New Developments in Cosmological and Astrophysical searches of Dark Sectors

An Incomplete & Biased Perspective

Manuel A. Buen-Abad

arXiv:2208.xxxxx: MBA, Z. Chacko, C. Kilic, G. Marques-Tavares, & T. Youn [Monday]

Aug 12 2022

New Developments in Cosmological and Astrophysical searches of Dark Sectors An Incomplete & Biased Perspective

Manuel A. Buen-Abad

arXiv:2208.xxxxx: MBA, Z. Chacko, C. Kilic, G. Marques-Tavares, & T. Youn [Monday]

Aug 12 2022

New Developments in Cosmological and Astrophysical searches of Dark Sectors An Incomplete & Biased Perspective

Manuel A. Buen-Abad

arXiv:2208.xxxxx: MBA, Z. Chacko, C. Kilic, G. Marques-Tavares, & T. Youn [Monday]

Aug 12 2022

Outline

- 1. Motivation
- 2. Dark Sectors & Precision Cosmology
- 3. Conclusions

I. Motivation

Energy components of the Universe

Hello Darkness, my old friend...

- Dark Energy (DE)
 - Lots of evidence
 - Really exciting & puzzling
 - Lots of cool ideas ...
 - ... but could just be cosmological constant
- Dark Matter (DM)
 - Also lots of evidence
 - Also really exciting & puzzling
 - Likely not MOND [Grudic et al. <u>1910.06345</u>, etc]
 - Need more particles \Rightarrow BSM

Dark Matter (DM)

• Could be just the one particle... [e.g. higgsino? Dessert et al. 2207.10090]

Dark Matter (DM)

- Could be just the one particle... [e.g. higgsino? Dessert et al. 2207.10090]
- ... but it doesn't have to
 - E.g. in SM, *three* almost-dark particles
 - Could there be more than one DM?
 - With dark interactions?

- Dark Matter could be part of Dark Sector
- Search for signals of these sectors
 - Colliders
 - Direct Detection experiments [Kim, Mukul (Tu);
 Victor (Th); Peizhi & Robert (next week)]
 - Cosmology
 - Astrophysics

• Observables (where?)

- CMB? LSS? BBN? GW?
- Black Holes? SNe? NS [Davood (M)]? Stars?
 [Jae (next week)] Galaxies?
- Experimental anomalies?

• Observables (where?)

- CMB? LSS? BBN? GW?
- Black Holes? SNe? NS [Davood (M)]? Stars?
 [Jae (next week)] Galaxies?
- Experimental anomalies?

• Nature (what?)

- Bosonic? Fermionic?
- Dark Radiation? Interactions? [Lan] Portals?
- Species: 1, 10³²? [Peter (Tu)]
- Cold, warm?
- Light [Peter (Tu)], heavy, macro? [Danny (M), Chuck (W)]

• Observables (where?)

- CMB? LSS? BBN? GW?
- Black Holes? SNe? NS [Davood (M)]? Stars?
 [Jae (next week)] Galaxies?
- Experimental anomalies?

• Nature (what?)

- Bosonic? Fermionic?
- Dark Radiation? Interactions? [Lan] Portals?
- Species: 1, 10³²? [Peter (Tu)]
- Cold, warm?
- Light [Peter (Tu)], heavy, macro? [Danny (M), Chuck (W)]

• Phenomena (how?)

- Decays? Annihilations?
- Collective phenomena? Phase Transitions?
- New cosmic evolution?

DS: Interactions

- Astrophysics: Dark stuff is hard to probe: go to extremes
 - Strong gravitational interactions (e.g. superradiance in BHs [Peter (Tu)], NS [Davood (M)])
 - Long distances/times
 - E.g. axion dark matter decays stimulated by powerful radio sources over galactic distances [MBA, Fan, Sun 2110.13916, github.com/ManuelBuenAbad/snr_ghosts]
 - E.g. axion-photon conversion in intergalactic magnetic fields [MBA, Fan, Sun <u>2011.05993</u>, <u>github.com/ManuelBuenAbad/cosmo_axions</u>]

DS: Interactions

- Astrophysics: Dark stuff is hard to probe: go to extremes
 - Strong gravitational interactions (e.g. superradiance in BHs [Peter (Tu)], NS [Davood (M)])
 - Long distances/times
 - E.g. axion dark matter decays stimulated by powerful radio sources over galactic distances [MBA, Fan, Sun 2110.13916, github.com/ManuelBuenAbad/snr_ghosts]
 - E.g. axion-photon conversion in intergalactic magnetic fields [MBA, Fan, Sun <u>2011.05993</u>, <u>github.com/ManuelBuenAbad/cosmo_axions</u>]
- **Cosmology:** Dark Matter plays a central role in the evolution of the Universe
 - Age of precision cosmology: DS interactions with VS and within itself!
 - Vanilla (inert) CDM seems to work... but there are signs of cracks

II. Dark **Sectors** & **Precision** Cosmology

DM interactions with VS

- In ACDM: CDM and VS are coupled via gravity only
- Beyond ACDM: DM could interact with VS
 - Eg. via heavy/light mediator
 - Complicated thermal & perturbation history
- DM-p: early focus [Dvorkin et al. <u>1311.2937</u>, Xu et al. <u>1802.06788</u>, Boddy et al. <u>1808.00001</u>]
- DM-e: recent developments [Ali-Haimoud <u>2101.04070</u>,
 MBA et al. <u>2107.12377</u>, Nguyen et al. <u>2107.12380</u>]

Interactions within Dark Sectors

Remaining of This Talk

DS interactions with itself

MBA, Chacko, Kilic, Marques-Tavares, Yuon [2208.xxxx] (Monday!)

