Supersymmetric Properties of Hadron Physics, Color Transparency,

Intrinsic Heavy Quarks, and other Novel Features of QCD

Fixed $\tau=t+z / c$

$|p>=| u[u d]>$ quark-diquark cluster

INT October Io, 2022 Light-Front Holography

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

$$
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N_{-}^{7-}
$$

Same slope

$$
N \frac{1}{2}^{5+}(1680)
$$

$$
\frac{M_{\text {meson }}^{2}}{M_{\text {nucleon }}^{2}}=\frac{n+L_{M}}{n+L_{B}+1}
$$

Meson-Baryon
Mass Degeneracy for $L_{M}=L_{B}+1$

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass! Meson

Baryon

$\phi_{M}, L_{B}+1 \quad \underset{\substack{B+, \\ \text { Baryon }}}{\psi_{B}}$

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

Tetraquark: diquark + antidiquark

$$
\begin{array}{r}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{array}
$$

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Superconformal Algebra 4 -Plet

$$
\begin{gathered}
R_{\lambda}^{\dagger} \underset{(q)}{\bar{q} \rightarrow(q)} \overline{\overline{3}}_{C}
\end{gathered}
$$

Vector ()+ Scalar [] Diquarks

$\lambda=\kappa^{2}$
de Tèramond, Dosch, Lorce', sjb

$$
m_{u}=m_{d}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
$$

Fit to the slope of Regge trajectories, including radial excitations
Same Regge Slope for Meson, Baryons:
Supersymmetric feature of hadron physics

Challenge: Compute Hadron Structure,
 Spectroscopy, and Dynamics from QCD!

- Color Confinement
- Origin of the QCD Mass Scale
- Meson and Baryon Spectroscopy
- Exotic States: Tetraquarks, Pentaquarks, Gluonium,
- Universal Regge Slopes: n, L, Mesons and Baryons
- Almost Massless Pion: GMOR Chiral Symmetry Breaking $M_{\pi}^{2} f_{\pi}^{2}=-\frac{1}{2}\left(m_{u}+m_{d}\right)\langle\bar{u} u+\bar{d} d\rangle+\mathcal{O}\left(\left(m_{u}+m_{d}\right)^{2}\right)$
- QCD Coupling at all Scales $\alpha_{s}\left(Q^{2}\right)$
- Eliminate Scale Uncertainties and Scheme Dependence
$\mathscr{L}_{Q C D} \rightarrow \psi_{n}^{H}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad$ Valence and Higher Fock States

Supersymmetry in QCD

- A hidden symmetry of Color $\operatorname{SU}(3) \mathbf{c}$ in hadron physics:
- Relates meson and baryon spectroscopy
- QCD: No squarks or gluinos!
- Emerges from Light-Front Holography and Super-Conformal Algebra
- Color Confinement
de Téramond, Dosch, Lorcé, sjb
Input: one fundamental mass scale

$$
\kappa=\sqrt{\lambda}=0.523 \pm 0.024 \mathrm{GeV}
$$

Light-Front Holography: First Approximation to QCD

- Color Confinement, Analytic form of confinement potential
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-FubiniFurlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincarè Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in \mathbf{n}, \mathbf{L}
- Supersymmetric 4-Plet: Meson-Baryon-Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level: Many Phenomenological Tests
- Systematically improvable: Basis LF Quantization (BLFQ)

> Supersymmetric Features of Hadron Physics
> from Superconformal Algebra
> and Light-Front Holography

Comparison for $x q(x)$ in the proton from LFHQCD (red bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6] (cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD results are evolved from the initial scale $\mu_{0}=1.06 \pm 0.15 \mathrm{GeV}$.

Universality of Generalized Parton Distributions in Light-Front Holographic QCD
Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur PHYSICAL REVIEW LETTERS 120, 182001 (2018)

Bjorken sum rule defines effective charge

$\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any $p Q C D$ scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\mathbf{I}}$

Bjorken sum $\Gamma_{1}{ }^{\mathrm{p}-\mathrm{n}}$ measurement:

$m_{\rho}=\sqrt{2} \kappa$

$$
m_{p}=2 \kappa
$$

All-Scale QCD Coupling

Deur, de Tèramond, sjb Fit to $\mathrm{Bj}+\mathrm{DHG}$ Sum Rules:

Running Coupling from AdS/QCD

Bjorken sum rule:

$$
\frac{\alpha_{g_{1}}\left(Q^{2}\right)}{\pi}=1-\frac{6}{g_{A}} \int_{0}^{1} d x g_{1}^{p-n}\left(x, Q^{2}\right)
$$

Effective coupling in LFHQCD (valid at low- Q^{2})

$$
\alpha_{g_{1}}^{A d S}\left(Q^{2}\right)=\pi \exp \left(-Q^{2} / 4 \kappa^{2}\right)
$$

Imposing continuity for α and its first derivative
A. Deur, S.J. Brodsky, G.F. de Téramond, Phys. Lett. B 750, 528 (2015); J. Phys. G 44, 105005 (2017).

Analytic, defined at all scales, IR Fixed Point

Instant Form
P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

Dírac'sAmazing Idea:
The "Front Form"

Evolve in light-front time!

Casual, Boost Invariant!

Bound States in Relativistic Quantum Field Theory:
Light-Front Wavefunctions Dirac's Front Form: Fixed $\tau=t+z / c$

Fixed $\tau=t+z / c$

$$
\psi\left(\mathfrak{X}_{i},{\overrightarrow{k_{\perp}}}_{i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian

LF Wavefunction: off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Antu-de Sitter Space

$$
\ell p \rightarrow \ell^{\prime} X
$$

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& \quad \psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right)
\end{aligned}
$$

Dirac: Front Form

Measurements of hadron LF wavefunction are at fixed $\mathbf{L F}$ time Fixed $\tau=t+z / c$

Like aflash photograph

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Invariant under boosts! Independent of P^{11}

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& P^{+}, \vec{P}_{\perp} \\
& \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>\text { Eigenstate of LHAMAItonian } \\
& \mid p, J_{z}>=\vec{k}_{\perp i}=\overrightarrow{0} .
\end{aligned}
$$

LFWF: Projection on free Fock state: $\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)=\langle p \mid n\rangle$
Invariant under boosts! Independent of P^{M}
Structure Function is square of LFWFs, summed over all Fock states. Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

$$
\begin{aligned}
& q^{\mu}=\left(q^{+}, \vec{q}_{\perp}, q^{-}\right)=\left(0, \vec{q}_{\perp}, \frac{q_{\perp}^{2}}{P^{+}}\right) \\
& q_{\perp}^{2}=Q^{2}=-q^{2}
\end{aligned}
$$

Fixed $\tau=t+z / c$

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

loffe Time: \tilde{z} Third spatial LF coordinate. Fourier Transform of x in LFWFs

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Front Form

Drell \&Yan, West Exact LF formula!

