

Kilonovae from radiative transfer simulations of neutron star mergers

Mattia Bulla

with: A. Sagues-Carracedo, L. Nativi, S. Dhawan, A. Goobar, S. Rosswog, L. Issa, S. Anand, P. T. H. Pang, M. Shrestha, I. Andreoni, M. W. Coughlin, T. Dietrich, I. Tews, S. Covino, M. Tanaka, K. Kyutoku + many more

NS mergers and EM counterparts

[Ascenzi+2021, Journal of Plasma Physics]

Parameters for Red and Blue KN from [Siegel 2019, Eur. Phys. J. A.]

Parameters for Red and Blue KN from [Siegel 2019, Eur. Phys. J. A.]

Parameters for Red and Blue KN from [Siegel 2019, Eur. Phys. J. A.]

[Kasen+2017, Nature]

See Steven Fahlman's talk on Thursday

[Siegel 2019, Eur. Phys. J. A.]

[Kasen+2017, Nature]

Parameters for Red and Blue KN from [Siegel 2019, Eur. Phys. J. A.]

[**MB**+2015, MNRAS; **MB** 2019, MNRAS]

[**MB**+2015, MNRAS; **MB** 2019, MNRAS]

Creating photons Frequency From temperature Energy Nuclear heating rates Thermalisation efficiencies per second per gram 10²⁰ ' averaged trajectory $\epsilon_{th} = 0.1$ $\epsilon_{th} = 0.5$ ∝ const. _._._ - -- -- - $\varepsilon_{th}^{u1} = 0.9$ _____ 10¹⁶ fit _____ $\propto t^{-\alpha}$ 10¹² ' [Korobkin+2012] Energy] 10⁸ 10⁻² 10⁰ 10² 10⁶ 10⁴ Time since merger (s) Stokes parameters

[**MB**+2015, MNRAS; **MB** 2019, MNRAS]

Creating photons

Propagating photons

$$\tau = \int \kappa \rho \, dr$$
Main source of c
$$10^{3}$$

$$10^{2}$$
Tana

POSSIS

[**MB**+2015, MNRAS; **MB** 2019, MNRAS]

Creating photons

$$\tau = \int \kappa \rho \, dr$$
Main source of c
$$10^{3}$$

$$10^{2}$$
Tana

POSSIS

[**MB**+2015, MNRAS; **MB** 2019, MNRAS]

Creating photons

$$\tau = \int \kappa \rho \, dr$$

POSSIS

Neutron Star - Neutron Star

[Dietrich, Coughlin, Pang, **MB**+2020, Science]

[**MB**+2015; **MB** 2019]

Black Hole - Neutron Star

[Anand, Coughlin, Kasliwal, **MB**+2020, Nature Astronomy]

891 models

varying ejecta masses (Mej,dyn, Mej,wind), and viewing angle (θ_{obs})

Neutron Star - Neutron Star

[Dietrich, Coughlin, Pang, MB+2020, Science]

Help yourself! Modelled grids available at https://github.com/mbulla/kilonova_models

[**MB**+2015; **MB** 2019]

Black Hole - Neutron Star

[Anand, Coughlin, Kasliwal, **MB**+2020, Nature Astronomy]

891 models

varying ejecta masses ($M_{ej,dyn}$, $M_{ej,wind}$), and viewing angle (θ_{obs})

POSSIS

Viewing-angle dependence

Kilonovae viewed face-on ($\theta_{obs} = 0^\circ$, jet axis) are brighter and bluer compared to kilonovae viewed edge-on ($\theta_{obs} = 90^\circ$, merger plane)

Gaussian Process Regression [Coughlin..**MB**..+2020, PRR]

Interpolation scheme using Gaussian Process Regression or Neural Networks

[Pang, Dietrich, Coughlin, **MB**+, arXiv:2205.08513]

Interpolation scheme using Gaussian Process Regression or Neural Networks

[Pang, Dietrich, Coughlin, **MB**+, arXiv:2205.08513]

Gaussian Process Regression [Coughlin..**MB**..+2020, PRR]

Interpolation scheme using Gaussian Process Regression or Neural Networks

[Pang, Dietrich, Coughlin, **MB**+, arXiv:2205.08513]