- *Precision* cosmology: probe DS interactions
- Already signs of cracks in ACDM
 - H_0 tension: rate of expansion of the Universe today
 - **S**₈ tension: amplitude of mass fluctuations on scales of **8 Mpc/h**

(O) Cosmological Tensions: H_o (~5 σ)

- Early Universe
 - ACDM fits to CMB
 - ~68 km/s/Mpc [Planck '18 <u>1807.06209]</u>
- Late Universe
 - Direct measurement w/ standard candles
 - ~73 km/s/Mpc [Riess et al. <u>2112.04510]</u>
- <u>200+ pages of Snowmass</u>

(O) Cosmological Tensions: H_o (~5 σ)

• Early Universe

- ACDM fits to CMB
- ~68 km/s/Mpc [Planck '18 <u>1807.06209</u>]

Late Universe

- Direct measurement w/ standard candles
- **~73 km/s/Mpc** [Riess et al. <u>2112.04510</u>]
- <u>200+ pages of Snowmass</u>

 $H_o \& r_s$

$H_o \& r_s$

comoving sound horizon

(N) A family of H_o solutions

Enhance early H_0 measurement?

Additional energy density, most relevant around *z*~*O(10*³)

• E.g. Self-interacting Dark Radiation (DR) [Blinov et al. 2003.08387]

$$\theta_{s} \sim r_{s} H_{0} \sim \rho^{-1/2} H_{0}$$

(N) A family of H_o solutions

Enhance early H_0 measurement?

Additional energy density, most relevant around *z*~*O(10*³)

• E.g. Self-interacting Dark Radiation (DR) [Blinov et al. 2003.08387]

$$\theta_{s} \sim r_{s} H_{0} \sim \rho^{-1/2} H_{0}$$

H₀

(N) A *better* family of *H*_o solutions

Enhance early H_{o} measurement? Additional energy density, most relevant around z~O(10³) E.g. Self-interacting Dark Radiation (DR) [Blinov et al. 2003.08387] high-l Better: with a "step" (preferred by data) [Aloni et al, 2111.00014] low-l $\theta_{r} - r_{h} H_{0} - \rho^{-4/2} H_{0}$ a

 $a = (1+z)^{-1}$

(P) Steps in DR

Entropy dump in DR sector

- Typical of mass thresholds in thermal baths (à la freeze-out)
- \Rightarrow implies multi-particle DR

J DR dof: 4\$A -my F DR dof: A

1_L: Y\$A

H_o summary

- (O) H_0 , ultimately r_s (CMB)
- (N) Extra DR, with a step
- (P) DR with multiple interacting components, and a mass threshold

(O) Cosmological Tensions: S_8 (~2–3 σ)

- Early Universe
 - ACDM fits to CMB
 - ~0.83 [Planck '18 <u>1807.06209</u>]
- Late Universe
 - Direct measurements (e.g. weak lensing)
 - ~0.76 [KiDS '21 <u>2010.16416;</u>

DES '21 2105.13544 2105.13543]

• 200+ pages of Snowmass

(O) Cosmological Tensions: $S_8(\sim 2-3\sigma)$

• Early Universe

- ACDM fits to CMB
- ~0.83 [Planck '18 <u>1807.06209</u>]

Late Universe

- Direct measurements (e.g. weak lensing)
- **~0.76** [KiDS '21 <u>2010.16416;</u>

DES '21 2105.13544 2105.13543]

• <u>200+ pages of Snowmass</u>

Structure formation

Structure formation

(N) A family of S₈ solutions

 S_8

(N) A family of S₈ solutions

Dark Matter interacting with Dark Radiation: DR provides pressure on DM

- Weakly-coupled limit [MBA et al. <u>1505.03542</u>, Lesgourgues et al. <u>1507.04351</u>]
- Tightly-coupled limit: [Chacko et al.
 <u>1609.03569</u>, MBA et al. <u>1708.09406</u>]

S₈

DDH = SLCDM

 S_8

Structure Suppression

$$\Omega_{\rm DH} = \Omega_{\rm CDM} + \Omega_{\rm iDM}$$

- DM charged under gauge bosons making up DR:
 - Sufficiently large coupling: DR pressure prevents clumping of DM

S₈ summary

- (O) S_g: suppression of large-scale structure (LSS)
- (N) Tightly-coupled DM–DR
- (P) DM charged under DR

*H*_o & *S*₈ together?

Enhance early measurement of H_0 & decrease early measurement of S_8 ?

