare our findings to the

corresponding envelopes of Hebeler et al. (2013) for a
polytropic expansion with three polytropes and find very good
agreement for all interaction models. This suggests that our
extension is general enough to capture similar effects as the
polytropic extension. Our results are also consistent with other
radius constraints using EOSs obtained with the AFDMC
method(Steiner & Gandolfi 2012; Steiner et al. 2015).
In Table 2, we show the maximum masses and the maximal

central densities for all interactions and both transition
densities. The upper limit for the maximum mass strongly

Figure 6. Left panel: cS
2 as a function of density for several transition densities and two nuclear Hamiltonians. For each transition density and Hamiltonian, we show

the curve for the maximal nBL that still supports a two-solar-mass NS. Right panel: the maximal nBL that is sufficient to support a two-solar-mass NS as a function of
transition density for the same Hamiltonians.

Figure 7. Four examples for the extension of c nS
2 ( ) as defined in Equation (9)

(without conformal limit) for ntr,2 and the chiral TPE+VE,1 interaction. Black
dots indicate the maximal central densities reached inside NSs for the
corresponding EOSs and the red dashed line indicates the conformal limit.
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Table 1
Single particle energy levels for different baryon numbers for 
SU(2) quarks and nucleons at different densities.

Particle Mass (GeV) N ρ (fm−3) E (k=1, GeV)

Nucleon 0.94 4 0.16 0.096
rel q 0.0 4 0.16 0.424
rel q 0.3 4 0.16 0.219
non-rel q 0.3 4 0.16 0.299

Nucleon 0.94 14 0.16 0.042
rel q 0.0 14 0.16 0.279
rel q 0.3 14 0.16 0.110
non-rel q 0.3 14 0.16 0.130

Nucleon 0.94 4 0.32 0.152
rel q 0.0 4 0.32 0.534
rel q 0.3 4 0.32 0.313
non-rel q 0.3 4 0.32 0.476

When quark degrees of freedom are manifest, it is appropriate 
to neglect confinement at the short-distance scales of relevance to 
our small volumes. We assume that the average confining interac-
tion per baryon is a function of the density only independent of 
baryon number at fixed density. We then compare the evolution of 
the energy with baryon number at fixed density to the nucleonic 
models.

The shell structure can be influenced by interactions, though, 
especially those that lead to pairing. To include this we shall con-
sider a simple local potential of the form

V (i, j;"ri,"r j) = "i j V (ri j) , (4)

where i, j are multi-indices containing color, flavor and spin pro-
jection. In order to obtain the desired pairing structure expected in 
high-density QCD, we choose a simple short-range interaction

V (r) = − 4h̄2

µr2
e
αβ2 e−2β r

re

[
1 + αe−2β r

re

]2 . (5)

The matrix "i j is chosen to be anti-diagonal with entries equal to 
1, µ is the reduced mass, and

α =
√

1 − 2
re

as
, β = 1 + α , (6)

where as and re are the (S-wave) scattering-length and effective-
range respectively. In our calculations we choose as = 10 fm and 
re = 0.1 fm in order to be close to the unitary limit.

It is useful to compare relevant energy scales for 4 and 14 neu-
trons in periodic boundary conditions. In Table 1 we compare the 
lowest finite energy free-particle modes in the box described by 
momenta q = (2π/L)k with |k| = 1. Since the quarks are light, it 
takes substantial energy to raise them to higher momentum states, 
as indicated in the table. There are more degrees of freedom avail-
able, however, meaning that quarks will have a substantially lower 
Fermi energy for the case of weak interactions at high density.

In very simple models the strength of the quark interaction is 
adjusted to reproduce the N − & mass splitting. The total splitting 
is 320 MeV, which can be compared to the single-particle energy 
splittings above. For example, for four neutrons, two nucleons have 
a momentum |k| = 1, while with quarks one can accommodate all 
quarks with |k| = 0 at the cost of twice the N − & mass splitting. 
At low densities (large volumes) the four-neutron system would 
be preferred, but at high densities (small volumes) having all the 
quarks at |k| = 0 would be preferable.

Fig. 1. Ground-state energies of 3 free neutrons and with AV8′ and AV18 N N inter-
actions as a function of density.

2. Results for N = 3 and 4

At present it is difficult to compute many-neutron states in 
lattice QCD because of the rapid growth in the number of cor-
relators required and because the signal to noise ratio for small 
pion mass grows exponentially with baryon number. Very small 
systems of 4 baryons may be easiest to simulate in lattice QCD 
(see e.g.. [29–32]). For these systems we calculate states with dif-
ferent quantum numbers as an additional probe of hadronic versus 
quark degrees of freedom. We find distinctively different behavior 
even for 4 neutrons when comparing the nuclear and quark mod-
els for different quantum states.

Two neutrons in finite volume have been studied in lattice QCD 
(see for example Refs. [16,33,34]) and as two nucleons using QMC 
methods in Ref. [35]. These results are directly tied to the phase 
shifts of the neutron–neutron interaction via the Lüscher formula. 
Systems of three and four neutrons in external wells at low density 
have been studied in Ref. [36]; here we are interested in the be-
havior at high densities in periodic boundary conditions to mimic 
lattice simulations.

For three neutrons we study low-lying states with the quantum 
numbers of two neutrons with spin and total momentum zero, and 
with the extra neutron in a |k| = 1 state. The spin of this unpaired 
neutron can be oriented along or anti-aligned to the lattice equiv-
alent of the angular momentum giving something similar to P3/2
or P1/2 states. As expected the former are slightly lower in energy 
due to the spin-orbit splitting in the neutron–neutron interaction. 
The total (including center-of-mass kinetic energy) ground-state 
energies of three neutrons at different densities with the AV8′ and 
AV18 interactions are compared with free neutrons with the same 
boundary conditions in Fig. 1.

