The LHC lon program in Run 3 and Run 4 °≓

R. Bruce, R. Alemany Fernandez, H. Bartosik, R. Cai, M. D'Andrea, J.M. Jowett, D. Mirarchi, F. Moortgat, B. Petersen, S. Redaelli, M. Solfaroli, J. Wenninger

8≈**8** •≈**8**

Acknowledgements:

T. Argyropoulos, N. Biancacci, F. Boattini, C. Bracco, M. Calviani, H. Damerau, R. De Maria, M. DiCastro, S. Fartoukh, A. Frasca, N. Fuster-Martinez, S. Gilardoni, C. Hernalsteens, P. Hermes, M. Hostettler, G. Iadarola, M.A. Jebramcik, S. Kostoglou, D. Kuchler, A. Lechner, E. Matheson, N. Mounet, F-X. Nuiry, S. Paiva, Y. Papaphilippou, T. Persson, G. Rumolo, M. Schaumann, R. Scrivens, R. Steerenberg, G. Sterbini, H. Timko, R. Tomas, F. van der Veken, D. Wollmann

- Introduction and general plan for heavy-ion runs
- LHC machine configuration in Run 3-4
- Performance estimates for Pb-Pb and p-Pb
- Oxygen pilot run
- Conclusions

History of heavy-ion runs in the LHC

- Typically one month per year with heavy-ion operation
 - So far Pb-Pb or p-Pb
 - Six runs so far
- In addition, had short
 "pilot runs"
 - First p-Pb
 - Xe-Xe
 - partially stripped Pb81+ (no collisions)
 - Pb-Pb in 2022
 - 2022 Pb-Pb physics run cancelled

Previous luminosity production

- Total integrated luminosity so far
 - Pb-Pb: 1.5 nb⁻¹ in ALICE, 2.54 nb⁻¹ in ATLAS/CMS, 0.26 nb⁻¹ in LHCb
 - p-Pb: 75 nb⁻¹ in ALICE, ~220 nb⁻¹ in ATLAS/CMS, 36 nb⁻¹ in LHCb
 - Luminosity added over all energies

Future LHC heavy-ion operation

- In the future, continue with one-month ion runs at the end of the year
- 3 ion runs planned in Run 3, after cut of 2022 run
- Planning not yet fully fixed for Run 4
 - Having 4 ion runs would facilitate achieving the targets

Requests from experiments

- WG5 in the 2018 HL-LHC / HE-LHC physics workshop dealt with heavy-ion physics
- Yellow report released with luminosity requests and proposal for extended heavy-ion running: <u>CERN-LPCC-2018-07</u>

- Pb-Pb at $\sqrt{s_{NN}} = 5.5$ TeV, $L_{int} = 13$ nb⁻¹ (ALICE, ATLAS, CMS), 2 nb⁻¹ (LHCb) - pp at $\sqrt{s} = 5.5$ TeV, $L_{int} = 600$ pb⁻¹ (ATLAS, CMS), 6 pb⁻¹ (ALICE), 50 pb⁻¹ (LHCb) - pp at $\sqrt{s} = 14$ TeV, $L_{int} = 200$ pb⁻¹ with low pileup (ALICE, ATLAS, CMS) - p-Pb at $\sqrt{s_{NN}} = 8.8$ TeV, $L_{int} = 1.2$ pb⁻¹ (ATLAS, CMS), 0.6 pb⁻¹ (ALICE, LHCb) - pp at $\sqrt{s} = 8.8$ TeV, $L_{int} = 200$ pb⁻¹ (ATLAS, CMS, LHCb), 3 pb⁻¹ (ALICE) - O-O at $\sqrt{s_{NN}} = 7$ TeV, $L_{int} = 500 \ \mu b^{-1}$ (ALICE, ATLAS, CMS, LHCb) - p-O at $\sqrt{s_{NN}} = 9.9$ TeV, $L_{int} = 200 \ \mu b^{-1}$ (ALICE, ATLAS, CMS, LHCb) - Intermediate AA, e.g. $L_{int}^{Ar-Ar} = 3-9$ pb⁻¹ (about 3 months) gives NN luminosity equivalent to Pb-Pb with $L_{int} = 75-250$ nb⁻¹ - Proposal for after Run 4