Drell, sjb

Transverse size $\propto \frac{1}{Q}$

$$
\begin{array}{ll}
\frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times & \text { Drell, sjb } \\
{\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\llcorner *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
\mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} & \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{array}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment - ->
Nonzero orbital quark angular momentum

Dae Sung Hwang, Bo-Qiang Ma, Ivan Schmidt, sjb

Terayev, Okun: $\mathcal{B}(0)$ Must vanish because of Equivalence Theorem

$$
B(0)=0 \quad \text { Each Fock State }
$$

Vanishing Anomalous gravitomagnetic moment $B(0)$

$x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}$
Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$

QCD predicts Intrinsic
 d Heavy Quarks at high x!

Perturbative contribution

Minimal off-shellness
Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$

Hoyer, Peterson, Sakai, Collins, Ellis, Gunion, Mueller, sjb Polyakov, et al.

Intrinsic Chevrolets at the SSC

Stanley J. Brodsky (SLAC), John C. Collins (IIT, Chicago and Argonne), Stephen
D. Ellis (Washington U., Seattle), John F. Gunion (UC, Davis), Alfred H.

Mueller (Columbia U.) (Aug, 1984)
Published in: , Snowmass Summer Study 1984:0227 • Contribution to: 1984
DPF Summer Study on the Design and Utilization of the Superconducting
Super Collider (SSC) (Snowmass 84), 227
Quantum Mechanics Uncertainty Principle on the Light Front: Arbitrarily off-shell in invariant mass squared $\mathcal{M}^{2}=\sum_{i} \frac{m_{i}^{2}+\vec{k}_{\perp i}^{2}}{x_{i}}$ at fixed LF time $\tau=t+z / c$

Intrinsic Heavy Quark States

Stanley J. Brodsky (SLAC), C. Peterson (SLAC), N. Sakai (Fermilab) (Jan, 1981)
Published in: Phys.Rev.D 23 (1981) 2745

The Intrinsic Charm of the Proton

S.J. Brodsky (SLAC), P. Hover (Nordita), C. Peterson (Nordita), N.

Sakai (Nordita) (Apr, 1980)
42 years ago!
Published in: Phys.Lett.B 93 (1980) 451-455

Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

$$
p p \rightarrow Z+c+X \quad g+c \rightarrow Z+c
$$

$Z+c$: results

- Clear enhancement in highest- y bin
- Consistent with expected effect from |uudc $\bar{c}\rangle$ component predicted by LFQCD
- Inconsistent with No-IC theory at ~ 3 standard deviations
- Global PDF analysis required to determine true significance

QCD physics measurements at the LHCb experiment

Coalesece of comovers produces high Xf heavy hadrons

High XF hadrons combine most of the comovers, fewest spectators

$$
\psi_{H}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

LFWF maximum at equal rapidity

maximum at minimal invariant mass

X \rightarrow Asymmetries of leading hadrons
Spectator counting rules $\quad \frac{d N}{d x_{F}} \propto\left(1-x_{F}\right)^{2 n_{\text {spect }}-1}$
Coalescence of Comoving Charm and Valence Quarks
Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High $x_{F} \quad$ Vogt, sjb
Stan Brodsky

Supersymmetric Features of Hadron Physics
from Superconformal Algebra and Light-Front Holography

|9 April 202|

Barger, Halzen, Keung PRD 25 (I98I)

Fixed $\tau=t+z / c$
Probability $P_{u u d c \bar{c}} \sim \log \frac{Q^{2}+M_{c}^{2}}{\Lambda_{Q C D}^{2}}$
low $x: c(x) \sim(1-x) g(x) \sim(1-x)^{4},(1-x)^{6}$
Low e extrinsic charm!

Proton 5-quark Fock State: Intrinsic Heavy Quarks

$x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}$
Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$

QCD predicts Intrinsic
Heavy Quarks athigh x!

Minimal offshellness!

Hoyer, Peterson, Sakai, Collins, Ellis, Gunion, Mueller, sjb Polyakov, et al.

Cut of Proton Self Energy:
QCD predicts
Intrinsic Heavy Quarks!

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Hoyer, Peterson, Sakai, Collins, Ellis, Gunion, Mueller, sjb Polyakov, et al.

BHPS: Hoyer, Peterson, Sakai, sjb

$<p\left|\frac{G_{\mu \nu}^{3}}{m_{Q}^{2}}\right| p>$ vs. $<p\left|\frac{F_{\mu \nu}^{4}}{m_{\ell}^{4}}\right| p>$
$\mid u u d c \bar{c}>$ Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_{\varrho C D}^{2}}{M_{Q}^{2}}$
$\mid e^{+} e^{-} \ell^{+} \ell^{-}>$Fluctuation in Positronium QED: Probability $\frac{\sim\left(m_{e} \alpha\right)^{4}}{M_{\ell}^{+}}$

OPE derivation - M.Polyakov et al.
$c \bar{c}$ in Color Octet

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

$$
\hat{x}_{i}=\frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}
$$ mentum fractions

High x charm!

Charm at Threshold
Action Principle: Minimum KE, maximal potential

DGLAP / Photon-Gluon Fusion: factor of 30 too small
Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

G. Lykasov, et al.

CHARM QUARK DISTRIBUTIONS IN PROTON

Charm quark distributions within the BHP̈S model.

D0
Measurement of $\gamma+\boldsymbol{b}+\boldsymbol{X}$ and $\gamma+\boldsymbol{c}+\boldsymbol{X}$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

$p \bar{p} \rightarrow \gamma+Q+X$
$\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)}$
Ratio is insensitive to gluon PDF, scales

Consistent with $\frac{m_{c}^{2}}{m_{b}^{2}}$ relative suppression of intrinsic bottom

$$
c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\mathrm{intrinsic}}
$$

HERMES: Two components to $s\left(x, Q^{2}\right)$!

$$
s\left(x, Q^{2}\right)=s\left(x, Q^{2}\right)_{\text {extrinsic }}+s\left(x, Q^{2}\right)_{\text {intrinsic }}
$$

Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} p p \rightarrow J / \psi X$

CERN NA3

- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \wedge_{c} X$ ISR
- High $x_{F} p p \rightarrow \wedge_{b} X$

Intrinsic Bottom!
Zichichi, Cifarelli, et al.