For four neutrons we study states with two neutrons paired to 
total momentum and spin zero, and then either s-, p-, or d-wave 
pairing of the remaining two dominantly |k| = 1 neutrons. The s-
and d-wave states have the spins coupled to zero while the p-wave 
states must have the spins coupled to 1 to maintain antisymmetry. 
The s-wave state is the same as that considered below for up to 
14 neutrons.

We find the initially surprising result (see Fig. 2) that neutron–
neutron interactions favor pairing in the d-wave state for small 
box sizes. For free neutrons the three different (s-, p- and d-wave) 
states would be degenerate. The interaction between the two neu-
trons in |k| = 1 states coupled to zero total momentum dominates 
the spectrum. The relative momentum for this pair is quite large 
in these small volumes, in the region of the repulsive s-wave 
neutron–neutron interaction. The relevant phase shifts are shown 
in Fig. 3. At saturation density, two neutrons with momenta +1

S. Gandolfi et al. / Physics Letters B 785 (2018) 232–237 235

Fig. 2. Energy per neutron of 4 neutrons for states with different pairing symmetries 
as a function of density.

Fig. 3. S-, P -, and D-wave phase shifts for the different N N interaction models.

and −1 are at a total energy of nearly 200 MeV, while at twice 
saturation density the center-of-mass energy is 300 MeV. The 
strong s-wave repulsion disfavors the s-wave state, and the pe-
riodic boundary conditions favor the L = 2 state, as the d-wave 
pairing is symmetric across the periodic boundaries. That is, a pair 
orbiting with L = 2 feels an attractive interaction, while for L = 1, 
the periodic images interfere as the relative coordinates r and L − r
and consequently "L · "S are oriented in opposite directions.

Results for the four-neutron calculations at different volumes 
are shown in Fig. 2 for the AV18 and N2LO N N interactions. The 
different states all have very similar energies at half saturation 
density, while the d-wave state is favored in all these models at 
ρ = 0.16 fm−3 and above. At twice saturation density the s-wave 
state is roughly 100 MeV higher than the d-wave state.

For free or paired quarks it is always advantageous to keep all 
the quarks dominantly in k = |0| states. The pairing energy that 
can be gained by promoting some quarks to higher momentum 
is small compared to the energy cost of promoting two or more 
quarks to |k| = 1 states. These conclusions are unaltered by the 
addition of a gluon-exchange spin-interaction (which historically 
was invoked to explain the N − " mass difference) of the form 
[37]

V s(ri j) = 2αs

2mim j

[
8π

3
"σi · "σ jδ

3("ri j) + 1

r3
i j

S(2)
i j

]

, (7)

where S(2)
i j is the tensor operator. The energy difference between 

the s-wave and d-wave states favors the s-wave as the ground 

Fig. 4. Energies per neutron versus neutron number at different densities for free 
neutrons (dashed lines) or with the AV18 N N interaction (points). At lower den-
sities the energies per neutron are quite small. The upper curves correspond to 
densities up to three times nuclear saturation density, where the energies per par-
ticle (ignoring rest mass) are from 50–100 MeV per nucleon. The minima at N = 14
correspond to a closed shell of neutrons with |k| = 0, 1.

state, since the s-wave is lower by "E per baryon ≈ 27 MeV and 
45 MeV at 2 and 3 times nuclear saturation density, respectively. 
This ordering is opposite to that seen in the neutron calculations.

3. Results from N = 4 to 14 neutrons

We also consider nuclear ground states from N = 4 to 14 with 
even numbers of neutrons paired to spin zero with full cubic 
symmetry. In the continuum, this would correspond to an s-wave 
superfluid, which is expected to be the ground state at low den-
sities [38,39]. The special cases N = 2 and 14 correspond to filled 
single-particle nuclear shells and hence are expected to have lower 
energy per particle than the remaining (open-shell) systems. Sim-
ilar behavior has been observed in calculations of neutrons in ex-
ternal fields with either Woods–Saxon or harmonic wells [40,41]. 
This is confirmed by our numerical results as shown in Fig. 4. The 
rest mass of the nucleons are not included in this figure.

Note that the differences between different particle numbers 
are quite significant at high density, of order 10 MeV per parti-
cle between adjacent N and of order 50 MeV per nucleon lower 
for N = 14 compared to N = 6. Such strong shell dependence, ab-
sent for free quarks, is also observed in the limit of strongly paired 
quark matter.

The nuclear model dependence is fairly small at modest densi-
ties, but increases substantially at the highest densities considered. 
This is illustrated in Fig. 5, where we plot the ratio of energies to 
Fermi gas energies for different particle numbers and densities for 
both the AV8′ and AV18 interactions. The AV8′ model only fits the 
lower partial waves, and is therefore less reliable at moderate to 
high densities. The difference between AV18 and AV8′ is treated 
perturbatively in these calculations. The pattern of E/N versus N
is the same for both interactions.

In Fig. 6 we compare results of the nuclear model with free 
neutrons and also free and paired quarks at twice saturation den-
sity. The confinement energy in the quark model, which is as-
sumed to be constant with density, is adjusted to match the nu-
clear result for 14 interacting neutrons. Note the dramatically dif-
ferent behavior versus baryon number in the nuclear and quark 
models, particularly for small N . The same behavior is observed 
also at three times saturation density in Fig. 7.

For both quarks and neutrons we find that the addition of in-
teractions does not change the qualitative behavior apart from the 
cases N = 16 and N = 6 at high density. The sudden increase in 
energy for N = 16 compared to N = 14, which is caused by the 

N=3 (upper figure) and N=4 results for neutrons 
with PBC

Comparisons with LQCD Comparisons with experimental data

• Nuclei with neutron halos (small density) 

• Low-energy n-alpha scattering has some information 
• N=4 scattering (p-3He or n-t) well above breakup 

higher momenta 
• Relating calculations on small lattices to  

asymptotic observables

Gandolfi, et al, PLB (2018)
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FIG. 4. P -wave n-α elastic scattering phase shifts compared to
an R-matrix analysis of experimental data [46].

order to obtain the final results reported in Tables VIII and
IX. Once the optimal set of parameters αi is found, these
corrections are small, almost consistent with zero within Monte
Carlo statistical uncertainties, as shown in Table V.