H_o & S₈ together: SPartAcous

Enhance early measurement of H_0 & decrease early measurement of S_8 ? Stepped Partially Acoustic Dark Matter

MBA, Chacko, Cilic, Marques-Tavares, Yuon [2208.xxxx] (Monday!)

A good step with dark acoustics!

- (O) CMB, LSS; cosmological $H_0 \& S_8$ tensions
- (N) DS=tightly-coupled DM+DR; DR has mass threshold
- (P) Late-time entropy dump in DS; DAOs

SPartAcous

Stepped Partially Acoustic Dark Matter

SPartAcous

X

SPartAcous

X

53

Conclusions

- Non-trivial Dark Sectors are well motivated
- Probing DS:
 - Astrophysics and Cosmology
 - DS–VS & DS–DS interactions
- Cracks in ΛCDM : H_0 (too small) & S_8 (too large)
 - Stepped DR
 - DM–DR interactions
- **SPartAcous** is promising (stay tuned for *premiere* Monday!)
- SPartAcous Part II: MCMC coming up in arXiv!

Backup Slides

I: A Step with Dark Acoustics

arXiv:2208.xxxxx [Monday!]

II: Axion Echos from the Supernova Graveyard

arXiv:2110.13916; PRD

I. Dark Acoustics

arXiv:2208.xxxxx [Monday] MBA, Z. Chacko, C. Kilic, G. Marques-Tavares, & T. Youn

Parameter Space

Perturbation Equations

$$\begin{split} \dot{\delta}_{\rm idm} &= -\theta_{\rm idm} + 3\dot{\phi} \,, \\ \dot{\theta}_{\rm idm} &= -\mathcal{H}\theta_{\rm idm} + k^2\psi + \boxed{a\Gamma\left(\theta_{\rm dr} - \theta_{\rm idm}\right)}, \\ \dot{\delta}_{\rm dr} &= -\left(1 + w\right)\left(\theta_{\rm dr} - 3\dot{\phi}\right) - 3\mathcal{H}\left(c_s^2 - w\right)\delta_{\rm dr} \,, \\ \dot{\theta}_{\rm dr} &= -\left[\left(1 - 3w\right)\mathcal{H} + \frac{\dot{w}}{1 + w}\right]\theta_{\rm dr} + k^2\left(\frac{c_s^2}{1 + w}\delta_{\rm dr} + \psi\right) \\ &+ \frac{\rho_{\rm idm}}{\rho_{\rm dr}(1 + w)} a\Gamma\left(\theta_{\rm idm} - \theta_{\rm dr}\right) \,. \end{split}$$

$$\Gamma = \frac{4}{3\pi} \alpha_d^2 \ln(4/\langle \theta_{\min} \rangle^2) \frac{T_d^2}{m_\chi} e^{-m_\psi/T_d} \left[2 + \frac{m_\psi}{T_d} \left(2 + \frac{m_\psi}{T_d} \right) \right]$$

 $H_{o} \& S_{8}$

CMB

II. Axion Echos from the Supernova Graveyard

arXiv:2110.13916; PRD MBA JiJi Fan & Chen Sun **Axion Dark** Matter & **Stimulated** Decays

Axions & ALPs

- Periodic pseudo-scalars $a \cong a + 2\pi f_a$
- Originally postulated to solve Strong CP problem
 - Peccei & Quinn; Weinberg & Wilczek; Kim; Shifman, Vainshtein, Zakharov; Zhitnitsky; Dine, Fischler, Srednicki '77-'81
- Interesting in their own right!
 - Muon g-2
 - Marciano, Masiero, Paradisi, Passera '16; Bauer, Neubert, Thamm '17; MABA, Fan, Reece, Sun '21]
 - \circ Inflation
 - Freese, Frieman, Olinto '90; Silverstein, Westphal, McAllister '08]
 - Dark Matter (misalignment mechanism): non-thermal candidate
 - [Preskill, Wise, Wilczek; Dine, Fischler, Abbott, Sikivie '83]
 - This talk

Spontaneous decay rate

$$\Gamma_a \equiv g_{a\gamma\gamma}^2 m_a^3 / (64\pi)$$

Spontaneous decay rate

$$\Gamma_a \equiv g_{a\gamma\gamma}^2 m_a^3 / (64\pi)$$

 $g_{a\gamma\gamma}$ $-aF_{\mu
u} ilde{F}^{\mu
u}$

However: **y** are bosons: **BOSE ENHANCEMENT**.

$$-\frac{g_{a\gamma\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu}$$

However: **y** are bosons: **BOSE ENHANCEMENT**.

Condition: same quantum numbers between **incoming** and **outgoing y**!

$$a|f_i\rangle = \sqrt{f_i}|f_i - 1\rangle$$

$$a^{\dagger}|f_i\rangle = \sqrt{f_i + 1}|f_i + 1\rangle$$

 f_i : initial occupation number

However: **y** are bosons: **BOSE ENHANCEMENT**.

Condition: same quantum numbers between incoming and outgoing y!

