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What holography can add to turbulence?

=⇒ How do we compute entropy production in decaying turbulence (see

G.Falkovich, part2)?

Answered: in ”Holographic turbulence” by Adams-Chesler-Liu ( ACL,

arXiv:1307.7267)

• Imagine you have Tµν of a theory of relativistic hydrodynamics

(truncation+transport coefficients) D + 1 spacetime dimensions:

Tµν(t,x) = Tµν
(0)

︸︷︷︸

O(∂0u)

+ Tµν
(1)

︸︷︷︸

O(∂1u)

+ Tµν
(2)

︸︷︷︸

O(∂2u,(∂1u)2)

+ · · ·

• You simulate the turbulent hydro from the theory:

∇µT
µν = 0



• The holographic magic is gravity-fluid correspondence:

given Tµν(t,x) we can reconstruct geometry of a boosted black hole in

D + 1 dimensions, X = { t,x = xi , r},

ds2D+1 = Σ2(X)ĝij(X) dxidxj + 2dt

[

dr −A(X) dt− Fi(X) dxi
]

where as r → ∞, e.g.,

Σ2(X)ĝij(X) =
r2

L2

[

δij +
1

rD
〈Tij〉+ · · ·

]

, −2A =
r2

L2

[

−1 +
1

rD
〈T00〉+ · · ·

]

The reconstruction is more accurate the more accurate is the

truncation in gradients

=⇒ large Reynolds numbers + inverse cascade (∇u << T )



• Given a geometry, we can find an apparent (dynamical) horizon

(AH) of the black hole:

(∂t +A(X) ∂r) Σ

∣
∣
∣
∣
rh

= −1

2
Σ′F 2 − 1

D − 1
Σ ∇ · F

∣
∣
∣
∣
rh

• Associate with the apparent horizon, there is a non-equilibrium

entropy density s and an entropy current sµ

s ≡ 2c

π
︸︷︷︸

# DOF

ΣD−1

∣
∣
∣
∣
rh

, sµ = s uµ , Tµ
νu

ν = −Euµ

which has non-negative divergence

∇µs
µ ≥ 0

=⇒ You can study what the entropy does in a turbulent regime (ACL

paper)



=⇒ To summarize:

Holography defines all-gradient relativistic hydrodynamics

Computes all-order transport coefficients (there is some leverage in

engineering the hydro)

Gives an out-of-equilibrium definition of the entropy

=⇒ In this talk I want to discuss some general properties of all-gradient

theories of relativistic hydrodynamics from holography



Outline:

• Instability and causality violation in first-order dissipative relativistic

fluids

• Why holography?

Gauge theory plasma EOS

Transport coefficients from holography

Beyond hydrodynamics - QNM of black branes

• Holographic models with controlled causality violation

• All-order hydrodynamic instabilities in acausal plasma

Minimal boost velocity

• Conclusion and future directions



=⇒ Hiscock and Lindblom (1985):

Consider general theory of 1st-order relativistic hydrodynamics

• EF of conserved stress-energy tensor Tµν and a current Jµ

∇µT
µν = 0 , ∇µJ

µ = 0

• constitutive relations (∆µν ≡ ηµν + uµuν)

Tµν = Euµuν + P∆µν

︸ ︷︷ ︸

O(∂0u)

+

[

τ∆µν + qµuν + qνuµ + τµν
]

︸ ︷︷ ︸

O(∂1u)

+ [ · · · ]
︸ ︷︷ ︸

O(∂2u,(∂u)2)

+ · · ·

Jµ = ρuµ
︸︷︷︸

O(∂0u)

+ νµ
︸︷︷︸

O(∂1u)

+ · · ·

– energy and charge diffusion currents {qµ, νµ}
– bulk and shear viscosity stresses {τ, τµν}



• The 1st order-in-gradients terms are fixed from the positivity of the

entropy production current

Sµ = suµ +
1

T
qµ − µ

T
νµ , ∇µSµ ≥ 0

=⇒
τ = −ζ∇µu

µ , qµ = −κT∆µν

[
1

T
∇νT + uλ∇λuν

]

τµν = −2η 〈∇µuν〉 , νµ = −σT∆µν∇ν

[µ

T

]