The final result 〈H 〉 is, however, nearly independent of
variations of the αi parameters, even for larger systems. This
is shown in Table VI where the αi are arbitrarily changed in
16O within 5–10% with respect to the optimal values, given
in the first row for each cutoff. This results in !4% variations
of the total energy, compatible with the overall Monte Carlo
statistical uncertainties. Note that, in order to save computing
time, this test has been done using the constrained evolution.
However, the optimal constrained expectation values 〈Vpert〉
are consistent with the unconstrained ones of Table V.

Unless specified otherwise, in the following, all ground-
state energies correspond to the final expectation value 〈H 〉,
extracted from the unconstrained Monte Carlo results for 〈H ′〉
with an exponential fit, and adjusted with the perturbative
correction of Eq. (46) when 3N forces are employed.

E. Ground-state energies and charge radii

We consider local chiral Hamiltonians at leading-order
(LO), next-to-leading-order (NLO), and N2LO, the latter in-
cluding both two- and three-body forces. At each order we can
assign theoretical uncertainties to observables coming from
the truncation of the chiral expansion; see, e.g., Ref. [48].
For an observable X at N2LO, the theoretical uncertainty is

TABLE IV. LECs cD and cE for different cutoffs and parametriza-
tions of the 3N force.

3N R0 (fm) cD cE

Eτ 1.0 0.0 −0.63
1.2 3.5 0.09

E1 1.0 0.5 0.62
1.2 −0.75 0.025

TABLE V. Energy expectation values of Eq. (46) for A ! 6.
Errors are statistical. Results are in MeV.

AZ (J π ,T ) 3N R0 (fm) 〈H ′〉 〈Vpert〉 〈H 〉
6He (0+,1) Eτ 1.0 −28.3(4) 0.1(2) −28.4(4)

1.2 −29.1(1) 0.2(1) −29.3(1)
E1 1.0 −28.5(5) −0.3(2) −28.2(5)

1.2 −27.3(3) 0.1(2)) −27.4(4)
6Li (1+,0) Eτ 1.0 −31.2(4) 0.3(3) −31.5(5)

1.2 −31.9(3) 0.4(1) −32.3(3)
E1 1.0 −30.9(4) −0.2(2) −30.7(4)

1.2 −30.0(3) −0.1(2) −29.9(4)
12C (0+,0) Eτ 1.0 −75(2) 3(1) −78(3)
16O (0+,0) Eτ 1.0 −115(5) 2(1) −117(5)

1.2 −265(25) −2(6) −263(26)
E1 1.0 −114(6) 1(2) −115(6)

1.2 −113(5) −2(2) −111(5)

obtained as

$XN2LO = max(Q4 × |XLO|,

Q2 × |XNLO − XLO|,

Q × |XN2LO − XNLO|), (65)

where we take Q = mπ/%b with mπ ≈ 140 MeV and %b =
600 MeV, as in Ref. [33].

The expectation value of the charge radius is derived from
the point-proton radius using the relation

〈
r2

ch

〉
=

〈
r2

pt

〉
+

〈
R2

p

〉
+ A − Z

Z

〈
R2

n

〉
+ 3h̄2

4M2
pc2

, (66)

where rpt is the calculated point-proton radius, 〈R2
p〉 =

0.770(9) fm2 [49] the proton radius, 〈R2
n〉 = −0.116(2) fm2

[49] the neutron radius, and (3h̄2)/(4M2
pc2) ≈ 0.033 fm2 the

Darwin-Foldy correction [50]. For 6He a spin-orbit correction
〈r2

so〉 = −0.08 fm2 [51] is also included. The point-nucleon

TABLE VI. Contributions to the energy expectation value of
Eq. (46) in 16O. The parametrization Eτ of the 3N force is used
for different cutoffs. 〈Vpert〉 is extracted from a mixed estimate, as in
Eq. (52). For each cutoff, the first line represents the optimal choice
for αi . Energies (in MeV) are the result of the constrained evolution.
Errors are statistical.

R0 (fm) (α1,α2,α3) 〈H ′〉 〈Vpert〉 〈H 〉

1.0 (2.05,−3.80,−0.95) −90.0(3) 1.8(5) −91.8(6)
(2.50,−3.30,−1.20) −125.1(6) −33.9(8) −92.2(1.0)
(1.95,−4.00,−0.90) −83.3(2) 5.9(9) −89.2(1.0)
(1.80,−4.20,−0.85) −75.6(3) 13.9(1.4) −89.4(1.5)

1.2 (1.80,0.45,8.00) −171(2) −2(1) −169(2)
(1.90,0.50,8.50) −197(3) −25(2) −172(3)
(1.70,0.40,7.50) −147(1) 15(1) −162(1)

044318-12
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Nuclei with QMC (local regulators)

In Fig. 1 we present the ground-state energies per
nucleon of selected nuclei with 3 ≤ A ≤ 16, calculated at
LO, NLO, and N2LO ðEτÞwith the cutoff R0¼ 1.0 fm. The
error bars are estimated by including the statistical uncer-
tainties given by the AFDMC calculations as well as the
error given by the truncation of the chiral expansion. The
ground-state energies per nucleon are in agreement with
experimental data up to A ¼ 6, while for 12C and 16O the
energies are somewhat underpredicted. The uncertainties
are reasonably small, dominated by the truncation error.
In Fig. 2 we compare the charge radii calculated at LO,

NLO, and N2LO ðEτÞ with the R0¼ 1.0 fm cutoff to
experimental data. These results show that a qualitative
description of binding energies and charge radii is possible
starting from Hamiltonians constructed using only few-
body data. We note, however, that the radius of 6Li
is slightly smaller than the experimental measurement.