LASERs work like that. [Light Amplification by Stimulated Emission of Radiation]

Axion-Photon interactions

"ASER": Axion Stimulated dEcay Radiation [credit/blame: Chen Sun]

Axion Dark Matter Stimulated Decays

Axion Dark Matter Stimulated Decays

<u>Forward</u>

- Arrives at same time as source **y**
- Signal on top of bright source
- Distance-limited

Axion Dark Matter Stimulated Decays

<u>Forward</u>

- Arrives at same time as source **y**
- Signal on top of bright source
- Distance-limited

Backward (echo)

- Arrives delayed w.r.t. source **y**
- Potentially low background
- Age-limited

80

very old light

very old light

time

Echo depends on source's history: dim sources today could still produce bright echos

87

"Collision" term: $a \leftrightarrow yy$ process

$$C[f_1] = \frac{1}{2E_1} \int \frac{\mathrm{DP}_a}{2E_a} \int \frac{\mathrm{DP}_2}{2E_2} |\overline{\mathcal{M}}|^2 \left(f_a (1 + f_1 + f_2) - f_1 f_2 \right) (2\pi)^4 \delta^4 (p_a - p_1 - p_2)$$

$$\overline{S}_{\nu_a,\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_a}{2E_a^3 \Delta \nu} \int_{0}^{t_{\text{age}}/2} \mathrm{d}x \ \rho_a(x, -\hat{\mathbf{n}}_*) \ S_{\nu_a,\mathbf{s}}(t_{\text{age}} - 2x) \ \mathrm{e}^{-\tau(\nu, x, -\hat{\mathbf{n}}_*)}$$

$$\overline{S}_{\nu_{a},\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_{a}}{2E_{a}^{3} \Delta \nu} \int_{0}^{t_{age}/2} \mathrm{d}x \ \rho_{a}(x, -\hat{\mathbf{n}}_{*}) \ S_{\nu_{a},\mathbf{s}}(t_{age} - 2x) \ \mathrm{e}^{-\tau(\nu, x, -\hat{\mathbf{n}}_{*})}$$

$$\overline{S}_{\nu_a,\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_a}{2E_a^3 \Delta \nu} \int_{0}^{t_{age}/2} \mathrm{d}x \ \rho_a(x, -\hat{\mathbf{n}}_*) \ S_{\nu_a,\mathbf{s}}(t_{age} - 2x) \ \mathrm{e}^{-\tau(\nu, x, -\hat{\mathbf{n}}_*)}$$

$$S_{\nu} = \frac{E^3}{2\pi^2} \int \mathrm{d}\Omega \ f(E,\Omega)$$

flux density

 $[1 Jy = 10^{-23} erg \cdot s^{-1} \cdot cm^{-2} \cdot Hz^{-1}]$

$$\overline{S}_{\nu_{a},\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_{a}}{2E_{a}^{3} \Delta \nu} \int_{0}^{t_{age}/2} dx \ \rho_{a}(x, -\hat{\mathbf{n}}_{*}) \ S_{\nu_{a},\mathbf{s}}(t_{age} - 2x) \ \mathbf{e}^{-\tau(\nu, x, -\hat{\mathbf{n}}_{*})}$$

$$\Gamma_a \equiv g_{a\gamma\gamma}^2 m_a^3 / (64\pi)$$

spontaneous decay rate

$$\overline{S}_{\nu_{a},\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_{a}}{2E_{a}^{3} \Delta \nu} \int_{0}^{t_{age}/2} \mathrm{d}x \ \rho_{a}(x, -\hat{\mathbf{n}}_{*}) \ S_{\nu_{a},\mathbf{s}}(t_{age} - 2x) \ \mathrm{e}^{-\tau(\nu, x, -\hat{\mathbf{n}}_{*})}$$

$$\nu_a = E_a/(2\pi) = m_a/(4\pi)$$

photon frequency

$$\overline{S}_{\nu_a,\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_a}{2E_a^3 \Delta \nu} \int_{0}^{t_{age}/2} dx \ \rho_a(x, -\hat{\mathbf{n}}_*) \ S_{\nu_a,\mathbf{s}}(t_{age} - 2x) \ \mathrm{e}^{-\tau(\nu, x, -\hat{\mathbf{n}}_*)}$$

axion decay at position x, integrate along l.o.s. over source history

$$\overline{S}_{\nu_a,\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_a}{2E_a^3 \Delta \nu} \int_{0}^{t_{age}/2} \mathrm{d}x \ \rho_a(x, -\hat{\mathbf{n}}_*) \ S_{\nu_a,\mathbf{s}}(t_{age} - 2x) \ \mathrm{e}^{-\tau(\nu, x, -\hat{\mathbf{n}}_*)}$$

axion DM density (NFW) in opposite direction to source

$$\overline{S}_{\nu_a,\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_a}{2E_a^3 \Delta \nu} \int_{0}^{t_{age}/2} dx \ \rho_a(x, -\hat{\mathbf{n}}_*) \ S_{\nu_a,\mathbf{s}}(t_{age} - 2x) \ \mathbf{e}^{-\tau(\nu, x, -\hat{\mathbf{n}}_*)}$$