=⇒
∇µSµ =

τ2

ζ
+
qµqµ
kT

+
νµνµ
σT

+
τµντµν
2η

≥ 0

– : shear and bulk viscosities {η, ζ}
– : thermal conductivity κ and charge diffusion σ

must be non-negative



• First-order hydrodynamics is frame-dependent: no local definition of

{T (x), µ(x), uµ(x)}
• ”Eckart frame”: νµ = 0 (no charge flow in local rest frame, effectively

σ = 0)

• ”Landau-Lifshitz” frame (LL): qµ = 0 (no energy flow in the local rest

frame, effectively κ = 0)

• one can stay in the general frame where σ · κ 6= 0

=⇒ Consider linearized perturbations δQ ∝ exp(−iωt+ ikx)

• The dispersion relations are found from

M · ~Q = 0 =⇒ detM = (detMsound) · (detMshear)
2 = 0

where determinants are polynomials of (ω, |k|2), e.g.,

detMshear = Pshear(ω, |k|2)



• In the shear channel:

−iω± =
1

2κT

[

P + E ±
√

(P + E)2 + 4ηκTk · k
]

• Im[ω+] > 0 — the mode is always unstable in a frame with κ 6= 0; it is

gapped (as |k| → 0)

• In the Landau-Lifshitz frame, ω+ mode disappears from the spectrum

(Im[ω+] → +∞ as κ→ 0+); the remaining mode is stable

ω− = −i η

E + P
|k|2 +O(|k|4)

• Similar situation in the sound channel: κ 6= 0 ⇐⇒ instability;

no-instabilities in LL frame

=⇒ So, LL frame is stable?



=⇒ NO!, but to see the instability one needs to look in the boosted frame

• consider a boosted frame of an equilibrium fluid flow in the direction k

t̃ = γ t− vγ x , x̃ = −vγ t+ γ x , γ =
1√

1− v2
, v < 1

=⇒ Consider linearized perturbations δQ ∝ exp(−iω̃t̃+ ik̃x̃)

• The appropriate boosted polynomials can be determined from the

unboosted one, with the corresponding Lorentz transformation on (ω,k):

P̃(ω̃, (k̃)2) = P
(

ω ≡ γω̃ − vγ k̃ , (k ≡ γk̃ − vγω̃)2
)

= 0



• The dispersion relation produces two complex roots for ω with the

property:

Im[ω1]·Im[ω2] = −
[

±Re[ω1]−
k̃

v

]2

< 0 , Im[ω1]+Im[ω2] =
P + E
γv2η

> 0

=⇒
when v 6= 0 (no matter how small), there is always an unstable mode

at finite k̃

in the limit v → 0 the unstable mode is removed from the spectrum as

Im[w] → +∞
• There are instabilities in the sound channel even at k̃ = 0, as long as

v 6= 0.

Moral of the story: sometimes we must boost the fluid to see the

instability



=⇒ Causality violation of the 1st-order relativist hydrodynamics

• Consider 2nd-order relativistic conformal hydrodynamics (MIS - like,

with the relaxation time τΠ, LL frame)

Tµν = Euµuν + P∆µν

︸ ︷︷ ︸

O(∂0u)

+ τµν
︸︷︷︸

O(∂1u)

+ τΠ

[

〈uλ∇λτ
µν〉+ 1

3
∇λu

λ τµν
]

+ · · ·
︸ ︷︷ ︸

O(∂2u,(∂u)2)

The dispersion relation of the shear channel:

0 = −w
2 τΠT − iw

2π
+ q

2 η

s

where w = ω/(2πT ) and q = k/(2πT )

Speed with which a wave-front propagates out from a discontinuity in

any initial data is governed by

lim
|q|→∞

Re(w)

q

∣
∣
∣
∣
[shear]

=

√
η

s τΠT
≡ vfront[shear] ≤ 1

τΠT ≥ η

s



=⇒ reverting back to first order hydrodynamics

τΠT → 0

results in causality violation

Thus: 1st-order hydrodynamics (in either Eckart or LL frames) are both

acausal and unstable



=⇒ Objections:

• The results are frame dependent (because we consider derivative

truncation of the all-order in gradients relativistic hydrodynamics)

there exist frames (BDNK) where 1st order hydro is causal and stable

• We never really established that

acausal theory ⇐⇒ relativistic hydro unstable

• instabilities are the gapped (non-hydro modes), and thus outside the

expected regime of validity of hydro

• likewise, the causality criteria

lim
|q|→∞

Re(w)

q
< 1

is sensitive to large q, hence high-order gradients of the truncation



=⇒ To resolve all the above objections is the reason

Why holography?