It is interesting to note that the charge radius of 6Li
calculated with the GFMC method employing the AV18
and Illinois VII (IL7) three-body interactions is also
underestimated [5].
We show in Fig. 3 the charge form factors of 12C and 16O

compared to experimental data. The 12C form factor is also
compared to previous GFMC calculations with the
AV18þ IL7 potentials. Our form factor calculations have
been performed using one-body charge operators only.
Two-body operators are expected to give small contribu-
tions only at momenta larger than ≈500 MeV [46,47], as
they basically include relativistic corrections. It is interest-
ing to compare the curves given by the two different
cutoffs. In the figure, the result obtained using R0¼ 1.0 fm
at N2LO ðEτÞ (solid blue line) includes the uncertainty
from the truncation of the chiral expansion (shaded blue
area). The agreement with experimental data is very good.
For R0¼ 1.2 fm at N2LO ðEτÞ (dotted red line), the radius
is too small and the first diffraction minimum occurs at a
significantly higher momentum than experimentally
observed, consistent with the overbinding obtained for this
interaction.
Finally, in Fig. 4 we present the Coulomb sum rules for

12C and 16O. The AFDMC result for 12C is compatible both
with the available experimental data as extracted in Ref. [51]
and with the GFMC result for AV18þ IL7 [46]. The
differences between the AFDMC and GFMC results at high
momentum are due to two-body currents, fully implemented
to date only in the GFMC calculations. For 16O, the result for
the harder interaction with R0¼ 1.0 fm is very close to that

FIG. 1. Ground-state energies per nucleon for 3 ≤ A ≤ 16 up to
N2LO ðEτÞ with the R0¼ 1.0 fm cutoff. Smaller error bars
(indistinguishable from the symbols up to A ¼ 6) indicate the
statistical Monte Carlo uncertainty, while larger error bars are the
uncertainties from the truncation of the chiral expansion.

FIG. 2. Charge radii for 3 ≤ A ≤ 16 up to N2LO ðEτÞ with the
R0¼ 1.0 fm cutoff. Error bars are as in Fig. 1.

FIG. 3. Charge form factor for 16O at N2LO for R0 ¼ 1.0 and
1.2 fm compared to experimental data [44,48,49]. For
R0¼ 1.0 fm, both Eτ and E1 three-body operators give consistent
results. The shaded area indicates the statistical Monte Carlo
uncertainty combined with the (dominant) uncertainty from the
truncation of the chiral expansion. For 12C, AFDMC results are
shown in the inset for R0¼ 1.0 fm versus experimental data from
Ref. [50] and the GFMC results employing the AV18þ IL7
potentials [46].
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FIG. 6. Charge radii for 3 ! A ! 16 with local chiral potentials: (a) R0 = 1.0 fm cutoff (left panel), (b) R0 = 1.2 fm cutoff (right panel).
The legend and error bars are as in Fig. 5. Updated from Ref. [33].

expansion, the latter being the dominant ones. For the harder
interaction (R0 = 1.0 fm), the predicted binding energies at
N2LO are in good agreement with experimental data all the way
up to A = 16. No differences, within theoretical uncertainties,
are found for the two different parametrizations of the 3N
force.

12C in the Eτ parametrization is slightly underbound. This
is most likely a consequence of the employed wave function
that results in a too high energy for the constrained evolution.
This could be due to the complicated clustering structure of
12C not included in "T , which would require a much longer
unconstrained propagation to filter out the corresponding
low excitations from "T . For A = 6 the wave function is
constructed using up to sd-shell single-particle orbitals. For
12C, instead, coupling p-shell orbitals only already results in
a sum of 119 Slater determinants. Including orbitals in the
sd-shell could in principle result in a better wave function
for this open-shell system, but it will sizably increase the
number of determinants to consider, making the calculation
prohibitively time consuming. Another possible improvement
would be to include quadratic terms in the pair correlations,
as shown in Eq. (64). However, first attempts in 16O lead
to just a ≈6(2) MeV reduction of the total energy in a
simplified scenario (see Table III), with a noticeably increased
computational cost.

For the softer interaction (R0 = 1.2 fm), NLO and in
particular LO results are typically more bound compared to
the R0 = 1.0 fm case. Both parametrizations of the 3N force
make the N2LO energies compatible with the experimental
values up to A = 6, and consistent with those obtained with
the hard potential.

For the heaviest system considered here, 16O, the picture is
quite different. At LO, the system is dramatically overbound
(≈ − 1 GeV), which would imply very large theoretical un-
certainties at NLO and N2LO coming from the prescription of
Eq. (65). Within these uncertainties, NLO and N2LO two-body
energies are compatible with the corresponding results for
the hard interaction (see Tables VIII and IX). However, the
contribution of the 3N force at N2LO largely depends upon

the employed operator structure. The Eτ parametrization for
the soft potential is very attractive, adding almost 10 MeV per
nucleon to the total energy, and thus predicting a significant
overbinding with a ground-state energy of ≈ − 260 MeV.
The E1 parametrization is instead less attractive, resulting
in ≈0.30 MeV per nucleon more binding with respect to the
two-body case, compatible with the energy expectation values
for the hard potential.

Figure 6 shows the charge radii at different orders of the
chiral expansion and for different cutoffs and parametrizations
of the 3N force. The agreement with experimental data for
the hard interaction at N2LO is remarkably good all the
way up to oxygen. One exception is 6Li, for which the
charge radius is somewhat underpredicted. However, a similar
conclusion is found in GFMC calculations employing the
AV18+IL7 potential, where charge radii of lithium isotopes are
underestimated [1].

For the soft interaction, the description of charge radii
resembles order by order that for the hard potential up to A = 6,
with the N2LO results in agreement with experimental data,
except for 6Li (also shown in Table VII). The picture changes
again for A = 16. The charge radius of 16O turns out to be close
to 2.2 fm with the Eτ parametrization of the 3N force, smaller
than that of 6Li for the same potential, but consistent with
the significant overbinding predicted for A = 16. The oxygen
charge radius for the E1 parametrization is instead closer to
the experimental value.