source flux density in the past

$$\overline{S}_{\nu_{a},\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_{a}}{2E_{a}^{3} \Delta \nu} \int_{0}^{t_{age}/2} \mathrm{d}x \ \rho_{a}(x, -\hat{\mathbf{n}}_{*}) \ S_{\nu_{a},\mathbf{s}}(t_{age} - 2x) \ \mathrm{e}^{-\tau(\nu, x, -\hat{\mathbf{n}}_{*})}$$

optical depth

Axion echo: requirements

$$\overline{S}_{\nu_a,\mathbf{e}} = f_{\Delta} \frac{\pi \Gamma_a}{2E_a^3 \Delta \nu} \int_{0}^{t_{\text{age}}/2} \mathrm{d}x \ \rho_a(x, -\hat{\mathbf{n}}_*) \ S_{\nu_a,\mathbf{s}}(t_{\text{age}} - 2x)$$

- Stimulation condition: $E_v = m_a/2...$
- … large occupation number f_v (OK if historically!)
- ... low background: RADIO

 $[1 Jy = 10^{-23} erg \cdot s^{-1} \cdot cm^{-2} \cdot Hz^{-1}]$

Benchmarks:

Supernova Remnants

G39.7-2.0 Manatee Nebula

Supernova Remnants (SNRs)

OK with requirements!

- **f**_v: brightness OK today, better in the *past*!
- $E_{y} = m_{a}/2$: spectrum in radio
- Could have reasonable backgrounds

SNRs: evolution & light curves

2. Adiabatic expansion: **O(10⁴ yr)**

4. Dispersion: > O(10⁶ yr)

SNR evolution: *free expansion*

$$L_{\nu,\text{free}}(t) \equiv L_{\nu,\text{pk}} e^{\frac{3}{2}(1-t_{\text{pk}}/t)} \left(\frac{t}{t_{\text{pk}}}\right)^{-1.5}$$

57 SN with peak data

Parameter	mean (μ)	standard deviation (σ)
$\log_{10}\left(\frac{L_{\nu,\mathrm{pk}}}{\mathrm{erg \ s^{-1}\ Hz^{-1}}}\right)$	25.5	1.5
$\log_{10}\left(\frac{t_{\rm pk}}{\rm days}\right)$	1.7	0.9

SNR evolution: *adiabatic expansion*

$$L_{\nu,\text{ad}}(t) \equiv L_{\nu,\text{tran}} \left(\frac{t}{t_{\text{tran}}}\right)^{-\gamma}$$
$$L_{\nu,\text{tran}} \equiv L_{\nu,\text{free}}(t_{\text{tran}}) ,$$

 $\gamma = \frac{4}{5}(2\alpha + 1) > 0$

SNR catalogs: 294 in Green Catalog [Green '14, '19; c.f. Ferrand, Safi-Harb '12]

adiabatic index

- $S_v \sim O(10) Jy$
- D ~ O(1) kpc
- Ω ~ O(10⁻⁵) sr

• α ~ 0.5

Echo Detection

SKA: Square Kilometer Array

SKA1-low

- **v**: 50 MHz 350 MHz
- # stations: 512 dishes \emptyset 38 m
- longest baseline: 80 km

SKA1-mid

- **v**: 350 MHz 15.4 GHz
- # stations: 133 (SKA dishes) Ø 15m, 64 (MeerKAT dishes) Ø 13.5 m
- longest baseline: 150 km

South Africa
s/n: signal-to-noise ratio

Signal power: 1 unit

$$P_{\rm sig,\,unit} = \overline{S}_{\nu_{\rm a},\rm e} \ \Delta \nu \ \eta \ A_{\rm unit}$$

Noise power: 1 unit

$$P_{\rm noi,\,unit} = 2 T_{\rm sys} \Delta \nu$$

 T_{sys} : system temperature

- $T_{cmb} = 2.73 K$
- T_{atm}~ 3 K @ 1 GHz, O(100) K @ 100 MHz
- *T_{gal}* ~ *O(10) K* (inhomogeneous, Haslam 408 MHz map)
- **T**_{rcv} ~ **40 K** @ SKA1-low, **O(10) K** @ SKA1-mid
- *T*_{spl} ~ 3 *K*

Noise power: 1 unit

measurements includes:

- 2 polarizations
- $\Delta v \cdot t_{obs}$ observations (time domain)
- # pixels (angular resolution)
- From units to arrays:
 - single-dish mode
 - interferometry mode

Noise power: 1 unit

$$P_{\rm noi,\,unit} = \frac{2 T_{\rm sys} \Delta \nu}{\sqrt{2 \Delta \nu \, t_{\rm obs}}} = \sqrt{2} \, T_{\rm sys} \left(\frac{\Delta \nu}{t_{\rm obs}}\right)^{1/2}$$

measurements includes:

- 2 polarizations
- $\Delta v \cdot t_{obs}$ observations (time domain)
- # pixels (angular resolution)
- From units to arrays:
 - single-dish mode
 - interferometry mode

Single-Dish mode

Each dish/unit works on its own; then add them up.