- High $x_{F} p p \rightarrow$ 三(ccd) X (SELEX)

FermiLab

IC Structure Function: Critical Measurement for EIC
Many interesting spin, charge asymmetry, spectator effects

Properties of Non-Perturbative Five-Quark Fock-State

- Dominant configuration: mininum offshell, same rapidity
- Heavy quarks have most of the LF momentum $\quad<x_{Q}>\propto \sqrt{m_{Q}^{2}+k_{\perp}^{2}}$ Fixed $\tau=t+z / c$
- Correlated with proton quantum numbers
- Duality with meson-baryon channels

- Strangeness, charm asymmetry at $\boldsymbol{x}>\boldsymbol{0} . \boldsymbol{I}$

$$
s_{p}(x) \neq \bar{s}_{p}(x) \quad c_{p}(x) \neq \bar{c}_{p}(x)
$$

Production of Two Charmonia at High X_{F}

R. Vogt, sjb

.The $\psi \psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J / ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^{-} N$ data at 150 and $280 \mathrm{GeV} / c$ [1]. The $x_{\phi \psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J / ψ 's is twice the number of pairs.

NA3 Data

Double J / ψ Production

$\pi A \rightarrow J / \psi J / \psi X$
R. Vogt, sjb

The probability distribution for a general n-particle intrinsic $c \bar{c}$ Fock state as a function of x and \boldsymbol{k}_{T} is written as

$$
\begin{aligned}
& \frac{d P_{\mathrm{ic}}}{\prod_{i=1}^{n} d x_{i} d^{2} k_{T, i}} \\
& \quad=N_{n} \alpha_{s}^{4}\left(M_{c \bar{c}}\right) \frac{\delta\left(\sum_{i=1}^{n} k_{T, i}\right) \delta\left(1-\sum_{i=1}^{n} x_{i}\right)}{\left(m_{h}^{2}-\sum_{i=1}^{n}\left(m_{T, i}^{2} / x_{i}\right)\right)^{2}},
\end{aligned}
$$

Excludes PYTHIA 'color drag' model

800 GeV p-A (FNAL) $\sigma_{\mathrm{A}}=\sigma_{\mathrm{p}} * \mathbf{A}^{\alpha}$
PRL 84, 3256 (2000); PRL 72, 2542 (1994)

Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) , U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp.

IC Explains large excess of quarkonia at large \mathbf{x}_{F}, A-dependence
E866/NuSea data for the nuclear A dependence of J / ψ and ψ^{\prime} hadroproduction.

Color-Opaque IC Fock state
Kopeliovich, Schmidt, Soffer, sjb interacts on nuclear front surface

Scattering on front-face nucleon produces color-singlet cippair

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{2 / 3} \times \frac{d \sigma}{d x_{F}}(p N \rightarrow J / \psi X)
$$

J. Badier et al, NA3

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{1} \frac{d \sigma_{1}}{d x_{F}}+A^{2 / 3} \frac{d \sigma_{2}}{d x_{F}}
$$

$A^{2 / 3}$ component

High xF:

Consistent with
color -octet intrinsic
charm

Excess beyond conventional gluon-splitting PQCD subprocesses

Intrinsic Charm Mechanism for Inclusive High - X_{F} Higgs Production

Goldhaber, Kopeliovich,
Also: intrinsic bottom, top Schmidt, sjb

Higgs can have 8o\% of Proton Momentum!
New search strategy for Higgs

Intrinsic Heavy Quark Contribution to Inclusive Higgs Production

Measure $H \rightarrow Z Z^{*} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$.

Constraints on charm-anticharm asymmetry in the nucleon from lattice QCD

Raza Sabbir Sufian ${ }^{\text {a }}$, Tianbo Liu ${ }^{\text {a }}$, Andrei Alexandru ${ }^{\text {b,c }}$, Stanley J. Brodsky ${ }^{\text {d }}$, Guy F. de Téramond ${ }^{\text {e }}$, Hans Günter Dosch ${ }^{\text {f }}$, Terrence Draper ${ }^{g}$, Keh-Fei Liu ${ }^{\text {g , Yi-Bo Yang }}{ }^{\text {h }}$
${ }^{a}$ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
${ }^{b}$ Department of Physics, The George Washington University, Washington, DC 20052, USA
${ }^{c}$ Department of Physics, University of Maryland, College Park, MD 20742, USA
${ }^{d}$ SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
${ }^{e}$ Laboratorio de Física Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
${ }^{f}$ Institut für Theoretische Physik der Universität, D-69120 Heidelberg, Germany ${ }^{g}$ Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
${ }^{h}$ CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

We present the first lattice QCD calculation of the charm quark contribution to the nucleon electromagnetic form factors $G_{E, M}^{c}\left(Q^{2}\right)$ in the momentum transfer range $0 \leq Q^{2} \leq 1.4 \mathrm{GeV}^{2}$. The quark mass dependence, finite lattice spacing and volume corrections are taken into account simultaneously based on the calculation on three gauge ensembles including one at the physical pion mass. The nonzero value of the charm magnetic moment $\mu_{M}^{c}=-0.00127(38)_{\text {stat }}(5)_{\text {sys }}$, as well as the Pauli form factor, reflects a nontrivial role of the charm sea in the nucleon spin structure. The nonzero $G_{E}^{c}\left(Q^{2}\right)$ indicates the existence of a nonvanishing asymmetric charm-anticharm sea in the nucleon. Performing a nonperturbative analysis based on holographic QCD and the generalized Veneziano model, we study the constraints on the $[c(x)-\bar{c}(x)]$ distribution from the lattice QCD results presented here. Our results provide complementary information and motivation for more detailed studies of physical observables that are sensitive to intrinsic charm and for future global analyses of parton distributions including asymmetric charm-anticharm distribution.