- Heavy-ion operational scenario for Run 3-4: see <u>CERN-ACC-report</u> and <u>EPJ Plus paper</u>
 - Updates since then: target beam energy for Run 3 changed to 6.8 Z TeV; deferral of installation of 11T dipoles and IR7 DS collimators R. Bruce, 2023.01.23

Ion operation in Run 3

2022

- Ion runs foreseen in 2023, 2024, 2025
 - 2023: Pb-Pb in October
 - 2024-2025 : Pb-Pb only, or one year of p-Pb if it is found that Run 3 target can be reached with only two Pb-Pb run
 - If so, will likely have 5 weeks Pb-Pb runs and and 3 weeks p-Pb

Pb-Pb

p-Pb

2-day Pb ion test

O-O, p-O: ~ 1 week

 1-week O-O and p-O pilot run likely in 2024

Options for ion operation in Run 3

2024

2025

2023

Outline

- Introduction and general plan for heavy-ion runs
- LHC machine configuration in Run 3-4
- Performance estimates for Pb-Pb and p-Pb
- Oxygen pilot run
- Conclusions

Machine scenario for Run 3 and 4

- Same LHC machine scenario foreseen for Run 3 and Run 4
- High-Luminosity LHC (HL-LHC) Upgrades for ions have been recently implemented in LS2
 - Crystal collimators
 - · Needed for handling beam losses with the higher intensity
 - Two devices replaced in LS2, the remaining two replaced in 22-23 YETS completely new system compared to Run 2
 - IR2 dispersion suppressor collimators
 - Intercept collision products to enable higher instantaneous ALICE luminosity
 - Slip-stacked beams with 50 ns spacing thanks to SPS RF upgrade
 - Gives ~70% more bunches in the LHC
- In addition, upgraded ALICE detector to handle higher event rate
- Thanks to these upgrades, targeting HL-LHC performance already in Run 3

Collimation and beam losses

- Regular or irregular beam losses risk to hit the aperture of cold magnets
 - Could cause a magnet quench or even damage
 - Foreseen total stored energy of ion beam: 20 MJ
- LHC collimation is ~2 orders of magnitude less efficient with Pb than with protons
 - Losses with ions risk to become limiting in Run 3 due to higher beam intensity
 - Risk of magnet quenches or frequent beam aborts limiting the availability
- Mitigation plan: Crystal collimation
 - If losses are really limiting, could consider staying at Run 2 energy of 6.37 Z TeV – discussions ongoing some discussions on beam energy with experiments
 - Default option is 6.8 Z TeV unless serious issues with crystal system

Principles of crystal collimation

Collimation of halo with bent crystals

- Charged particles trapped in potential well from crystalline planes
- Reduced interaction rate \rightarrow reduced leakage to cold magnets of fragmented ions
- Bent crystals steer halo particles onto massive absorber
- Four crystal upgraded collimators recently installed in the LHC
 - One per beam per transverse plane
 - Future ion operation will rely on crystal collimation (first time!)
- Targeting significantly better cleaning of the beam halo
 - Expect fewer beam aborts due to high irregular losses

Collisional losses

- In heavy-ion collisions, ultra-peripheral electromagnetic interactions create secondary beams with changed charge-to-mass ratio
 - Cause of localized beam losses in the machine, downstream of the IP
 - Continuous power of 165 W for BFPP expected at 6.4×10²⁷ cm⁻²s⁻¹

BFPP: ${}^{208}\text{Pb}^{82+} + {}^{208}\text{Pb}^{82+} \longrightarrow {}^{208}\text{Pb}^{82+} + {}^{208}\text{Pb}^{81+} + e^+,$ $\sigma = 281 \text{ b}, \quad \delta = 0.01235$

EMD1: ${}^{208}Pb^{82+} + {}^{208}Pb^{82+} \longrightarrow {}^{208}Pb^{82+} + {}^{207}Pb^{82+} + n$, $\sigma = 96 \text{ b}, \quad \delta = -0.00485$ EMD2: ${}^{208}Pb^{82+} + {}^{208}Pb^{82+} \longrightarrow {}^{208}Pb^{82+} + {}^{206}Pb^{82+} + 2n$, $\sigma = 29 \text{ b}, \quad \delta = -0.00970$

- 6 times higher luminosity foreseen at ALICE in Run 3 (6.4×10²⁷ cm⁻²s⁻¹)
 - Need to safely intercept collision products exiting the detector without risk of quenching magnets

Alleviation of collisional losses

- Orbit bumps successfully deployed in IR1/5 already in run 2 to steer losses into empty connection cryostat
 - By now, a well-established operational procedure
- In IR2 (ALICE experiment), bumps alone do not work
 - Need new TCLD collimator in combination with orbit bump

Connection cryostat ("missing dipole")

TCLD collimators installed in IR2

• In LS2, one TCLD successfully installed per side of IR2

 Foreseen alleviation measures have been deployed – green light for highluminosity operation at ALICE!