$$P_{\text{sig; SD}} = P_{\text{sig, unit}} \times N_{\text{dishes}}$$
$$P_{\text{noi; SD}} = P_{\text{noi, unit}} \times \frac{N_{\text{dishes}}}{\sqrt{N_{\text{dishes}}}}$$

Single-Dish mode

Each dish/unit works on its own; then add them up.

$$P_{\text{sig; SD}} = P_{\text{sig, unit}} \times N_{\text{dishes}}$$
$$P_{\text{noi; SD}} = P_{\text{noi, unit}} \times \frac{N_{\text{dishes}}}{\sqrt{N_{\text{dishes}}}}$$

$$P_{\text{noi, unit}} = \sqrt{2} \, \bar{T}_{\text{sys}} \left(\frac{\Delta \nu}{t_{\text{obs}}}\right)^{1/2} \max\left(\frac{\theta_{\text{echo}}}{\theta_{\text{res}}}, 1\right) \\ \theta_{\text{res}} = 1.22 \left(\frac{\lambda}{d}\right) \, \text{rad} \approx 1.4^{\circ} \left(\frac{\text{GHz}}{\nu}\right) \left(\frac{15 \text{ m}}{d}\right) \\ \text{pixels}$$

Interferometry mode

One pair of dishes/units (a "**baseline**") working in tandem (à *la* Young double-slit experiment). More baselines than dishes \Rightarrow less noise!

$$P_{\mathrm{sig; IN}} = P_{\mathrm{sig, unit}} \times N_{\mathrm{active}}$$

$$P_{\text{noi; IN}} = P_{\text{noi, unit}} \times \frac{N_{\text{active}}}{\sqrt{N_{\text{baselines}}}}$$

Interferometry mode

One pair of dishes/units (a "**baseline**") working in tandem (à *la* Young double-slit experiment). More baselines than dishes \Rightarrow less noise!

$$P_{\rm sig;\,IN} = P_{\rm sig,\,unit} \times N_{\rm active}$$

$$P_{\text{noi; IN}} = P_{\text{noi, unit}} \times \frac{N_{\text{active}}}{\sqrt{N_{\text{baselines}}}}$$
$$\theta_{\text{echo}} \lesssim \theta_{\text{b}}$$
$$\theta_{b} = \left(\frac{\lambda}{B}\right) \text{rad} = 0.17^{\circ} \left(\frac{\text{GHz}}{\nu}\right) \left(\frac{100 \text{ m}}{B}\right)$$

Interferometry mode

One pair of dishes/units (a "**baseline**") working in tandem (à *la* Young double-slit experiment). More baselines than dishes \Rightarrow less noise!

CIZA1 low

$$P_{\text{sig; IN}} = P_{\text{sig, unit}} \times N_{\text{active}}$$

$$P_{\text{noi; IN}} = P_{\text{noi, unit}} \times \frac{N_{\text{active}}}{\sqrt{N_{\text{baselines}}}}$$

$$\theta_{\text{echo}} \leq \theta_{\text{b}}$$

$$\theta_{\text{b}} = \left(\frac{\lambda}{B}\right) \text{ rad} = 0.17^{\circ} \left(\frac{\text{GHz}}{\nu}\right) \left(\frac{100 \text{ m}}{B}\right)$$

$$N_{\text{baselines}} \approx N_{\text{active}} (N_{\text{active}} - 1)/2$$

Pipeline

Analysis

- **60 SNRs** with data on: flux density, spectral index, age, coordinates, distance.
- SNR evolution: free expansion & adiabatic expansion
- Axion **DM**: **NFW** profile
- Echo signal for axion DM parameters
- SKA1 **s/n**
- Full analysis: github.com/ManuelBuenAbad/snr_ghosts

Results

SNR G39.7-2.0

Manatee Nebula (W50)

(1/30 brightness of Cassiopeia A)

SNR G39.7-2.0

$$\begin{array}{c} \text{G39.7-2.0} \\ (l,b) = (39.7^{\circ},-2^{\circ}) \\ \theta_{\rm s} = 85 \text{ arcmin} \\ S_{1\rm GHz,s}^{(0)} = 85 \text{ Jy} \\ D = 4.9 \text{ kpc } (4.5-5.5 \text{ kpc}) \\ t_{\rm age} = 30,000-100,000 \text{ years} \\ \alpha = 0.7 \ (0.5-0.8) \\ \gamma = 1.92 \ (1.6-2.08) \end{array}$$

124

SNR G6.4-0.1-like

Benchmark	B (free+adiabatic)
(l,b)	$(64^{\circ}, -0.1^{\circ})$
$\theta_{\rm s}$ [arcmin]	48
$S^{(0)}_{1 m GHz,s} \ [m Jy]$	310
$L_{1 m GHz, pk} \ [cgs]$	$2.5 \times 10^{30}(*)$
$t_{\rm pk} \; [{\rm day}]$	$t_{ m tran}/30$
$t_{\rm tran}$ [year]	100
$D \; [\mathrm{kpc}]$	1.9
$t_{\rm age}$ [year]	35,000
α	0.65
γ	1.84(*)