Keywords: Intrinsic charm, Form factor, Parton distributions, Lattice QCD, Light-front holographic QCD, JLAB-THY-20-3155, SLAC-PUB-17515

The distribution function $x[c(x)-\bar{c}(x)]$ obtained from the LFHQCD formalism using the lattice QCD input of charm electromagnetic form factors $G_{E, M}^{c}\left(Q^{2}\right)$. The outer cyan band indicates an estimate of systematic uncertainty in the $x[c(x)-\bar{c}(x)]$ distribution obtained from a variation of the hadron scale κ_{c} by 5%.

I.A. Schmidt, V. Lyubovitskij, sjb

Interference of Intrinsic and Extrinsic Heavy Quark Amplitudes

Interference predicts $Q(x) \neq \bar{Q}(x)$
$\frac{d \sigma}{d y d p_{T}^{2}}\left(p p \rightarrow D^{+} c \bar{d} X\right) \neq \frac{d \sigma}{d y d p_{T}^{2}}\left(p p \rightarrow D^{-} \bar{c} d X\right)$
QED Analog: J. Gillespie, sjb (I968)
I.A. Schmidt, V. Lyubovitskij, sjb

$$
e^{-}+p \rightarrow e^{-}+Q+\bar{Q}+X
$$

Interference of DGLAP and Intrinsic Heavy Quark Amplitudes
Also: Novel Asymmetry odd in transverse momentum but CP invariant

$$
\begin{aligned}
& \psi_{Q / \bar{Q} ;+\frac{1}{2}}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=-\left[\psi_{Q / \bar{Q} ;-\frac{1}{2}}^{\downarrow}\left(x, \mathbf{k}_{\perp}\right)\right]^{\dagger}=\frac{\alpha_{s} C_{F}}{2 \pi} \frac{k^{1}-i k^{2}}{\kappa} x(1-x) \varphi^{(2)}\left(x, \mathbf{k}_{\perp}\right) \quad\left(L_{z}=-1\right), \\
& \psi_{Q / \bar{Q} ;+\frac{1}{2}}^{\dagger}\left(x, \mathbf{k}_{\perp}\right)=+\left[\psi_{-1+\frac{1}{2}}^{\downarrow}\left(x, \mathbf{k}_{\perp}\right)\right]^{\dagger}=\frac{\alpha_{s} C_{F}}{2 \pi} x(1-x) \varphi^{(1)}\left(x, \mathbf{k}_{\perp}^{2}\right) \quad\left(L_{z}=0\right), \\
& \psi_{Q / \bar{Q} ;-\frac{1}{2}}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=-\left[\psi_{Q / \bar{Q} ;+\frac{1}{2}}^{\downarrow}\left(x, \mathbf{k}_{\perp}\right)\right]^{\dagger}=-\frac{\alpha_{s} C_{F}}{2 \pi} \frac{k^{1}+i k^{2}}{\kappa} x(1-x)^{2} \varphi^{(2)}\left(x, \mathbf{k}_{\perp}^{2}\right) \quad\left(L_{z}=1\right),
\end{aligned}
$$

Predict charm hadron asymmetries
$\frac{d \sigma}{d x_{F} d p_{T}^{2}}\left(p p \rightarrow D^{+}(c \bar{d}) X\right)>$
$\frac{d \sigma}{d x_{F} d p_{T}^{2}}\left(p p \rightarrow D^{-}(\bar{c} d) X\right)$
at high p_{T} and high x_{F}

Properties of Non-Perturbative Five-Quark Fock-State

- Dominant configuration: mininum offshell, same rapidity
- Heavy quarks have most of the LF momentum $\quad<x_{Q}>\propto \sqrt{m_{Q}^{2}+k_{\perp}^{2}}$ Fixed $\tau=t+z / c$
- Correlated with proton quantum numbers
- Duality with meson-baryon channels

- Strangeness, charm asymmetry at $\boldsymbol{x}>\boldsymbol{0} . \boldsymbol{I}$

$$
s_{p}(x) \neq \bar{s}_{p}(x) \quad c_{p}(x) \neq \bar{c}_{p}(x)
$$

Intrinsic Heavy Quark Phenomena A Novel Property of QCD

Fixed $\tau=t+z / c$

Non-perturbative QCD

$$
\left|p>=C_{\text {valence }}\right| u[u d]>+C_{\text {intrinsic }} \mid \bar{c}[c u][u d]>
$$

$[d u]_{\overline{3}_{C}}$ and $[c u]_{\overline{3}_{C}} J=0$ diquark dominance
$c(x) \neq \bar{c}(x)$
$\bar{c}(x)$ carries proton spin in the $\mid[u d][u c] \bar{c}>$ intrinsic charm Fock state.

Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State!

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{S}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production at high X_{F} (Kopeliovich, Schmidt, Soffer, Goldhaber, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests (Gardner, Karliner, ..)

Review: G. Lykasov, et al

Color transparency:fundamental prediction of QCD

- Not predicted by strongly interacting hadronic picture \rightarrow arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_{A}, as a function of the momentum transfer, Q^{2}

$$
T_{A}=\frac{\sigma_{A}}{A \sigma_{N}} \begin{aligned}
& \text { (nuclear cross section) } \\
& \text { (free nucleon } \\
& \text { cross section) }
\end{aligned}
$$

G. de Teramond, sjb

Color Transparency verified for π^{+}and ρ electroproduction

Hall C E01-107 pion electro-production

$$
\mathrm{A}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{+}\right)
$$

B.Clasie et al. PRL 99:242502 (2007)
X. Qian et al. PRC81:055209 (2010)

$$
T_{A}=\frac{\frac{d \sigma}{d Q^{2}}\left(p A \rightarrow \pi^{+} X\right)}{\frac{d \sigma}{d Q^{2}}\left(p p \rightarrow \pi^{+} X\right)}
$$