=⇒ Specifically:

We can study all-orders in gradients hydrodynamics

We can study theories with tunable parameter that controls there causality



=⇒ AdS/CFT correspondence — a primer

• conformal models: N = 4 supersymmetric Yang-Mills theory

SU(N) gauge theory Aµ + bosons φi + fermions ψa = maximally

supersymmetric and scale invariant =⇒ LSYM [Aµ, ψa, φi]

ZSYM [M4] ≡
∫

[dAdψdφ]ǫ
i

∫
M4

d4xLSY M

︸ ︷︷ ︸

gauge theory

= ei S5[∂M5=M4]
︸ ︷︷ ︸

dual “gravity′′ in 5−dim

classical gravity approximation:






′t Hooft limit : N → ∞ , g2YM → 0 with λ ≡ g2YMN = const

strong coupling : λ→ ∞
=⇒

S5 =
1

16πG5

∫

M5

d5x
√−g (R+ 12) , G5 =

π

2N2



SYM thermal states ⇐⇒ black holes of S5

• AdS-Schwarzschild black hole:

ds25 =
r20
u

(

−(1− u2)dt2 + dx2

)

+
du2

4u2(1− u2)

u→ 1 BH horizon

u→ 0 ⇐⇒ M5 → ∂M5 = M4 = R
3,1: , ds2M4

= −dt2 + dx2

• BH temperature T and the entropy density s:

T =
r0
π
, s ≡ horizon area density

4G5
=

r30
4G5



=⇒ Thermal properties of BH are interpreted as thermal properties of

strongly coupled N = 4 SYM plasma (trade r0 ↔ T ):

• the energy density

E =
3

8
π2N2T 4 =

3

4
ǫSB

• the pressure

P =
1

8
π2N2T 4

• the entropy density

s =
1

2
π2N2T 3



all− order hydrodynamic mode spectra

m
QNMs of AdS− Schwarzschildblack holes

Specifically:

• gab → gAdS−Schwarzschild
ab

(

1 + hab(u) e
−iωt+ikz

)

(scalar channel): {hxy}, {hxx − hyy}
(shear channel): {htx, hxz, hxr}, {hty, hyz , hyr}
(sound channel): {htt, htz, hzz, hxx + hyy, htr, hzr, hrr}

• in each channel, the decoupled fluctuations can be combined in a single

gauge-invariant variable Z(u), leading to a QNM equation:

0 =
d2Z

du2
+ C1(u,w

2, q2)
dZ

du
+ C2(u,w

2, q2)

Dirichlet condition at AdS boundary: limu→0 Z = 0

Incoming-wave boundary condition at the horizon: Z ∝ (1− u)−iw/2



• Solving QNM eqs produce the spectra w = w(q), e.g., in the hydro limit,

{w, q} → 0,

shear channel:

w = − iq
2

2
− i(1− ln 2)q4

4
+O(q6)

when interpreted in LL frame hydro leads to

η

s
=

1

4π

sound channel:

w = ± q√
3
− iq2

3
± (3− 2 ln 2)q3

6
√
3

+O(q4)

when interpreted in LL frame hydro leads to

c2s =
1

3
,

ζ

s
= 0 , T τΠ =

2− ln 2

2π

=⇒ Important: holography provides full spectral relation w = w(q), not

just a few terms of hydro approximation!



• We can construct boosted black hole solution:

ds2 = −2uµdx
µdr − r2f(br) uµuνdx

µdxν + r2 Pµνdx
µdxν

f(r) = 1− 1

r4
, Pµν = uµuν + ηµν , uµu

µ = −1

where T = 1
πb , and uµ is a boost 4-velocity:

uµ = γ
(

−1, ~β
)

, γ ≡ (1− ~β · ~β)−1/2

• As in boosted hydro,

0 = Z ′′ + C̃1(u, w̃
2, q̃2) Z ′ + C̃2(u, w̃

2, q̃2)

m
0 = Z ′′ + C1(u,w

2, q2) Z ′ + C2(u,w
2, q2)

where (w̃, q̃) and (w, q) are related by the Lorentz transformation,

producing the boost (as in hydro)



=⇒ How do we produce the theories with controlled causality violation?