125

Ghost SNR

Benchmark	C (old)
(l,b)	$(175^{\circ}, 5^{\circ})$
$\theta_{\rm s}$ [arcmin]	16(*)
$S^{(0)}_{1 m GHz,s} \; [m Jy]$	6.3(*)
$L_{1 m GHz, pk} \ [m cgs]$	1.2×10^{29}
$t_{\rm pk} \; [{\rm day}]$	50
$t_{\rm tran}$ [year]	4.1
$D \; [\mathrm{kpc}]$	0.5
$t_{\rm age}$ [year]	55,000
lpha	0.65
γ	1.84(*)

Conclusions

- Stimulated decays: forward & backward signals (echo)
- Transient vs. constant sources: dim today, bright yesterday
- Old and/or undetected dim SNR "ghosts": detectable echos
 - SNR archaeology!
- Better SNR light curve understanding: better estimates
- Axion DM stimulated decays via SNRs with SKA1:
 - beyond CAST

•
$$g_{a\gamma\gamma} \sim 10^{-11} \text{ GeV}^{-1} @ m_a \sim 10^{-6} \text{ eV}$$

Backup Slides

1. ... of the source w.r.t. dark matter:

echo points towards "historic" source position; the stacked echo image of source's history is then blurred/smeared with aberration

$$\theta_{\rm ab} \approx \frac{d_s}{D} \approx 10 \operatorname{arcmin} \left(\frac{v_s}{10^{-3}}\right) \left(\frac{t_{\rm age}}{10^4 \, {\rm years}}\right) \left(\frac{1 \, {\rm kpc}}{D}\right)$$

- 1. ... of the source w.r.t. dark matter,
- 2. of the Earth w.r.t. the source:

the Earth can move away from the source, decreasing the flux density:

$$1 - \left(\frac{D}{d_o + D}\right)^2 \approx \frac{2d_o}{D} = 6 \times 10^{-3} \left(\frac{v_o}{10^{-3}}\right) \left(\frac{t_{\text{age}}}{10^4 \text{ years}}\right) \left(\frac{1 \text{ kpc}}{D}\right)$$

a) Effect of dark matter peculiar motion b) Enlarging collecting solid angle

3. of the dark matter particles:

> photons from decay of DM axions w/ vel. dispersion σ_{i} will not make it back to detector: need a wider collection angle

$$2\delta \approx 2\sigma_v \frac{x+D}{D} \approx 2\sigma_v \frac{t_{\rm age}/2+D}{D}$$

- 1. ... of the source w.r.t. dark matter,
- 2. of the Earth w.r.t. the source,
- 3. of the dark matter particles:

$$\theta_{\rm ab} \approx \frac{d_s}{D} \approx 10 \operatorname{arcmin} \left(\frac{v_s}{10^{-3}}\right) \left(\frac{t_{\rm age}}{10^4 \operatorname{ years}}\right) \left(\frac{1 \operatorname{ kpc}}{D}\right) \qquad 2\delta \approx 2\sigma_v \frac{x+D}{D} \approx 2\sigma_v \frac{t_{\rm age}/2+D}{D}$$

$$\theta_{\rm echo} = \max(\theta_{\rm s}, \theta_{\rm ab}, 2\delta)$$

Earth's shadow

1. The Earth's shadow prevents photons from stimulating axion DM decays

$$\ell_{
m sd} pprox rac{2R_\oplus}{ heta_{
m s}}$$
 shadow's length << l.o.s. for typical source sizes

2. Source photons are physically **blocked** by the Earth from stimulating axion DM on $t' \sim R_{\oplus}/v_{\odot} \sim 21~{
m s}^{\rm ourc}$ imescale in which the Earth moves "out of the way" of the light rays << l.o.s.

SN rates

- $0.02 0.03 \text{ SN/yr} \Rightarrow 2000 3000 \text{ SNRs in } 10^5 \text{ yr.}$ [Tammann et al. '94]
- GC: 294 SNRs only, rest could be dim and at tail of observational capabilities

$$\Sigma(R) \propto \left(\frac{R}{R_{\odot}}\right)^{a} \exp\left(-b\frac{(R-R_{\odot})}{R_{\odot}}\right)$$
$$a = 1.09, b = 3.87.$$

2D SNR density distribution [Green '15]

● ⇒ O(10) SNRs within 1 kpc of the Sun

 $\mathrm{DP} \equiv g \mathrm{d}^3 p / (2\pi)^3$

Axion Dark Matter Echo

$$\frac{\mathrm{d}}{\mathrm{d}t}f_{\gamma} = C[f_{\gamma}] \qquad C[f_1] = \frac{1}{2E_1} \int \frac{\mathrm{DP}_a}{2E_a} \int \frac{\mathrm{DP}_2}{2E_2} |\overline{\mathcal{M}}|^2 \left(f_a(1+f_1+f_2) - f_1f_2\right) (2\pi)^4 \delta^4(p_a - p_1 - p_2)$$