The details of LO, NLO, and N2LO calculations for A " 6
are reported in Tables VIII and IX for R0 = 1.0 and R0 =
1.2 fm, respectively. Results for the constrained and uncon-
strained evolution energies are both shown, together with the
charge radii. Both Monte Carlo uncertainties and theoretical
errors coming from the truncation of the chiral expansion are
reported (where available). At N2LO the two-body energy is
shown together with that of the two different parametrizations
of the 3N force (Eτ and E1).

The full calculation of 12C at N2LO required on the order
of 106 CPU hours (on Intel Broadwell cores at 2.1 GHz) for
a single cutoff (1.0 fm) and 3N parametrization (Eτ ). Due to
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FIG. 7. Charge form factor in 6Li. The solid blue (red) line is
the AFDMC result for the N2LO E1 potential with cutoff R0 =
1.0 (1.2) fm. Lighter shaded areas indicate the uncertainties from
the truncation of the chiral expansion. Darker shaded areas are the
theoretical error bands only taking into account NLO and N2LO
results. Black triangles are the VMC one-body results for AV18+UIX
[58]. The experimental data are taken from Ref. [59].

energy transfer corresponding to the elastic peak, mA being the
mass of the target nucleus. GN

E (Q2) are the nucleon electric
form factors, for which we adopt Kelly’s parametrization [57].

The charge form factors of 6Li, 12C, and 16O are shown in
Figs. 7–9, respectively. In all the plots, the blue (red) curve
is the AFDMC result for the N2LO E1 potential (Eτ for
12C), with cutoff R0 = 1.0 (1.2) fm. Monte Carlo error bars
are typically of the size of the lines within the momentum
range considered here. Lighter shaded areas indicate the
uncertainties from the truncation of the chiral expansion,
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FIG. 8. Charge form factor in 12C. In blue are the AFDMC results
for the Eτ parametrization of the 3N force and cutoff R0 = 1.0 fm.
Black triangles are the GFMC one-body results for AV18+IL7 [60].
The experimental data are taken from Ref. [61]. Updated from
Ref. [33].
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FIG. 9. Charge form factor in 16O. In blue (red) are the AFDMC
results as in Fig. 7. Black triangles are the cluster-VMC one-body
results for AV18+UIX [62]. Experimental data are from Sick, based
on Refs. [55,63,64].

according to Eq. (65). Darker shaded areas are instead the
theoretical error bands only considering the last term of the
prescription, i.e., taking into account the NLO and N2LO
results only. AFDMC results are compared to experimental
data and to available Monte Carlo calculations employing the
phenomenological potentials and one-body charge operators
only. No two-body operators are included in the calculation
of the charge form factors in the current work. However, as
shown in Refs. [58,60,65] for the three different systems, such
operators give a measurable contribution only for q > 2 fm−1,
as they basically include relativistic corrections.

The charge form factor of 6Li for the E1 interaction is
compatible with experimental data at low momentum for
both cutoffs, with larger theoretical uncertainties for the soft
potential. Results for the Eτ parametrization show a similar
behavior. The discrepancy for q ! 2 fm−1 is due to the missing
two-body currents. In fact, AFDMC results for local chiral
forces are compatible with the VMC one-body results for
AV18+UIX [58] up to high momentum.

A similar physical picture is given for both 12C and 16O, for
which the positions of the first diffraction peaks in the form
factors are well reproduced by the hard potentials within the
theoretical error bands, and deviations from the experimental
data occur at high momentum only. For the soft E1 interaction,
instead, the description of the charge form factor in 16O is
less accurate, with the position of the first diffraction peak
overestimated, and the slope of FL(q) for q = 0 underesti-
mated, consistent with the smaller charge radius compared
to the experimental value. The difference with respect to the
experimental results is, however, not as dramatic as for the
soft Eτ potential (see Ref. [33]), and it is mostly covered
by the very large theoretical error bands. These, in particular,
are dominated by the LO contributions to the theoretical error
estimate, as shown by the difference between lighter and darker
bands in the form factor.
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• Protons at ~10% at modest densities 

• At higher densities, additional degrees of freedom enter 

• Pion, Kaons (condensates), Hyperons, Deltas, …

Additional Degrees of Freedom

only interact via the two-body ΛN potential. As a matter of
fact, within the AFDMC framework hypernuclei turn out to
be strongly overbound when only the ΛN interaction is
employed [34,35]. The inclusion of the repulsive three-
body force [model (I)], stiffens the EOS and pushes the
threshold density to 0.34ð1Þ fm−3. In the inset of Fig. 1 the
neutron and lambda fractions are shown for the two
HNM EOSs.
Remarkably, we find that using the model (II) for ΛNN

the appearance of Λ particles in neutron matter is ener-
getically unfavored at least up to ρ ¼ 0.56 fm−3, the largest
density for which Monte Carlo calculations have been
performed. In this case the additional repulsion provided by
the model (II) pushes ρthΛ towards a density region where
the contribution coming from the hyperon-nucleon poten-
tial cannot be compensated by the gain in kinetic energy. It
has to be stressed that (I) and (II) give qualitatively similar
results for hypernuclei. This clearly shows that an EOS
constrained on the available binding energies of light
hypernuclei is not sufficient to draw any definite conclusion
about the composition of the neutron star core.
The mass-radius relations for PNM and HNM obtained

by solving the Tolman-Oppenheimer-Volkoff equations
[62] with the EOSs of Fig. 1 are shown in Fig. 2. The

onset of Λ particles in neutron matter sizably reduces the
predicted maximum mass with respect to the PNM case.
The attractive feature of the two-body ΛN interaction leads
to the very low maximum mass of 0.66ð2ÞM⊙, while the
repulsive ΛNN potential increases the predicted maximum
mass to 1.36ð5ÞM⊙. The latter result is compatible with
Hartree-Fock and Brueckner-Hartree-Fock calculations
(see for instance Refs. [2–5]).
The repulsion introduced by the three-body force plays a

crucial role, substantially increasing the value of the Λ
threshold density. In particular, when model (II) for the
ΛNN force is used, the energy balance never favors the
onset of hyperons within the density domain that has been
studied in the present work (ρ ≤ 0.56 fm−3). It is interest-
ing to observe that the mass-radius relation for PNM up to
ρ ¼ 3.5ρ0 already predicts a NS mass of 2.09ð1ÞM⊙ (black
dot-dashed curve in Fig. 2). Even if Λ particles appear at
higher baryon densities, the predicted maximum mass will
be consistent with present astrophysical observations.
In this Letter we have reported on the first quantum