CLAS E02-110 rho electro-production A(e, $\left.e^{\prime} \rho^{0}\right)$

L. El Fassi et al. PLB 712,326 (2012)

$$
T_{A}=\frac{\frac{d \sigma}{d Q^{2}}\left(p A \rightarrow \rho^{0} X\right)}{\frac{d \sigma}{d Q^{2}}\left(p p \rightarrow \rho^{0} X\right)}
$$

$$
\begin{gathered}
F\left(q^{2}\right)={ }_{n}^{n} \sum_{n} \prod_{i=1}^{\text {Drell-Yan-West Formula in Impact Space }} \\
\sum_{j} \int e_{j} \psi_{n}^{*}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{n}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right) \\
2(2 \pi)^{3} \\
\sum_{j i}^{n} \\
=\sum_{n} \prod_{i=1}^{n-1} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{\perp j} \mathbf{k}_{\perp} \int d^{2} \mathbf{b}_{\perp j} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{i=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2}\right. \\
\sum_{i=1}^{n} x_{i}=1 \text { and } \sum_{i=1}^{n} \mathbf{b}_{\perp i}=0 \\
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \mathbf{a}_{\perp} e^{i \mathbf{a}_{\perp} \cdot \mathbf{q}_{\perp}} q\left(x, \mathbf{a}_{\perp}\right)
\end{gathered}
$$

where $\mathbf{a}_{\perp}=\sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}$ is the x-weighted transverse position coordinate of the $n-1$ spectators.

$$
\begin{gathered}
F\left(q^{2}\right)= \\
\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} \int d^{2} \mathbf{b}_{\perp j} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2} \\
\sum_{i} x_{i}=1
\end{gathered}
$$

Color Transparency is controlled by the transverse-spatial size \vec{a}_{\perp}^{2} and its dependence on the momentum transfer $Q^{2}=-t$:
The scale Q_{τ}^{2} required for Color Transparency grows with twist τ

Light-Front Holography:

$$
\left\langle\mathbf{a}_{\perp}^{2}(t)\right\rangle_{\tau}=\frac{1}{\lambda} \sum_{j=1}^{\tau-1} \frac{1}{j-\alpha(t)}
$$

For large Q^{2} :

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}} .
$$

$$
<\tilde{\mathbf{a}}_{\perp}^{2}(x)>=\frac{\int d^{2} \mathbf{a}_{\perp} \mathbf{a}_{\perp}^{2} q\left(x, \mathbf{a}_{\perp}\right)}{\int d^{2} \mathbf{a}_{\perp} q\left(x, \mathbf{a}_{\perp}\right)}
$$

At large light-front momentum fraction x , and equivalently at large values of Q^{2}, the transverse size of a hadron behaves as a point-like color-singlet object. This behavior is the origin of color transparency in nuclei.

Although the dependence of the transverse impact area as a function of x is universal, the behavior in Q^{2} depends on properties of the hadron, such as its twist.

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}}
$$

Mean transverse size as a function of Q and Twist

Universality of Generalized Parton Distributions in Light-Front Holographic QCD

Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Alexandre Deur, SJB (HLFHS Collaboration)

$$
\begin{aligned}
& F_{\tau}(t)=\frac{1}{N_{\tau}} B\left(\tau-1, \frac{1}{2}-\frac{t}{4 \lambda}\right), \\
& N_{\tau}=B(\tau-1,1-\alpha(0)) \\
& B(u, v)=\int_{0}^{1} d y y^{u-1}(1-y)^{v-1}=[\Gamma(u) \Gamma(v) / \Gamma(u+v)] \\
& F_{\tau}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{M_{0}^{2}}\right)\left(1+\frac{Q^{2}}{M_{1}^{2}}\right) \cdots\left(1+\frac{Q^{2}}{M_{\tau-2}^{2}}\right)} \\
& F_{\tau}\left(Q^{2}\right) \sim\left(\frac{1}{Q^{2}}\right)^{\tau-1} \\
& M_{n}^{2}=4 \lambda\left(n+\frac{1}{2}\right), n=0,1,2, \ldots, \tau-2, \quad M_{0}=m_{\rho} \\
& \sqrt{\lambda}=\kappa=\frac{m_{\rho}}{\sqrt{2}}=0.548 \mathrm{GeV} \quad \frac{1}{2}-\frac{t}{4 \lambda}=1-\alpha_{R}(t) \\
& \alpha_{R}(t)=\rho \text { Regge Trajectory }
\end{aligned}
$$

Transparency scale Q increases with twist
$\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle=-\frac{4}{F\left(Q^{2}\right)} \frac{d}{d Q^{2}} F\left(Q^{2}\right)$
$Q^{2} \mathrm{GeV}^{2}$
Light-Front Holography

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle=-\frac{4}{F\left(Q^{2}\right)} \frac{d}{d Q^{2}} F\left(Q^{2}\right)
$$

Proton has equal probability for $\tau=3$ and $\tau=4$

Color Transparency and Light-Front Holography

- Essential prediction of QCD
- LF Holography: Spectroscopy, dynamics, structure
- Transverse size predicted by LF Holography as a function of Q
- Q scale for CT increases with twist, number of constituents
- Two-Stage Proton Transparency: Equal probability L=o,i
- No contradiction with present experiments
$Q_{0}^{2}(p) \simeq 18 \mathrm{GeV}^{2}$ vs. $Q_{0}^{2}(\pi) \simeq 4 \mathrm{GeV}^{2}$ for onset of color transparency in ${ }^{12} \mathrm{C}$

Two-Stage Color Transparency

$$
14 G e V^{2}<Q^{2}<20 G e V^{2}
$$

If Q^{2} is in the intermediate range, then the twist-3 state will propagate through the nuclear medium with minimal absorption, and the protons which survive nuclear absorption will only have $\mathrm{L}=0$ (twist-3).

The twist-4 $\mathrm{L}=1$ state which has a larger transverse size will be absorbed.
Thus 50% of the events in this range of Q^{2} will have full color transparency and 50% of the events will have zero color transparency $(\mathrm{T}=0)$.

The ep $\rightarrow \mathrm{e}^{\prime} \mathrm{p}^{\prime}$ cross section will have the same angular and Q^{2} dependence as scattering of the electron on an unphysical proton which has no Pauli form factor.

$$
Q^{2}>20 G e V^{2}
$$

However, if the momentum transfer is increased to $\mathrm{Q}^{2}>20 \mathrm{GeV}^{2}$, all events will have full color transparency, and the ep $\rightarrow \mathrm{e}^{\prime} \mathrm{p}^{\prime}$ cross section will have the same angular and Q^{2} dependence as scattering of the electron on a physical proton eigenstate, with both Dirac and Pauli form factor components.