Boltzmann equation

 $\mathrm{DP} \equiv g \mathrm{d}^3 p / (2\pi)^3$

Axion Dark Matter Echo

$$\frac{\mathrm{d}}{\mathrm{d}t}f_{\gamma} = C[f_{\gamma}] \qquad C[f_1] = \frac{1}{2E_1} \int \frac{\mathrm{DP}_a}{2E_a} \int \frac{\mathrm{DP}_2}{2E_2} |\overline{\mathcal{M}}|^2 \left(f_a(1+f_1+f_2) - f_1f_2\right) (2\pi)^4 \delta^4(p_a - p_1 - p_2)$$

photon p.s.d. function $f_1 = f_{\gamma}(|\mathbf{p}_1|)\hat{h}(\hat{\mathbf{p}}_1)$ $h(\hat{\mathbf{p}}_1) \approx \delta^2(\Omega_1\hat{\mathbf{p}}_1 + \Omega_*\hat{\mathbf{n}}_*)$

.

axion p.s.d. function

$$f_a = n_a (2\pi)^3 \delta^3(\mathbf{p}_a).$$

$$\rho_a = n_a m_a$$

$$\frac{\mathrm{d}}{\mathrm{d}t}f_{\gamma} = \frac{\pi^2 \Gamma_a}{E_a^3} \rho_a \Big(1 + f_{\gamma} h(\hat{\mathbf{p}}_1) + f_{\gamma} h(-\hat{\mathbf{p}}_1) \Big) \delta(E_{\gamma} - E_a)$$

photon p.s.d. function

 $f_1 = f_{\gamma}(|\mathbf{p}_1|)h(\hat{\mathbf{p}}_1)$ $h(\hat{\mathbf{p}}_1) \approx \delta^2(\Omega_1\hat{\mathbf{p}}_1 + \Omega_*\hat{\mathbf{n}}_*)$

 $h(\hat{\mathbf{p}}_1) \approx \delta^2(\Omega_1 \hat{\mathbf{p}}_1 + \Omega_* \hat{\mathbf{n}}_*)$

integrating over solid angle along the **backwards l.o.s.**, and integrating over (emission!) time...

$$S_{\nu_{a},e} = \frac{\pi^{2}\Gamma_{a}}{E_{a}^{3}}\delta(E_{\gamma} - E_{a}) \int_{0}^{t_{age}/2} \mathrm{d}x \ \rho_{a}(x, -\hat{\mathbf{n}}_{*}) \ S_{\nu_{a},s}(t_{age} - 2x)$$

$$S_{\nu} = \frac{E^3}{2\pi^2} \int \mathrm{d}\Omega \ f(E,\Omega)$$

Optical Depth

$$\tau(\nu) \approx 9.5 \times 10^{-7} \left(\frac{\text{EM}}{\text{cm}^{-6} \,\text{pc}}\right) \left(\frac{T_e}{5000 \,\text{K}}\right)^{-1.38} \left(\frac{\nu}{\text{GHz}}\right)^{-2.08}$$

 ${
m EM}=\int n_e^2\,d\ell$ emission measure of electrons along the photon's propagation

$$\mathrm{EM} \approx 0.23 \ \mathrm{cm}^{-6} \ \mathrm{pc} \ \left(\frac{n_{e,0}}{0.015 \ \mathrm{cm}^{-3}}\right)^2 \left(\frac{\ell}{\mathrm{kpc}}\right)$$

midplane, away from galactic center

SNR G6.4-0.1-like

Benchmark	A (adiabatic only)
(l,b)	$(64^{\circ}, -0.1^{\circ})$
$\theta_{\rm s}$ [arcmin]	48
$S^{(0)}_{1 m GHz,s}~[m Jy]$	310
$L_{1 m GHz, pk} \ [m cgs]$	(n/a)
$t_{\rm pk} \; [{\rm day}]$	(n/a)
$t_{\rm tran}$ [year]	100
$D \; [\mathrm{kpc}]$	1.9
$t_{\rm age}$ [year]	35,000
α	0.65
γ	1.84(*)

Baby SN

Benchmark	D (new)	
(l,b)	$(40^{\circ}, 0^{\circ})$	
$\theta_{\rm s} \; [{\rm arcmin}]$	1.0(*)	
$S^{(0)}_{1 m GHz,s}~[m Jy]$	$2.1 \times 10^{6}(*)$	
$L_{1 \rm GHz, pk} \ [\rm cgs]$	1.2×10^{29}	
$t_{\rm pk} \ [{\rm day}]$	50	
$t_{\rm tran}$ [year]	4.1	
$D \ [\mathrm{kpc}]$	0.5	
$t_{\rm age}$ [year]	10	
α	0.65	
γ	1.84(*)	$\int v_{\text{hom}} t,$
		$R(t) = \begin{cases} v_{\rm hom} t_{\rm tran} \left(\frac{t}{t_{\rm tran}} \right) \end{cases}$

G39.7-2.0 free expansion

Free expansion

Echo location

Uncertainties

Young Experiment

Define |fringe visibility| as (Imax-Imin) / (Imax+Imin)

Young Experiment