MonteCarlo calculations for hyperneutronmatter, including
neutrons andΛ particles. As already verified in hypernuclei,
we found that the three-body hyperon-nucleon interaction
dramatically affects the onset of hyperons in neutron matter.
When using a three-body ΛNN force that overbinds hyper-
nuclei, hyperons appear at around twice the saturation
density and the predicted maximum mass is 1.36ð5ÞM⊙.
By employing a hyperon-nucleon-nucleon interaction
that better reproduces the experimental separation energies
of medium-light hypernuclei, the presence of hyperons is
disfavored in the neutron bulk at least up to ρ ¼ 0.56 fm−3

and the lower limit for the predicted maximum mass is
2.09ð1ÞM⊙. Therefore, within the ΛN model that we have
considered, the presence of hyperons in the core of the
neutron stars cannot be satisfactorily established and thus
there is no clear incompatibility with astrophysical obser-
vations when lambdas are included. We conclude that in
order to discuss the role of hyperons—at least lambdas—in
neutron stars, the ΛNN interaction cannot be completely
determined by fitting the available experimental energies in
Λ hypernuclei. In other words, the Λ-neutron-neutron
component of the ΛNN force will need both additional
theoretical investigation, possibly within different frame-
works such as chiral perturbation theory [63,64], and a
substantial additional amount of experimental data, in
particular for highly asymmetric hypernuclei and excited
states of the hyperon.
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TABLE II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

Hyperon-nucleon potential c1½MeV& c2½MeV&
ΛN −71.0ð5Þ 3.7(3)
ΛN þ ΛNN (I) −77ð2Þ 31.3(8)
ΛN þ ΛNN (II) −70ð2Þ 45.3(8)
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FIG. 3. Pure neutron-matter EOS as obtained from the NV2+3-
1a∗ (upper panel) and NV2+3-1b∗ (middle panel), and NV2+3-2b∗

Hamiltonians.

ther evolved using the positive-definite importance sampling
function [46,90,91],

!I (X ) =
√

Re[!T (X )]2 + Im[!T (X )]2, (36)

During this unconstrained diffusion (DMC-UC), the asymp-
totic value of the energy is determined by fitting its imaginary-
time behavior with a single-exponential function [92].

Applying standard diffusion Monte Carlo techniques to
the nuclear many-body problem is made particularly compli-
cated by the spin-isospin dependence of the nuclear forces.
The AFDMC keeps the computational cost polynomial in
the number of nucleons A by representing the spin-isospin
degrees of freedom in terms of outer products of single-
particle states. To preserve this representation, during the
imaginary-time propagation Hubbard-Stratonovich transfor-
mations are employed to linearize the quadratic spin-isospin
operators entering the nuclear potentials. When computing
the AV18+UIX and NV2+3 Hamiltonians, the propagation
is made with a simplified Hamiltonian H ′, which includes
a reprojected v′

8 version of the full v18 potential [93]. The
small difference "v = v18 − v′

8 is estimated at first order in
perturbation theory as

〈"v〉 & 2
〈!T |"v|!(τ )〉

〈!T |!(τ )〉
− 〈!T |"v|!T 〉

〈!T |!T 〉
. (37)

As discussed in detail in Ref. [90] for the UIX potential,
the relation {σα

i , σ
β
i } = δαβ is used to express the anticom-

mutator terms of Eqs. (4) and (5) as a sum of two-body
spin operators with a form and strength that depend on the
positions of three particles. For each quantum Monte Carlo
configuration, the sum over the position of the third particle
is carried out explicitly so that including these terms only
involves changing the strength of the NN potential’s spin
matrices. Similar strategies can be followed to handle the c1
term in Eq. (5), which is equivalent to the S-wave component
of the Tucson-Melbourne three-body potential [94], and the
cD contribution [33]. Finally, in PNM the cE term of Eq. (6)
is identical to the phenomenological repulsive scalar contri-
bution of the UIX force—again with different radial functions
and coupling constant—and its inclusion is trivial [90]. Note
that this procedure allows us to include the 3N force “exactly”
in the AFDMC, and there is no need to use density-dependent
approximations.

Within the AFDMC, infinite uniform neutron matter is
typically simulated using a finite number of neutrons obeying
periodic-box boundary conditions (PBC) [90]. The trial wave
function adopted in our calculations respects by construction
these PBC and it is expressed as

!T (X ) = 〈X |!T 〉 = 〈X |
∏

i< j

fc(ri j )|(〉. (38)

The spin-isospin independent Jastrow function fc(ri j ) is
parametrized in terms of a cubic spline that has a smooth first
derivative and continuous second derivative. The variational
parameters to be optimized are the values of the spline at the
grid points, plus the value of the first derivative at ri j = 0.
In order for the PBC to be satisfied, we impose fc(ri j ) = 1
and f ′

c (ri j ) = 0 when ri j ! L/2. This Jastrow ansatz is more
flexible than the one used in our previous work [46] and has
proven to be able to capture highly clustered configurations of
nucleons, as discussed in Ref. [95] for the 16O nucleus.