CLAS E02-110 rho electro-production

A $\left(\mathrm{e}, \mathrm{e}^{\prime} \rho^{0}\right)$

[^0]$<a_{\perp}^{2}\left(Q^{2}=4 G e V^{2}\right)>_{\tau=2} \simeq<a_{\perp}^{2}\left(Q^{2}=14 G e V^{2}\right)>_{\tau=3} \simeq<a_{\perp}^{2}\left(Q^{2}=22 G e V^{2}\right)>_{\tau=4} \simeq 0.24 \mathrm{fm}^{2}$
5% increase for T_{π} in ${ }^{12} C$ at $Q^{2}=4 G e V^{2}$ implies 5% increase for T_{p} at $Q^{2}=18 G e V^{2}$

Color transparency fundamental prediction of QCD

- Not predicted by strongly interacting hadronic picture \rightarrow arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_{A}, as a function of the momentum transfer, Q^{2}

Two-Stage Color Transparency for Proton

Color Transparency and Light-Front Holography

- Essential prediction of QCD
- LF Holography: Spectroscopy, dynamics, structure
- Transverse size predicted by LF Holography as a function of Q
- Q scale for CT increases with twist, number of constituents
- Two-Stage Proton Transparency: Equal probability L=O,I
- No contradiction with present experiments
$Q_{0}^{2}(p) \simeq 18 G e V^{2}$ vs. $Q_{0}^{2}(\pi) \simeq 4 G e V^{2}$ for onset of color transparency in ${ }^{12} C$ Feynman domain also incorporated

Supersymmetry in QCD

- A hidden symmetry of Color $\operatorname{SU}(3) \mathrm{c}$ in hadron physics
- QCD: No squarks or gluinos!
- Emerges from Light-Front Holography and Super-Conformal Algebra
- Color Confinement
- Massless Pion in Chiral Limit

> de Téramond, Dosch, Lorcé, sjb Light-Front Holography

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

$$
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N_{-}^{7-}
$$

Same slope

$$
N \frac{1}{2}^{5+}(1680)
$$

$$
\frac{M_{\text {meson }}^{2}}{M_{\text {nucleon }}^{2}}=\frac{n+L_{M}}{n+L_{B}+1}
$$

Meson-Baryon
Mass Degeneracy for $L_{M}=L_{B}+1$

Superconformal Algebra
Four-Plet Representations
Bosons, Fermions with Equal Mass! Meson

Baryon

$\phi_{M}, L_{B}+1 \quad \underset{\substack{B+\\ \text { Baryon }}}{\psi_{B}}$

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

Tetraquark:
diquark + antidiquark

$$
\begin{array}{r}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{array}
$$

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Challenge: Compute Hadron Structure,
 Spectroscopy, and Dynamics from QCD!

- Color Confinement
- Origin of the QCD Mass Scale
- Meson and Baryon Spectroscopy
- Exotic States: Tetraquarks, Pentaquarks, Gluonium,
- Universal Regge Slopes: n, L, Mesons and Baryons
- Almost Massless Pion: GMOR Chiral Symmetry Breaking $M_{\pi}^{2} f_{\pi}^{2}=-\frac{1}{2}\left(m_{u}+m_{d}\right)\langle\bar{u} u+\bar{d} d\rangle+\mathcal{O}\left(\left(m_{u}+m_{d}\right)^{2}\right)$
- QCD Coupling at all Scales $\alpha_{s}\left(Q^{2}\right)$
- Eliminate Scale Uncertainties and Scheme Dependence
$\mathscr{L}_{Q C D} \rightarrow \psi_{n}^{H}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad$ Valence and Higher Fock States

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
H_{L F}^{i n t}: \text { Matrix in Fock Space } \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
\end{gathered}
$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

$H_{L F}^{i n t}$

Light-Front QCD
Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

DLCQ: Solve QCD $(1+1)$ for any quark mass and flavors
Hornbostel, Pauli, sib

Minkowski space; frame-independent, no fermion doubling; no ghosts trivial vacuum

Light-Front QCD

Fixed $\tau=t+z / c$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Confining $A d S / Q C D$ potential!

Semiclassical first approximation to QCD
Sums an infinite \# diagrams

AdS/QCD

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=M^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Single variable ζ

Unique

Confinement Potential!
Conformal symmetry of the action

Confinement scale:

- de Alfaro, Fubini, Furlan: $\kappa \simeq 0.5 \mathrm{GeV}$

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

GeV units external to QCD: Only Ratios of Masses Determined

Dülaton-Modified AdS

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement in z
- Introduces confinement scale κ
- Uses AdS $_{5}$ as template for conformal theory

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

Positive-sign dilaton • de Teramond, sjb AdS Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dulaton-Modified AdS ${ }_{5}$
Identical to Single-Variable Light-Front Bound State Equation in ζ !

$$
z \longleftrightarrow \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Ligbt-Front Holograpboy

Light-Front Holographic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for $E M$ and gravitational current matrix elements and identical equations of motion

Holographic Mapping of AdS Modes to QCD LFWFs

Drell-Yan-West: Form Factors are

- Integrate Soper formula over angles: Convolution of LFWFs

$$
F\left(q^{2}\right)=2 \pi \int_{0}^{1} d x \frac{(1-x)}{x} \int \zeta d \zeta J_{0}\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x, \zeta)
$$

with $\widetilde{\rho}(x, \zeta)$ QCD effective transverse charge density.

- Transversality variable

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

- Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$
\int_{0}^{1} d x J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)=\zeta Q K_{1}(\zeta Q)
$$

the solution for $J(Q, \zeta)=\zeta Q K_{1}(\zeta Q)$!

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \\
\text { Meson Equation } \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J} \\
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \\
\mathbf{s}=\mathbf{0}, \mathrm{P}=+ \\
\text { Same } \kappa!
\end{gathered}
$$

$S=0$, I= I Meson is superpartner of $S=I / 2$, I=| Baryon Meson-Baryon Degeneracy for $L_{M}=L_{B}+1$

$M^{2}(n, L, S)=4 \kappa^{2}(n+L+S / 2)$

Supersymmetry across the light and heavy-light spectrum

Supersymmetry across the light and heavy-light spectrum

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form $V(r)=C r$ for heavy quarks

Harmonic Oscillator $U(\zeta)=\kappa^{4} \zeta^{2}$ LF Potential for relativistic light quarks

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Mesons: GreenSquare, Baryons(BlueTriangle), Tetraquarks(RedCircle)

Universal Hadronic Decomposition

$$
\frac{\mathcal{M}_{H}^{2}}{\kappa^{2}}=(1+2 n+L)+(1+2 n+L)+(2 L+4 S+2 B-2)
$$

- Universal quark light-front kinetic energy

Equal: $\rightarrow \Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)$ Virial
Theorem - Universal quark light-front potential energy

