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What holography can add to turbulence?

—> How do we compute entropy production in decaying turbulence (see
G.Falkovich, part2)?

= Answered: in ”Holographic turbulence” by Adams-Chesler-Liu ( ACL,
arXiv:1307.7267)

e Imagine you have T#" of a theory of relativistic hydrodynamics
(truncation—+transport coefficients) D + 1 spacetime dimensions:

™™ (tx) = TR+ T+ Ty 4+
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e You simulate the turbulent hydro from the theory:
vV, " =0



e The holographic magic is gravity-fluid correspondence:
m given TH¥(t,x) we can reconstruct geometry of a boosted black hole in

D + 1 dimensions, X = { t,xz = 2*, r},

dshiq = $%(X)§i;(X) da'dz? + 2dt [dr — A(X) dt — F;(X) da;i]

where as r — o0, e.g.,
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m The reconstruction is more accurate the more accurate is the
truncation in gradients
m — large Reynolds numbers + inverse cascade (Vu << T)



e Given a geometry, we can find an apparent (dynamical) horizon
(AH) of the black hole:
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e Associate with the apparent horizon, there is a non-equilibrium

entropy density s and an entropy current s*
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which has non-negative divergence
Vst >0

— You can study what the entropy does in a turbulent regime (ACL
paper)



— To sumimarize:

m Holography defines all-gradient relativistic hydrodynamics
= Computes all-order transport coefficients (there is some leverage in
engineering the hydro)

m Gives an out-of-equilibrium definition of the entropy

— In this talk I want to discuss some general properties of all-gradient

theories of relativistic hydrodynamics from holography



Outline:

Instability and causality violation in first-order dissipative relativistic
fluids

Why holography?
m Gauge theory plasma EOS

m Transport coefficients from holography
m Beyond hydrodynamics - QNM of black branes

Holographic models with controlled causality violation

All-order hydrodynamic instabilities in acausal plasma

= Minimal boost velocity

Conclusion and future directions



— Hiscock and Lindblom (1985):

Consider general theory of 1st-order relativistic hydrodynamics

e EF of conserved stress-energy tensor T#" and a current J*
vV, " =0, V,Jt=0

e constitutive relations (A*” = nH*¥ 4+ ulu”)
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— energy and charge diffusion currents {¢*,v*}

— bulk and shear viscosity stresses {7, 7"}



e The 1st order-in-gradients terms are fixed from the positivity of the
entropy production current
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— : shear and bulk viscosities {7, (}
— : thermal conductivity k and charge diffusion o

must be non-negative



First-order hydrodynamics is frame-dependent: no local definition of
{T(x), p(x), u(z)}

"Eckart frame”: v, = 0 (no charge flow in local rest frame, effectively
o=0)

”Landau-Lifshitz” frame (LL): ¢, = 0 (no energy flow in the local rest
frame, effectively k = 0)

one can stay in the general frame where o - kK # 0

— Consider linearized perturbations 6Q) x exp(—iwt + ikx)

The dispersion relations are found from

—

M-Q=0 — det M = (det Mpuna) - (det Mypeqr)? =0
where determinants are polynomials of (w, |k|?), e.g.,

det Mshea,fr — Pshear(wa |k’2)



e In the shear channel:

—iwy = P+E+\(P+E2+4nkTk - k

2T

e Im|w,| > 0 — the mode is always unstable in a frame with x # 0; it is
gapped (as |k| — 0)

e In the Landau-Lifshitz frame, w; mode disappears from the spectrum
(Im|wy] = +00 as kK — 04 ); the remaining mode is stable

+O(|k|")

wWw_ = —
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e Similar situation in the sound channel: x # 0 <= instability;
no-instabilities in LL frame

—> So, LL frame is stable?