055808-8

Delta-full chiral interactions; 
Lovato, et al, 2022



Inhomogeneous Matter: Connection to Density Functionals
3

0.0 0.2 0.4 0.6 0.8 1.0

V
0

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

E
 /

 E
F

G

DMC 
AFMC 

0.24 0.27 0.3 0.33

c
2

-0.006

-0.004

-0.002

0.000

c
4

ε
2

ε
4LDA

FIG. 2. (Color online) Energy of the unitary Fermi gas in a

periodic potential versus strength of the interaction for q =

kF /2 (lower curves) and q = kF (upper curves). Quantum

Monte Carlo calculations are shown as symbols. The bands

are density functional results for E2 using c2 = 0.30(5) and

for E4 with c2 and c4 extracted from fits to all the bulk QMC

data. See the text for details. The error ellipse obtained for

c2 and c4 from the fit is shown in the inset.

blue solid line indicates results expected in the local den-
sity approximation without gradient terms, entirely de-
termined by ⇠. The break in this line represents the point
at which the density separates into quasi two-dimensional
sheeets. The results of the DMC and AFMC calculations
are shown as open and closed symbols respectively.

Using the coe�cient c2 obtained for weak external
fields, the QMC calculated energies for q = 0.5 kF are
well reproduced by this density functional for the whole
range of V0 (lower solid band). This simple density func-
tional is expected to work very well for systems where
|r⇢/(kF ⇢)| << 1 everywhere. In Fig. 2 it is evident that
for the larger q = kF , the E2 density functional begins to
fail, particularly at larger V0. In this region the higher
order gradient corrections are becoming important.

The first correction to the simple gradient density func-
tional E2 (Eq. 3) is of order q4 [27]. It is natural to find
the energies at higher momenta smaller than those given
by E2, this behavior would be expected based on the typi-
cal roton-phonon spectrum [3, 33]. Using the scale invari-
ance of the density functional and a Negele-Vautherin[34]
expansion for the density functional in terms of gradients,
we add another term

E4 = E2 + c4
r2

⇢
1/2r2

⇢
1/2

⇢2/3
, (4)

with the same dimensions as E2. This additional term is
attractive (c4 < 0) since the quasiparticle spectrum lies
lower than the simple linear behavior with increasing q.

We perform a simultaneous fit of c2 and c4 in E4 to all
the AFMC data to obtain the error ellipse shown in the
inset of Fig. 2. For each pair of values c2 and c4 a stan-
dard DFT calculation of the density is first performed
setting c4 = 0, then the energy contribution from the c4

term in E4 is calculated perturbatively from this density

FIG. 3. (Color online) Densities of the unitary Fermi gas

in external potentials of frequency kF /2 (upper row) and kF
(middle row) for potential strengths V0 = 0, 0.25, 0.4, and

0.8 from left to right. The lower row shows the predicted

density distributions (in the z=0 plane) for systems of 8, 14,

30, and 50 fermions (left to right) in a harmonic trap. Scale

invariance requires the energies depend only upon the shape

of the density distribution, except for an overall scale of ⇢2/3.

distribution. Since the q
4 term in E4 term is attractive,

we must evaluate it perturbatively as it is unstable to
high-frequency oscillations. Higher-order terms includ-
ing those associated with the contact would stabilize the
system [35].
The extracted error ellipse for these parameters shows

a strong correlation since a larger value of c2 requires
a more attractive value of c4. The solid and vertical
hatched regions give the error bands for E2 and E4, re-
spectively. The E4 density functional provides an excel-
lent fit to all the data, with a �

2 per degree of freedom
near one. The width of the bands in the main figure
represent varying the coe�cients within the quoted un-
certainties (the inset ellipse for E4).
The density functional can then be used to predict

the densities of inhomogeneous matter and properties of
small numbers of fermions trapped in harmonic wells.
Observing the densities in an external field should be
an accurate way to measure the coe�cients in the den-
sity functional. The densities for both inhomogeneous
matter and small trapped systems are shown in Fig. 3.
The upper two rows illustrate the transition from three
towards two dimensional systems with increasing V0 for
external potentials of momenta kF /2 and kF , and the
bottom row shows the densities of small systems trapped
in a harmonic potential.
To check the predictions for trapped fermions, we cal-

culate systems of fermions at unitarity in a harmonic trap
from 4 to 80 particles (Fig. 4). The square of the ratio
of the energy at unitarity to the Thomas Fermi energy
for free fermions, ETF = !(3N)4/3/4, is plotted as a
function of the number of particles. This ratio should
approach the bulk (LDA) limit as the size of the sys-
tem increases. The DMC results are shown as blue open
circles in the figure, and the AFMC results are shown
as diamonds. For N > 8, both our DMC and AFMC
results are significantly lower than those obtained previ-

JC, Gandolfi, PRA 2014
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masses [1], and because several present-day Skyrme
models have used this EOS to constrain the properties of
homogeneous neutron matter. Further studies with differ-
ent interaction models will be valuable, in particular, to
look at the spin-orbit interactions which might be increased
with a three-pion exchange TNI as in Illinois-7 [18].

Calculations are performed using Green’s function
Monte Carlo (GFMC) [19] and auxiliary field diffusion
Monte Carlo (AFDMC) [20] quantumMonte Carlo (QMC)
methods. These algorithms evolve an initial trial state,!T ,
in imaginary time to yield the ground state. The GFMC
method sums explicitly over spin and isospin states, and
can use very sophisticated !T [16]. However, it is limited
to small systems, up to 16 neutrons. In addition to sampling
the spatial integrals as in GFMC, AFDMC also samples the
spin and isospin degrees of freedom, and hence it can treat
larger systems [3]. Both methods use a constraint involving
the overlap with!T to eliminate the fermion sign problem,
and hence are approximate. Studies of light nuclei and
neutron matter show they give results within 1% of the
exact ground-state energy.

We use external fields yielding low or moderate
densities. However, even at small densities neutrons are
strongly interacting and pairing can be important. Recent
microscopic calculations of neutron matter give s-wave
pairing gaps of several MeV [4,21]. One- and two-nucleon
properties including pairing gaps and spin-orbit splittings
can be more sensitive to models of the three-nucleon
interaction. Calculations of very small neutron drops
(N ¼ 6; 7; 8) have been performed previously [22–24].
Even these calculations indicated a substantial difference
with traditional Skyrme models, which overbind the drops
and give too-large spin-orbit splitting.