Gaussian Process Regression [Coughlin..**MB**..+2020, PRR]

Interpolation scheme using Gaussian Process Regression or Neural Networks

[Pang, Dietrich, Coughlin, **MB**+, arXiv:2205.08513]

Gaussian Process Regression [Coughlin..MB..+2020, PRR]

Gravitational Waves as Standard Sirens

[Schutz 1986, Nature; Holz & Hughes 2005, ApJ]

$H_0 = \frac{\text{Velocity}}{\text{Distance}} = \frac{[\text{speed of light}] \cdot [\text{Redshift}]}{\text{Distance}}$

Gravitational Waves as Standard Sirens

Velocity [speed of light] · Redshift Distance Distance H_0

Time from merger (s)

Gravitational Waves as Standard Sirens

Gravitational Waves as Standard Sirens

[Dhawan, **MB**+2020, ApJ]

24% improvement on H₀

see also [Coughlin...**MB**...+2020, Nature Communications]

[**MB**, Coughlin, Dhawan & Dietrich 2022, Universe]

NMMA: A framework to rule them all

A nuclear-physics multi-messenger bayesian framework

[Dietrich, Coughlin, Pang, MB+2020, Science]

NMMA: A framework to rule them all

A nuclear-physics multi-messenger bayesian framework

[Dietrich, Coughlin, Pang, MB+2020, Science]

[Breschi+2021,MNRAS]

NMMA: A framework to rule them all

A nuclear-physics multi-messenger bayesian framework

[Dietrich, Coughlin, Pang, MB+2020, Science]

- GW190814 as a BBH [Tews..**MB**..+2021, ApJL]
- Adding PSRJ0740+6620 [Pang, Tews, Coughlin, **MB**+2021, ApJ]
- Kilonova searches [Andreoni...**MB**...+,2021,ApJ]
- MM observations + HIC [Huth...**MB**...+, Nature, in press] **See Achim's talk on Tuesday** • GRB211211A, in prep.

Hunting for kilonovae in O3

Name	Localization	Distance	Class
GW190425	7461 deg^2	$156 \pm 41 \text{ Mpc}$	BNS
S190426c	1131 deg^2	$377\pm100~{ m Mpc}$	NSBH
GW190814	23 deg^2	$267 \pm 52 \text{ Mpc}$	NSBH
S190901ap	$14,753 \text{deg}^2$	$241 \pm 79 \text{ Mpc}$	BNS
S190910d	2482 deg^2	$632 \pm 186 \mathrm{Mpc}$	NSBH
S190910h	$24,264 \text{ deg}^2$	$230 \pm 88 \text{ Mpc}$	BNS
S190923y	2107 deg^2	$438 \pm 133 \text{ Mpc}$	NSBH
S190930t	$24,220 \text{ deg}^2$	$108 \pm 38 \text{ Mpc}$	NSBH
S191205ah	6378 deg^2	$385 \pm 164 \text{ Mpc}$	NSBH
S191213g	4480 deg^2	$201 \pm 81 \text{ Mpc}$	BNS
S200105ae	7373 deg^2	$283 \pm 74 \text{ Mpc}$	NSBH
S200115j	$765 \mathrm{deg}^2$	$340\pm79~{ m Mpc}$	NSBH
S200213t	2326 deg^2	$201 \pm 80 \text{ Mpc}$	BNS
GW170817	30 deg ²	40 Mpc	BNS

[Sagues-Carracedo, **MB**, Feindt & Goobar 2021, MNRAS]

see also [Coughlin, Dietrich, Antier, MB+2020a, MNRAS / Coughlin..MB..+2020b, MNRAS / Almualla..MB..+2021, MNRAS]

Detectability of kilonovae

[Sagues-Carracedo, **MB**, Feindt & Goobar 2021, MNRAS]

Go red!

Detectability of kilonovae

Go red! Go deep!