Slip-stacked beams

- SPS slip-stacking: interleave two 100 ns bunch trains; create a train with 50 ns bunch spacing
 - Allows to fit 70% more bunches in the LHC than in Run 2
 - In 2018, used 75 ns spacing
- 8-bunch trains successfully used in 2022 Pb ion test
 - Variations, but could reach intensity and emittance beyond upgrade specification at LHC injection
 - Had first LHC collisions with slip-stacked beams

• Filling schemes for 2023 rely on 56-bunch trains

- to be commissioned during 2023
- Expect some brightness degradation compared to 8-bunch trains
- 75 ns remains available as backup

Beam parameters and filling schemes

- Range of 50 ns Pb-Pb filling schemes worked out
 - Trade-off between collisions at ALICE/ATLAS/CMS and LHCb
 - Final scheme to be selected by LHCC/LPC, variations during a run possible

Projected Pb beam parameters in collision

 Based on LIU target for injection, with some degradation before reaching collision

		n.o. comsions at				
	Filling scheme	n.o. bunches	IP1/5	IP2	IP8	spacing
	1240b_1240_1200_0	1240	1240	1200	0	50 ns
	1240b_1144_1144_239	1240	1144	1144	239	50 ns
	1240b_1088_1088_398	1240	1088	1088	398	50 ns
l	1240b_1032_1032_557	1240	1032	1032	557	50 ns
	1240b_976_976_716	1240	976	976	716	50 ns
	733b_733_702_468	733	733	702	468	75 ns

LHC design	2018	Run 3
7	6.37	6.8 or 6.37
100	75	50
592	733	1240
7	21	18
1.5	2.3	1.65
	7 100	100 75

n a collisions at

LHC optics configuration

- Foresee similar optics as in 2018 Pb-Pb run (S. Fartoukh)
 - different cycle from protons, squeezing also IR2
 - Configuration could stay similar for all years in Run 3-4
 - Implications of reversed-polarity optics for protons to be evaluated
 - Study possibility of smaller β* and/or crossing angle in 2024-2025
 - ALICE spectrometer reversals expected
- Luminosity levelling targets:
 - L= 6.4×10^{27} cm⁻² s⁻¹ for IP1/2/5
 - Could potentially be higher for IP1/5
 - L=1.0×10²⁷ cm⁻² s⁻¹ at IP8
 - Could potentially be a bit higher under study
 - Assuming separation levelling

	IP1	IP2	IP5	IP8
β^{*} (m)	0.5	0.5	0.5	1.5
crossing plane	V	V	Η	Н
spectrometer half crossing (μ rad)	0	∓72	0	-139
external half crossing (μ rad)	170	± 172	170	-170
net half crossing (μ rad)	170	± 100	170	-309
spectrometer polarity	-	pos/neg	-	pos

Outline

- Introduction and general plan for heavy-ion runs
- LHC machine configuration in Run 3-4
- Performance estimates for Pb-Pb and p-Pb
- Oxygen pilot run
- Conclusions

Simulation models of luminosity performance

- Recently updated simulation tools for beam evolution here using Collider Time Evolution (CTE):
 - Particle tracking with 1-turn map accounting for of burnoff, intrabeam scattering, synchrotron radiation, filling scheme, non-collisional losses, emittance blowup....)
 - Ref: 2010 PRSTAB paper, T. Mertens MSc thesis, M. Schaumann PhD thesis, 2021 EPJ Plus paper
- **Performed extensive benchmark on 2018 data** found excellent agreement in the simulation of single fills with given starting conditions taken from beam data

Simulations of typical 2023 fill, Pb-Pb 6.8 Z TeV

Simulated future fill

- using projected upgraded beam parameters - might not be achieved immediately at the start
- For different filling schemes