Results.—The ground-state energies versus neutron
number N for the HO potentials are given in Fig. 1 and
for the WS potential in Fig. 2. Up to N ¼ 16 both GFMC
and AFDMC results are included. They agree very well for
the 10-MeV HO interaction, while for @! ¼ 5 MeV, the
AFDMC results are slightly higher than the GFMC results;
the maximum difference is 3%, and more typically results
are within 1%. The bigger difference for the lower density
5-MeV drops presumably arises because the AFDMC !T

does not yet include pairing, while the GFMC does.
In addition to the microscopic calculations, results for

several different Skyrme models are shown in Fig. 1.
We also show results for Thomas-Fermi local density

approximations [25] using Eð!nÞ=N ¼ "ð3=5Þð@2=2mÞ$
ð3#2!nÞ2=3; the upper horizontal line is for free particles,
" ¼ 1, and the lower has " ¼ 0:5, a reasonable approxi-
mation to the EOS of low-density neutron matter. For the
10-MeV well, the density functionals give energies signifi-
cantly below the Monte Carlo results for all N. The ener-
gies are also lower for the 5-MeV well, but less so. This
overbinding is a general feature of all the Skyrme models
considered. It is intriguing that these same Skyrme models
underbind the properties of very dilute neutron systems;

typically they are fit to the neutron matter EOS at
! ¼ 0:04 fm%3 and above.
Since the Skyrme homogeneous neutron matter EOS

have been fit to various microscopic calculations, this
overbinding suggests that the gradient terms in inhomoge-
neous neutron matter should be more repulsive. The
observed differences between ab initio results and the
Skyrme functionals are much larger than the differences
between experiments and Skyrme models in nuclei, as
expected, because of the large extrapolations to inhomoge-
neous neutron matter.
Isovector gradient contributions.—As is apparent in

Fig. 1, for harmonic oscillators there are closed shells at
N ¼ 8, 20, and 40 neutrons. These closed-shell states are
almost exclusively sensitive to the neutron matter EOS and
the isovector gradient terms; pairing and spin-orbit play
nearly no role. Hence they are direct probes of the gradient
terms; to examine them we have altered the isovector
gradient terms in the Skyrme SLY4 interaction [11] to
approximately reproduce the QMC results using a
modified version of the EV8 code [26], The gradient terms
are adjusted without changing any isoscalar (T ¼ 0)
parameters or the homogeneous neutron matter EOS.
The lowest-order gradient contribution to the energy

density for inhomogeneous matter is Gd½r!n'2. The con-
stants Gd are small and often negative, for example,
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FIG. 1 (color online). Energies divided by @!N4=3 for neu-
trons in HO fields with @! ¼ 10 MeV (top) and 5 MeV (bot-
tom). Filled symbols indicate ab initio calculations; the dashed
lines are Thomas-Fermi results (see text); the lower curves are
from the Skyrme SLY4 interaction and the upper curves show
the modified SLY4 interaction described in the text.
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FIG. 2 (color online). Energies per particle for neutrons in the
Woods-Saxon field; symbols as in Fig. 1.
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Neutrons trapped in Harmonic Oscillator Potential

Gandolfi, JC, Pieper (PRL 2011)

• Probes shell closure, spin-orbit interactions, pairing, … 
• Density Functionals fit to Nuclei (N~Z), near saturation density 
• Much more could be done at finite asymmetry, inhomogeneous potentials (surface) 
• Enables additional constraints from experiments



Many other properties are important in various contexts: transport 

• Finite Temperature 

• Superfluid Gap 

• Spin Response (Neutrino Opacity)

Other Properties



Dispersion Relation and Superfluid Gap: 1S0
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Dispersion Relations in Unitary Fermi Gas
Comparison of neutron matter 

with cold Atoms

• Pairing gap very large in unitary Fermi Gas (~0.45 EF) 
• Different QMC methods agree for singlet-S gap 

 Some suppression from BCS treatment 
• Dispersion relation related to finite temperature 
• A lot of interest in p-wave superfluidity 

Pairing Gap in neutron matter versus BCS

Gandolfi, Palkanoglou, JC,  Gezerlis,
Schmidt (2022)



Recent Review of RF and Bragg Spectroscopy:
Spectroscopic probes of quantum gases
Chris J. Vale  and Martin Zwierlein,  Nature Physics17, 1305–1315 (2021)

RF response: spin flip, essentially zero momentum transfer
                       high frequency tail gives contact
                       beautiful measurements at different T

NP analogs to  neutrino emissivity of neutron matter
                     spin flip response (to leading order)
                      q small (astrophysical energies) but not zero
                      But Hamiltonian flips/exchanges spins
                      in general, low E collective excitations (EW transitions, …)

 

Dynamic Response Functions: 

S(q, ω) = ∫ dt⟨0 |O† exp[−i(H − E0)t]O |0⟩δ((ω − E0)t)

Sum Rules: 

Imaginary Time Response: 

SN(q) = ⟨0 |O†(H − E0)NO |0⟩

S(q, τ) = ∫ dω⟨0 |O† exp[ − (H − E0)τ]O |0⟩



Want strength at high energy (contact)

RF response vs. temperature


(Single Peak near EF: Narrow at low T)

Spin Response at low momentum transfer

Cold Atoms (RF response) Neutron Matter

Shen, Gandolfi, Reddy, JC; PRC 2013

Want strength < 50 MeV
EF at saturation density = 60 MeV

• Both Unitary Fermi Gas and Neutron Matter have large strength at  energies near EF 
• Mechanisms somewhat different: high momentum components versus spin-dependent interactions

Zwierlein et al, PRL (2019)



 

• Ab initial approaches can bring valuable insight into dense nucleonic matter

• Static properties near T=0 are in reasonably good agreement with
          NP experiments and astrophysical observation  

• Improvements possible by higher order calculations (interaction and many-body) 
and more constraints on three-nucleon interactions (scattering, halo nuclei)

• Finite Temperature and dynamic response are important 
 challenges for the present and future

• Monte Carlo methods have  
 some unique strengths - and of course some challenges….   (QC?) 

Conclusions and Outlook
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