— NO!, but to see the instability one needs to look in the boosted frame

e consider a boosted frame of an equilibrium fluid flow in the direction k
B 1
8 T2’

v<l1

t=~t—vyz, rT=—-vyt+~vyx,

— Consider linearized perturbations 6Q o exp(—iwt + k)

e The appropriate boosted polynomials can be determined from the
unboosted one, with the corresponding Lorentz transformation on (w, k):
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e The dispersion relation produces two complex roots for w with the

property:

~
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e

m when v # 0 (no matter how small), there is always an unstable mode
at finite k&

m in the limit v — 0 the unstable mode is removed from the spectrum as
Im [w] = 400

e There are instabilities in the sound channel even at k = 0, as long as

v # 0.

Moral of the story: sometimes we must boost the fluid to see the

instability



—> Causality violation of the 1st-order relativist hydrodynamics

e Consider 2nd-order relativistic conformal hydrodynamics (MIS - like,
with the relaxation time 7y, LL frame)
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m The dispersion relation of the shear channel:
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where to = w/(27T) and q = k/(27T)
m Speed with which a wave-front propagates out from a discontinuity in
any initial data is governed by
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—> reverting back to first order hydrodynamics
Ml — 0

results in causality violation

Thus: 1st-order hydrodynamics (in either Eckart or LL frames) are both

acausal and unstable



— Objections:

e The results are frame dependent (because we consider derivative
truncation of the all-order in gradients relativistic hydrodynamics)
m there exist frames (BDNK) where 1st order hydro is causal and stable

e We never really established that

acausal theory — relativistic hydro unstable

e instabilities are the gapped (non-hydro modes), and thus outside the
expected regime of validity of hydro

e likewise, the causality criteria

lim Re(w)

g =00 q

<1

is sensitive to large q, hence high-order gradients of the truncation



—> To resolve all the above objections is the reason

Why holography

— Specifically:
m We can study all-orders in gradients hydrodynamics

m We can study theories with tunable parameter that controls there causality



—> AdS/CFT correspondence — a primer

e conformal models: N = 4 supersymmetric Yang-Mills theory

= SU(N) gauge theory A,, + bosons ¢; + fermions 1), = maximally
supersymmetric and scale invariant = Lgy A, VYo, @il
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N ~ o dual “gravity’’ in 5—dim

gauge theory

m classical gravity approximation:
't Hooft limit : N — 00, g3y — 0 with A = g% ,,N = const

strong coupling : A — 00
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SYM thermal states <— black holes of Sk

e AdS-Schwarzschild black hole:

2 2
r du
dsi = 2 —(1 —u*)dt* + dz”
% u( (1 —u")di" + dz +4u2(1—u2)
= 4y — 1 BH horizon
m oy =0 = My— OMsz=My=R>", dsf\/l4:—dt2—|—da32
e BH temperature T' and the entropy density s:
ro horizon area density  rg

7 4G5 N E



—> Thermal properties of BH are interpreted as thermal properties of
strongly coupled A" =4 SYM plasma (trade ro <> T'):

e the energy density

3 3
£ = §7T2N2T4 = J€sB
e the pressure
1
P = g7r2N2T4

e the entropy density

1
s = §7T2N2T3



all — order hydrodynamic mode spectra

0

QNMs of AdS — Schwarzschildblack holes

Specifically:

o Gy — gaAbds—schwarzschﬂd (1 + hop(w) 6—iwt—|—z’kz)
m (scalar channel): {hg,}, {hax — hyy}
m (shear channel): {hiz, hozs har ), {Pty, Ryz, Ryr }
= (sound channel): {hAy, hiz, Pozy how + Ryys Pir, Bar, Ber b

e in each channel, the decoupled fluctuations can be combined in a single
gauge-invariant variable Z(u), leading to a QNM equation:

A , o dZ .
0—W+Cl(u,m,q)@+02(u,m,q)

m Dirichlet condition at AdS boundary: lim, .o Z =0
» Incoming-wave boundary condition at the horizon: Z oc (1 — u)~°/2



e Solving QNM eqs produce the spectra to = tv(q), e.g., in the hydro limit,
{rw,q} =0,
m shear channel:

iq>  i(1 —In2)q*

o = — O(q°
> i +0(q°)

when interpreted in LL frame hydro leads to

n 1

s  A4r
= sound channel:

9> (3—2In2)q°
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when interpreted in LL frame hydro leads to