Reference: <u>EPJ Plus paper</u>

Integrated luminosity in a 1-month run

- From the single fill, calculate optimum fill time, and average luminosity
 - Optimal fill length of ~4.5h with ideal turnaround, goes up to 5.5h with achieved turnaround distribution from 2018
 - For two energies: 6.8 Z TeV and 6.37 Z TeV, and for all filling patterns
- Estimate luminosity in a typical 1-month ion run as

$$\mathcal{L}_{\text{tot}} = \mathcal{L}_{\text{avg}}(T_{\text{f,opt}}) \times T_{\text{run}} \times \eta$$

Assumptions

- 200 min turnaround time (detailed estimate from J. Jowett, Chamonix 2017)
- Operational efficiency η assumed to be either (see LIU specification document)
 - 62% as in LIU specification
 - Could be challenging feasibility needs to be demonstrated for future higher beam intensities
 - 50% as for Run 3 and HL-LHC protons
- T_{run}=27 days of physics available after initial commissioning in 2023

Projected 2023 performance, Pb-Pb

Integrated luminosity over 27 days in nb⁻¹

6.8 Z TeV, 50%	IP1/5	IP2	IP8
1240_1200_1240_0	2.8	3.	Ο.
1144_1144_1144_239	2.7	3.	0.2
1088_1088_1088_398	2.6	2.9	0.33
1032_1032_1032_557	2.5	2.8	0.43
976_976_976_716	2.5	2.8	0.52
733_702_733_468	1.9	2.1	0.39

6.37 Z TeV, 50%	IP1/5	IP2	IP8
1240_1200_1240_0	2.7	2.9	Θ.
1144_1144_1144_239	2.6	2.8	0.18
1088_1088_1088_398	2.5	2.8	0.31
1032_1032_1032_557	2.4	2.7	0.42
976_976_976_716	2.3	2.6	0.5
733_702_733_468	1.8	2.	0.37

6.8 Z TeV, 62%	IP1/5	IP2	IP8
1240_1200_1240_0	3.5	3.7	Ο.
1144_1144_1144_239	3.3	3.7	0.24
1088_1088_1088_398	3.2	3.6	0.4
1032_1032_1032_557	3.1	3.5	0.54
976_976_976_716	3.	3.4	0.64
733_702_733_468	2.4	2.6	0.48

6.37 Z TeV, 62%	IP1/5	IP2	IP8
1240_1200_1240_0	3.4	3.6	Ο.
1144_1144_1144_239	3.2	3.5	0.23
1088_1088_1088_398	3.1	3.4	0.38
1032_1032_1032_557	3.	3.4	0.52
976_976_976_716	2.9	3.3	0.62
733_702_733_468	2.3	2.5	0.46

Considerations on Pb-Pb performance

- Estimated performance has large uncertainties
 - Especially from machine availability and beam parameters in collision
- Depending on scenario, estimate about
 - 2.7-3.6 nb⁻¹ at ALICE
 - 2.4-3.2 nb⁻¹ at ATLAS/CMS
 - 0.3-0.5 nb⁻¹ at LHCb

- Similar estimated performance in future 1-month runs
 - to be scaled by the actual number of days in physics
- 3-5% loss in integrated luminosity at 6.37 Z TeV

Assumptions for p-Pb

- For p-Pb, new filling schemes developed recently with realistic proton train structure
 - Note: previously using approximations without detailed filling schemes worked out
 - Considered both 50 ns and 25 ns proton beams
 - Possibly need further studies (instrumentation, beam-beam...) to verify impact of 50 ns ion beam and 25 ns p beam
- Baseline assumptions, used for simulations
 - ALICE levelled at L=5×10²⁹ cm⁻² s⁻¹, following upgrade, the other experiments not levelled
 - Assuming a proton beam with 3E10 p/bunch, and 2.5 μm emittance
- Could revise some of these assumptions to gain in performance

Projected 1-month performance, p-Pb

Green: above target Red: Below target							●⋛	
					IP2		IP8	
	1232_	Pb_1320_p_765_762_733	474.,	588.	329., 4	408.	149., 185	_
50 ns p-	1232_	Pb_1320_p_848_820_553	517.,	641.	329., 4	407.	111., 137	
	1232_	Pb_1320_p_901_843_432	542.,	672.	327., 4	406.	85.4, 106	,
25 00 0	1232_	pb_2520_p_1092_793_755	628.,	778.	314., 3	389.	143., 177.)
20 IIS b~	1232_	p_2520_p_1092_793_755 pb_2520_p_900_926_897	529.,	656.	325., 4	403.	173., 215)
		50% OP eff. 62% OP eff.						