[Sagues-Carracedo, MB, Feindt & Goobar 2021, MNRAS]

see also [Coughlin, Dietrich, Antier, MB+2020a, MNRAS / Coughlin..MB..+2020b, MNRAS / Almualla..MB..+2021, MNRAS]

Detectability of kilonovae

Go red! Go deep! Be quick!

see also [Coughlin, Dietrich, Antier, MB+2020a, MNRAS / Coughlin..MB..+2020b, MNRAS / Almualla..MB..+2021, MNRAS]

Hunting for kilonovae in O3

Name	Localization	Distance	Class
GW190425	7461 deg^2	$156 \pm 41 \text{ Mpc}$	BNS
S190426c	1131 deg^2	$377\pm100~{ m Mpc}$	NSBH
GW190814	23 deg^2	$267 \pm 52 \text{ Mpc}$	NSBH
S190901ap	$14,753 \text{deg}^2$	$241 \pm 79 \text{ Mpc}$	BNS
S190910d	2482 deg^2	$632 \pm 186 \mathrm{Mpc}$	NSBH
S190910h	$24,264 \text{deg}^2$	$230 \pm 88 \text{ Mpc}$	BNS
S190923y	2107 deg^2	$438 \pm 133 \text{ Mpc}$	NSBH
S190930t	$24,220 \text{ deg}^2$	$108 \pm 38 \text{ Mpc}$	NSBH
S191205ah	6378 deg^2	$385 \pm 164 \text{ Mpc}$	NSBH
S191213g	4480 deg^2	$201 \pm 81 \text{ Mpc}$	BNS
S200105ae	7373 deg^2	$283 \pm 74 \text{ Mpc}$	NSBH
S200115j	$765 \mathrm{deg}^2$	$340\pm79~{ m Mpc}$	NSBH
S200213t	2326 deg^2	$201 \pm 80 \text{ Mpc}$	BNS
GW170817	30 deg ²	40 Mpc	BNS

 $\theta_{\rm obs}$

Hunting for kilonovae in O3

Constraining the parameter space of models from non-detections

[Anand, Coughlin, Kasliwal, **MB** +2020, Nature Astronomy] [Andreoni..**MB**..+2020a, ApJ]

 $\theta_{\rm obs}$

Hunting for kilonovae in O3

Constraining the parameter space of models from non-detections

[Anand, Coughlin, Kasliwal, **MB** +2020, Nature Astronomy] [Andreoni..**MB**..+2020a, ApJ]

Hunting for kilonovae in O3

Constraining the parameter space of models from non-detections

[Anand, Coughlin, Kasliwal, **MB** +2020, Nature Astronomy] [Andreoni..**MB**..+2020a, ApJ]

Hunting for kilonovae in O3

Constraining the parameter space of models from non-detections

[Anand, Coughlin, Kasliwal, **MB** +2020, Nature Astronomy] [Andreoni..**MB**..+2020a, ApJ]

Constraining the viewing angle and the presence of a lanthanide-free component

[Tanaka+2018, ApJ]

Constraining the viewing angle and the presence of a lanthanide-free component

[Tanaka+2018, ApJ]

Constraining the viewing angle and the presence of a lanthanide-free component

NS+NS

[**MB**+2019, Nature Astronomy]

Constraining the viewing angle and the presence of a lanthanide-free component

NS+NS

[**MB**+2019, Nature Astronomy]

Constraining the presence of a lanthanide-free component

BH+NS [MB+2021, MNRAS]

Model for dynamical ejecta from [Kyutoku+2015, PRD]

Model for dynamical ejecta from [Kyutoku+2015, PRD]

Constraining the presence of a lanthanide-free component

BH+NS

[**MB**+2021, MNRAS]

Jet-ejecta interaction

Making kilonovae brighter and bluer

[Nativi, **MB**, Lundman, Rosswog+2021, MNRAS]

see also [Klion, Duffert, Kasen & Quataert 2021, MNRAS]

Jet-ejecta interaction

Making kilonovae brighter and bluer

[Nativi, MB, Lundman, Rosswog+2021, MNRAS]

Wind models from [Perego+2014, MNRAS]

Jet-ejecta interaction

Making kilonovae brighter and bluer

[Nativi, MB, Lundman, Rosswog+2021, MNRAS]

Wind models from [Perego+2014, MNRAS]