1 ¢ 2 —1In?2
p
€= 37 s ’ i 2T

— Important: holography provides full spectral relation o = w(q), not

just a few terms of hydro approximation!



e We can construct boosted black hole solution:

ds* = —2u,dx"dr — v f(br) uyu,detdz” +r* P,,dz"dx”
1
f(?“)zl—r—4, P, =uuuy + My u,ut = —1
where T' = %, and u,, 1s a boost 4-velocity:

Uy :7(—1,5) . oy=(1=3-9)77
e As in boosted hydro,
0=2"+4Ci(u,w2,§%) Z' + Co(u, 02, §%)

0

0= 2"+ Ci(u,w?,q%) Z' + Cs(u, w2, q%)

where (10, q) and (1o, q) are related by the Lorentz transformation,
producing the boost (as in hydro)



—> How do we produce the theories with controlled causality violation?

e Consider a CFT in curved-space time (on My):

1
(T,F) = 16;2 (Riem2 — 2Ric* + §R2> — 166;2 (Biem2 — ieric2 + R2/>
I4—Wey1:urvature E4—Fuler density

\

where {c,a} are the central charges, and the curvatures inv are those of

My

e N=4SYM:c=a=12"

e from Hofman and Maldacena (2008): the causal conformal theories must

have
cC—a

<

<
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—> Holography of ¢ # a theories:

e the Gauss-Bonnet model

1
S5 = d°z\/—g
° 167TG5 /./\/l5 v I

with

A

R+12+ = (R? -

AR, R" + Ry pe R*P7)

—> We can now explore causality and hydrodynamic stability of

Gauss-Bonnet models for general Agp



— the scalar channel (Brigante-Liu-Myers-Shenker-Yaida (2008) and
Buchel-Myers (2009)):

e the QNM equation:
0= Z// + Cl(u7 m27 q27 )‘GB) Z/ + 02(u7 m27 q27 )\GB)

e OQNM equation — 1d bound-state QM problem:

dy 1
—~ =Y A 7 =
du (v, Acs) B(u, A\gB) v
—
1 scailar 1 scailar m2
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where Uiscalar — Uiscalar(u’ )\GB)



— Causality:

m Effective h = %; h — 0,

—h? OpY(y) +Uo ¥(y) = E9(y), E=a

where h?U; can be ignored, except as u — 0, where its role is to set an

impenetrable wall

m For causality violation we search for bound state with

RelE]| > 1

m Uy(u, A\g) crucially depends on Agp:
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— Instability in the boosted frame (boost velocity v):

Im[w] >0

m We search for modes with (real) I' > 0

- 9 Al 5 292
(n=i"'+0,q°=0) — (m:m,q :—m>

s Effective h* = —1/q?; consider h — 0 (I' = +o0 or v — 0)

2 )+ (<0 ) i) = Ev),  E=-o;

m For instability we search for bound state with

E < -1

= note that in this problem the 1D QM potential is minus the potential of
the causality problem!
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— If the bound state ( = the instability) exists, it must be

1
£ ==
bound state v
—
v > /Umin()\GB)

Umin >
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—> Explicit construction of boost unstable QNMs:

Im [to] .
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The left panel: unstable QNMs of the metric fluctuations in the helicity-2
(the scalar) sector of the boosted GB black branes with the boost velocity
v = 0.999. The right panel: the boost velocity dependence of the red dot of
the left panel.



Conclusions and future directions:

e We established a precise correspondence between all-derivative
causality-violating relativistic theories of hydrodynamics and instabilities
of the corresponding fluids

e All channels (scalar, shear and sound) must be considered to fully
identify acausal/unstable regime

e Instability of acausal theories can be seen only if the equilibrium plasma
fluid is sufficiently boosted

—
m A particular class of discussed holographic models exhibit causality
violation in scattering of plasma shock-waves for any finite Agp
(Camanho-Edelstein-Maldacena-Zhiboedov (2014))

m The only way to fix the causality of such theories is to add additional fields
of spin J > 2 (go to String Theory!)

m Question: Can such causality violation can also be seen as an instability?