- Assuming two p-Pb runs until the end of Run 4, we can satisfy the experiments' requests
 - In one month, would need 500 nb⁻¹ at IP1/5, 250 nb⁻¹ at IP2, 100 nb⁻¹ at IP8
 - Note: about factor 2 below initial LHCb request from yellow report
- Potential performance improvement under study: Increase proton bunch intensities
 - Need to verify feasibility of strong p beam vs weak Pb beam: Beam instrumentation, beam-beam ...
 - First beam-beam studies done in PhD thesis M. Jebramcik

Outline

- Introduction and general plan for heavy-ion runs
- LHC machine configuration in Run 3-4
- Performance estimates for Pb-Pb and p-Pb
- Oxygen pilot run
- Conclusions

Oxygen pilot run

• O-O and p-O run scheduled in 2024

Motivations:

- Physics interest from experiments
 - See talk F. Moortgat
- Study limitations and performance, in view of proposed Run 5 high-intensity operation with lighter ions
- Wish list from experiments:
 - O-O: ~0.5/nb for ALICE, ATLAS, CMS
 - p-O: LHCb would like 2/nb, LHCf would like ~1.5/nb
 - LHCf requests low pileup of 0.02 in p-O (update: previously 0.01)
 - ALICE wants low pileup of 0.1-0.2

● _> 🎇

Target: about one week, low luminosity

- Most efficient: re-use machine cycle of the previous Pb-Pb
 - O-O run would be done at the same energy per charge as Pb-Pb
- Use pilot beams with single injections (staying below 3×10¹¹ charges per beam)
 - Minimizes validation time

• Beam parameters at LHC (gu)estimated

- Only previous CERN-experience with O-beam: LEIR commissioning in 2005
- Very hard to estimate what we will get in 2024 in the LHC
- Some options for intensity in collision and filling schemes,
 - 2E9 O/bunch, 18 bunches (12 collisions per experiment), 2.3 um emittance
 - 1.5E9 O/bunch, 21 bunches (14 collisions per experiment), 2.3 um emittance
- Simulated luminosity performance for 6.8 Z TeV or 6.37 Z TeV beam energy

Performance with oxygen

- Simulations indicate we can reach
 - O-O targets in about a day, with 1-2 long fills
 - p-O targets in about 2.5 days
 - Large uncertainty applies!
- Including commissioning time and contingency, could need 6-8 days
 - Oxygen run seems a priori feasible and compatible with targets, but will certainly also be challenging
- Some work still remains: optimize machine configuration and filling schemes, study transmutation effect

Simulated performance O-O

Dashed lines: 21 bunches with 1.5×10^9 O/bunch , Solid lines: 18 bunches with 2×10^9 O/bunch More details: See <u>IPAC'21 paper</u>

Outline

- Introduction and general plan for heavy-ion runs
- LHC machine configuration in Run 3-4
- Performance estimates for Pb-Pb and p-Pb
- Oxygen pilot run
- Conclusions

Conclusions

- Heavy-ion operation will continue in Run 3-4 with Pb-Pb and p-Pb
 - In Run 3, operational periods at the end of 2023, 2024, 2025
 - Pb-Pb operation, p-Pb to be slotted in depending on Pb-Pb results

• Pb-Pb run foreseen for 2023

- 27 days of physics, 4 days of commissioning scheduled
 - Commissioning seems tight could consider commissioning optics already with protons as in 2018
- New machine scenario for Run 3-4 relies on several recent upgrades
 - Slip-stacked 50 ns beams, new crystal collimators, dispersion suppressor collimators in IR2
 - Significant performance increase targeting full HL-LHC performance already in Run 3
- Estimated performance for typical run (with 27 days of physics as in 2023)
 - Pb-Pb: 2.4-3.6 nb⁻¹ in ATLAS/ALICE/CMS, 0.3-0.5 nb⁻¹ in LHCb
 - Could envisage to increase luminosity further through β^* , crossing angle, levelling targets need further feasibility studies

1-week oxygen pilot run foreseen for 2024

- Re-use existing Pb cycle, setup beam intensity
- potential to reach experiments' targets in 6-8 days, but large uncertainties apply

Thanks for the attention!