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

- Universal Constant Contribution from AdS and Superconformal Quantum Mechanics

$$
\Delta \mathcal{M}_{\text {spin }}^{2}=2 \kappa^{2}(L+\underset{\star}{2 S}+B-1)
$$

hyperfine spin-spin

Prediction from AdS/QCD: Meson LFWF

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

$$
f_{\pi}=\sqrt{P_{q q}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! c. D. Robertsetal. }
$$

Provides Connection of Confinement to Hadron Structure

- Light Front Wavefunctions:
$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$ off-shell in P^{-}and invariant mass $\mathcal{M}_{q \bar{q}}^{2}$

$$
x
$$

"Hadronization at the Amplitude Level"
Boost-invariant LFWF connects confined quarks and gluons to hadrons
Proceeds in LF time τ within casual horizon Instant time violates causality

LFHQCD: Underlying Principles

- Poincarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time \boldsymbol{T}
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: AdS $_{5}=\operatorname{LF}(3+I)$

$$
z \leftrightarrow \zeta \text { where } \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

- Introduce Mass Scale \boldsymbol{K} while retaining the Conformal Invariance of the Action (dAFF)
- Unique Dilaton in $\operatorname{AdS}_{5}: e^{+\kappa^{2} z^{2}}$
- Unique color-confining LF Potential $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

$$
\text { Meson } q \bar{q} \leftrightarrow \text { Baryon } q[q q] \leftrightarrow \text { Tetraquark }[q q][\bar{q} \bar{q}]
$$

Remarkable Features of Light-Front Schrödinger Equation
 - Relativistic, frame-independent
 Dynamics + Spectroscopy!

- QCD scale appears - unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L-- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
- Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass! Meson

Baryon

$\phi_{M}, L_{B}+1 \quad \underset{\substack{B+, \\ \text { Baryon }}}{\psi_{B}}$

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

Tetraquark: diquark + antidiquark

$$
\begin{array}{r}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{array}
$$

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Superconformal Algebra 4 -Plet

$$
\begin{gathered}
R_{\lambda}^{\dagger} \underset{(q)}{\bar{q} \rightarrow(q)} \overline{\overline{3}}_{C}
\end{gathered}
$$

Vector ()+ Scalar [] Diquarks

Supersymmetry across the light and heavy-light spectrum

Supersymmetry across the light and heavy-light spectrum

Meson

Baryon
Tetraquark
New Organization of the Hadron Spectrum
M. Nielsen,

Superpartners for states with one c quark

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^{P}	Name	q-cont	$J^{P(C)}$	Name
$\bar{q} c$	0^{-}	D (1870)	-	-	-	-	-	-
$\bar{q} c$	$1{ }^{+}$	$D_{1}(2420)$	$[u d] c$	$(1 / 2)^{+}$	$\Lambda_{c}(2290)$	$[u d][\bar{c} \bar{q}]$	0^{+}	$\bar{D}_{0}^{*}(2400)$
$\bar{q} c$	2^{-}	$D_{J}(2600)$	[ud]c	$(3 / 2)^{-}$	$\Lambda_{c}(2625)$	[ud] $]$ ç $\bar{q}]$	1^{-}	-
$\bar{c} q$	0^{-}	$\bar{D}(1870)$						
$\bar{c} q$	1^{+}	T1 2420)	$[c q] q$	$(1 / 2)^{+}$	$\Sigma_{c}(2455)$	$[c q][\bar{u} \bar{d}]$	0^{+}	$D_{0}^{*}(2400)$
$\bar{q} c$	1^{-}	$D^{*}(2010)$						
$\bar{q} c$	2^{+}	$D_{2}^{*}(2460)$	(qq) c	$(3 / 2)^{+}$	$\Sigma_{c}^{*}(2520)$	$(q q)[\bar{c} \bar{q}]$	1^{+}	$D(2550)$
$\bar{q} c$	3^{-}	$D_{3}^{*}(2750)$	$(q q) c$	$(3 / 2)^{-}$	$\Sigma_{c}(2800)$	(qq) $[\bar{c} \bar{q}]$	-	-
$\bar{s} c$	0^{-}	$D_{s}(1968)$					-	-
$\bar{s} c$	1^{+}	$D_{s 1}(2460)$	$[q s] c$	$(1 / 2)^{+}$	$\Xi_{c}(2470)$	$[q s][\bar{c} \bar{q}]$	0^{+}	$\bar{D}_{s 0}^{*}(2317)$
$\bar{s} c$	2^{-}	$\widehat{\sim}_{\text {s2 }}(\sim 2860) ?$	$[q s] c$	$(3 / 2)^{-}$	$\Xi_{c}(2815)$	[sq] [$\bar{c} \bar{q}]$	1^{-}	-
$\bar{s} c$	$1{ }^{-}$	$D_{s}^{*}(2110)$			-		-	-
$\bar{s} c$	2^{+}	$D_{s 2}^{*}(2573)$	(sx)c	$(3 / 2)^{+}$	$\Xi_{c}^{*}(2645)$	$(s q)[\bar{c} \bar{q}]$	1^{+}	$D_{s 1}(2536)$
$\bar{c} s$	1^{+}	$\widehat{0}^{\text {s1 }}$ ($\left.\sim 2700\right) ?$	$[c s] s$	$(1 / 2)^{+}$	$\Omega_{c}(2695)$	$[c s][\leqslant \bar{q}]$	0^{+}	??
$\bar{s} c$	2^{+}	$\widehat{1}_{s 2}^{*}(\sim 2750) ?$	(3s) c	$(3 / 2)^{+}$	$\Omega_{c}(2770)$	(ss)[cid	1^{+}	??
M.	iels	n, sjb			tions	beaut	ul agreer	ement!

Heavy-light and heavy-heavy hadronic sectors

- Extension to the heavy-light hadronic sector
[H. G. Dosch, GdT, S. J. Brodsky, PRD 92, 074010 (2015), PRD 95, 034016 (2017)]
- Extension to the double-heavy hadronic sector
[M. Nielsen and S. J. Brodsky, PRD, 114001 (2018)]
[M. Nielsen, S. J. Brodsky, GdT, H. G. Dosch, F. S. Navarra, L. Zou, PRD 98, 034002 (2018)]
- Extension to the isoscalar hadronic sector
[L. Zou, H. G. Dosch, GdT,S. J. Brodsky, arXiv:1901.11205 [hep-ph]]

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} h^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

$$
\vec{\zeta}^{2}=\vec{b}_{\perp}^{2} x(1-x)
$$

G. de Teramond, H. G. Dosch, sjb

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.
Same slope in n and L !