• Consider a CFT in curved-space time (on M4):

〈T µ
µ 〉 = c

16π2

(

Riem2 − 2Ric2 +
1

3
R2

︸ ︷︷ ︸

I4−Weyl curvature

)

− a

16π2

(

Riem2 − 4Ric2 + R2

︸ ︷︷ ︸

E4−Euler density

)

where {c, a} are the central charges, and the curvatures inv are those of

M4

• N = 4 SYM: c = a = N2

4

• from Hofman and Maldacena (2008): the causal conformal theories must

have

−1

2
≤ c− a

c
≤ 1

2



=⇒ Holography of c 6= a theories:

• the Gauss-Bonnet model

S5 =
1

16πG5

∫

M5

d5x
√−g

[

R + 12 +
λGB

2

(
R2 − 4RµνR

µν + RµνρσR
µνρσ

)

]

with
c− a

c
=

2√
1− 4λGB

− 2

−1

2
≤ c− a

c
≤ 1

2
⇐⇒ − 7

36
≤ λGB ≤ 9

100

=⇒ We can now explore causality and hydrodynamic stability of

Gauss-Bonnet models for general λGB



=⇒ the scalar channel (Brigante-Liu-Myers-Shenker-Yaida (2008) and

Buchel-Myers (2009)):

• the QNM equation:

0 = Z ′′ + C1(u,w
2, q2, λGB) Z

′ + C2(u,w
2, q2, λGB)

• QNM equation → 1d bound-state QM problem:

dy

du
= Y (u, λGB) , Z ≡ 1

B(u, λGB)
ψ

=⇒

− 1

q2
∂2yψ(y) +

(

U scalar
0 +

1

q2
U scalar
1

)

ψ(y) =
w2

q2
ψ(y)

where U scalar
i = U scalar

i (u, λGB)



=⇒ Causality:

lim
q→∞

Re[w]

q
≡ α ≤ 1

Effective ~ ≡ 1
q
; ~ → 0,

−~
2 ∂2yψ(y) + U0 ψ(y) = E ψ(y) , E ≡ α2

where ~
2U1 can be ignored, except as u→ 0, where its role is to set an

impenetrable wall

For causality violation we search for bound state with

Re[E] > 1

U0(u, λGB) crucially depends on λGB:
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=⇒ Instability in the boosted frame (boost velocity v):

Im[w̃] > 0

We search for modes with (real) Γ > 0

(
w̃ ≡ iΓ + 0 , q̃2 = 0

)
⇐⇒

(

w ≡ iΓ√
1− v2

, q2 = − Γ2v2

(1− v2)

)

Effective ~
2 ≡ −1/q2; consider ~ → 0 (Γ → +∞ or v → 0)

−~
2 ∂2yψ(y) +

(

−U0

)

ψ(y) = E ψ(y) , E ≡ − 1

v2

For instability we search for bound state with

E < −1

note that in this problem the 1D QM potential is minus the potential of

the causality problem!
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=⇒ If the bound state ( ≡ the instability) exists, it must be

E

∣
∣
∣
∣
bound state

= − 1

v2
> min

u
[−U0]

=⇒
v > vmin(λGB) >

1
√

−minu[−U0]

0.10 0.15 0.20 0.25

0.6

0.7

0.8
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1.0

v m
in
>

or
an

ge

λGB



=⇒ Explicit construction of boost unstable QNMs:
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The left panel: unstable QNMs of the metric fluctuations in the helicity-2

(the scalar) sector of the boosted GB black branes with the boost velocity

v = 0.999. The right panel: the boost velocity dependence of the red dot of

the left panel.



Conclusions and future directions:

• We established a precise correspondence between all-derivative

causality-violating relativistic theories of hydrodynamics and instabilities

of the corresponding fluids

• All channels (scalar, shear and sound) must be considered to fully

identify acausal/unstable regime

• Instability of acausal theories can be seen only if the equilibrium plasma

fluid is sufficiently boosted

=⇒
A particular class of discussed holographic models exhibit causality

violation in scattering of plasma shock-waves for any finite λGB

(Camanho-Edelstein-Maldacena-Zhiboedov (2014))

The only way to fix the causality of such theories is to add additional fields

of spin J > 2 (go to String Theory!)

Question: Can such causality violation can also be seen as an instability?