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

The Pion's Valence Light-Front Wavefunction

- Relativistic Quantum-Mechanical Wavefunction of the pion eigenstate $H_{L F}^{Q C D}\left|\pi>=m_{\pi}^{2}\right| \pi>$

$$
\Psi_{\pi}\left(x, \vec{k}_{\perp}\right)=<q\left(x, \vec{k}_{\perp}\right) \bar{q}\left(1-x,-\vec{k}_{\perp}\right) \mid \pi>
$$

- Independent of the observer's or pion's motion
- No Lorentz contraction; causal
- Confined quark-antiquark bound state

Pion EM Form Factor

Pion form factor compared with data

G.F. de Téramond and S.J. Brodsky, Proc. Sci. LC2010 (2010) 029.
S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015). [Sec. 6.1.5]

Timelike Pion Form Factor from AdS/QCD and Light-Front Holography

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction

Comparison for $x q(x)$ in the pion from LFHQCD (red band) with the NLO fits [82,83] (gray band and green curve) and the LO extraction [84]. NNLO results are also included (light blue band). LFHQCD results are evolved from the initial scale $\mu_{0}=$ $1.1 \pm 0.2 \mathrm{GeV}$ at NLO and the initial scale $\mu_{0}=1.06 \pm 0.15 \mathrm{GeV}$ at NNLO.

Universality of Generalized Parton Distributions in Light-Front Holographic QCD
Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur physical review letters 120, 182001 (2018)

Tianbo Liu, Raza Sabbir Sufian, Guy F. de T'eramond, Hans Gunter Dösch, Alexandre Deur, sjb

Polarized distributions for the isovector combination $x\left[\Delta u_{+}(x)-\Delta d_{+}(x)\right]$

$$
d_{+}(x)=d(x)+\bar{d}(x) \quad u_{+}(x)=u(x)+\bar{u}(x)
$$

$$
\Delta q(x)=q_{\uparrow}(x)-q_{\downarrow}(x)
$$

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Comparison for $x q(x)$ in the proton from LFHQCD (red bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6] (cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD results are evolved from the initial scale $\mu_{0}=1.06 \pm 0.15 \mathrm{GeV}$.

Universality of Generalized Parton Distributions in Light-Front Holographic QCD
Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur PHYSICAL REVIEW LETTERS 120, 182001 (2018)

Polarized GPDs and PDFs (HLFHS Collaboration, 2019)

- Separation of chiralities in the AdS action allows computation of the matrix elements of the axial current including the correct normalization, once the coefficients c_{τ} are fixed for the vector current
- Helicity retention between quark and parent hadron (pQCD prediction): $\lim _{x \rightarrow 1} \frac{\Delta q(x)}{q(x)}=1$
- No spin correlation with parent hadron: $\lim _{x \rightarrow 0} \frac{\Delta q(x)}{q(x)}=0$

Other Consequences of $[u d]_{\overline{3}_{C}, I=0, J=0}$ diquark cluster

QCD Hidden-Color Hexadiquark in the Core of Nuclei

J. Rittenhouse West, G. de Teramond, A. S. Goldhaber, I. Schmidt, sjb

$\left|\Psi_{H D Q}>=\right|[u d][u d][u d][u d][u d][u d]>$ mixes with ${ }^{4} H e \mid n p n p>$
Increases alpha binding energy, EMC effects

Diquarks Can Dominate Five-Quark Fock State of Proton

$$
|p>=\alpha|[u d] u>+\beta \mid[u d][u d] \bar{d}>\quad \text { J.Rittenhouse West, sjb }
$$

Natural explanation why $\bar{d}(x) \gg \bar{u}(x)$ in proton

Excitations and Decay of HdQ in Alpha-Nuclei may explain ATOMKI XI7 signal

Underlying Principles

- Polncarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time \boldsymbol{T}
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: AdS $_{5}=\operatorname{LF}(3+I)$

$$
z \leftrightarrow \zeta \text { where } \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

- Introduce mass scale $\boldsymbol{\kappa}$ while retaining conformal invariance of the Action (dAFF)

"Emergent Mass"

- Unique Dilaton in $\mathrm{AdS}_{5}: e^{+\kappa^{2} z^{2}}$
- Unique color-confining LF Potential $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

Meson $q \bar{q} \leftrightarrow$ Baryon $q[q q] \leftrightarrow$ Tetraquark $[q q][\bar{q} \bar{q}]$

Color confinement potential from AdS/QCD

$$
U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}, \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

Fixed $\tau=t+z / c$

Intrinsic Charm
 $$
\mid \bar{c}[c u][u d]>
$$

$\mathbf{p} \quad[d u]_{\overline{3}_{C}}$ and $[c u]_{\overline{3}_{C}} J=0$ diquark dominance
$\psi_{n}\left(\vec{k}_{\perp i}, x_{i}\right) \propto \frac{1}{\kappa^{n-1}} e^{-\mathcal{M}_{n}^{2} / 2 \kappa^{2}} \prod_{j=1}^{n} \frac{1}{\sqrt{x}_{j}}$

$$
\mathcal{M}_{n}^{2}=\sum_{i=1}^{n}\left(\frac{k_{\perp}^{2}+m^{2}}{x}\right)_{i}
$$

Light-Front Holography: First Approximation to QCD

- Color Confinement, Analytic form of confinement potential
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-FubiniFurlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincarè Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in \mathbf{n}, \mathbf{L}
- Supersymmetric 4-Plet: Meson-Baryon-Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level: Many Phenomenological Tests
- Systematically improvable: Basis LF Quantization (BLFQ)

> Supersymmetric Features of Hadron Physics
> from Superconformal Algebra
> and Light-Front Holography

Intrinsic Heavy Quark Phenomena A Novel Property of QCD

with P. Hoyer, N. Sakai, C. Peterson, A. Mueller, J. Collins, S. Ellis, J. Gunion, G. Lykasov

Stan Brodsky SIL를
 NATIONAL
 ACCELERATOR
 LABORATORY

INT October 10, 2022

[^0]: L. El Fassi et al. PLB 712,326 (2012)

