Nuclear Tomography through EntanglementEnabled Spin Interference

"Nuclear tomography via diffractive vector meson photoproduction"
(James) Daniel Brandenburg
The Ohio State University

Intersection of nuclear structure and high-energy nuclear collisions @Institute for Nuclear Theory, University of Washington Seattle, WA February 22, 2023

Outline : Nuclear tomography via diffractive vector meson photoproduction
 [1] JDB, J. Seger, Z. Xu, W. Zha, arXiv:2208.14943 [hep-ph]

1. Intro: Light \& "The Puzzle"

- Light and Polarization
- The puzzle in photonuclear interactions
[2] JDB, N. Lewis, P. Tribedy, Z. Xu, arXiv:2205.05685 [hep-ph]
[3] X. Wang, JDB, L. Ruan, F. Shao, Z. Xu, C. Yang, W. Zha, arXiv:2207.05595 [nucl-th]
[4] JDB, Z. Xu, W. Zha, C. Zhang, J. Zhou, Y. Zhou arXiv:2207.02478 [hepph]
[5] JDB, W. Zha, and Z. Xu, Eur. Phys. J. A 57, 299 (2021).
[6] W. Zha, JDB, Z. Tang, and Z. Xu, Phys. Lett. B 800, 135089 (2020)
[7] STAR Collaboration, Phys. Rev. Lett. 127, 052302 (2021).
[8] STAR Collaboration, Phys. Rev. Lett. 121, 132301 (2018)
[9] JDB, W. Li, et al., arXiv:2006.07365 [hep-ph, physics:nucl-th] (2020).
[10] JDB, STAR Collaboration, https://arxiv.org/abs/2204.01625

ScienceAdvances

Featured article, Volume 9, issue 1, 2023

Nuclear Tomography at high energy : Motivation

Nuclear matter is all around us from the tiniest atoms to huge interstellar objects

The Equation of State (EOS) of nuclear matter dictates the forms of matter over 10^{18} orders of magnitude in scale

The EOS determines the structure and stability of atomic nuclei, the formation of the elements, whether stars collapse into neutron stars or black holes, and the structure of neutron stars themselves

[^0]
Nuclear Tomography at high energy : Motivation

EOS constraints from astrophysics:

- NICER x-ray telescope has determined a pulsar radius to better than 10\%
- Gravitational wave data from LIGO from a neutron star merger event has constrained neutron star tidal deformability

Still open questions:

- Significant nonzero strangeness component in neutron star interior?
- Phase transition within neutron star cores?
D. Adhikari et al. (PREX Collaboration) Phys. Rev. Lett. 126, 172502 (2021)

Brendan T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz Phys. Rev. Lett. 126, 172503 (2021)

Nuclear Tomography at high energy : Motivation

PREX-II: Precise measurement of the neutron skin of lead:

$$
R_{\text {skin }}=R_{n}-R_{p}=(0.283 \pm 0.071) \mathrm{fm}
$$

Note: R_{n} and R_{p} are the root-mean-square radii of the neutron and proton distributions, respectively.

Measured through purely electroweak measurement, longitudinally polarized elastic electron scattering to determine the parity-violating asymmetry APV

$$
A_{\mathrm{PV}}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \quad \begin{aligned}
& \sigma_{R}, \sigma_{\mathrm{L}} \text { are the cross sections for } \\
& \text { scattering right/left handed } \\
& \text { electrons }
\end{aligned}
$$

[^1]
Nuclear Tomography at high energy : Motivation

PREX-II: Precise measurement of the neutron skin of lead:

$$
R_{\text {skin }}=R_{n}-R_{p}=(0.283 \pm 0.071) \mathrm{fm}
$$

Note: R_{n} and R_{p} are the root-mean-square radii of the neutron and proton distributions, respectively.

Measured through purely electroweak measurement, longitudinally polarized elastic electron scattering to determine the parity-violating asymmetry APV

$$
\begin{aligned}
& A_{\mathrm{PV}}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \quad \begin{array}{l}
\sigma_{\mathrm{R}}, \sigma_{\mathrm{L}} \text { are the cross sections for } \\
\text { scattering right/left handed } \\
\text { electrons }
\end{array} \\
& \qquad \mathrm{OK} \text { REAT, we are done right!? } \\
& \text { D. Adhikari et al. (PREX Collaboration) Phys. Rev. Lett. 126, 172502 (2021) } \\
& \text { Brendan T. Reed, F. J. Fattoyev, c. J. Horowitz, and J. Piekarewicz Phys. Rev. Lett. 126, } \\
& \text { 172503 (2021) }
\end{aligned}
$$

Gravitational Wave Discovery \& Tension

NICER x-ray measurement of neutron star radius and PREX-II

$$
\begin{aligned}
& 0.21 \lesssim R_{\text {skin }}(\mathrm{fm}) \\
& 13.25 \lesssim R_{\star}^{1.4}(\mathrm{~km}) \\
& \lesssim 14.26 \\
& 642 \lesssim \Lambda_{\star}^{1.4} \lesssim 955 .
\end{aligned}
$$

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

$$
\Lambda_{1.4}=190_{-120}^{+390}
$$

Strong tension with "allowed" region from NICER+PREX-II
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)

Phys. Rev. Lett. 119, 161101 (2017)
D. Adhikari et al. (PREX Collaboration) Phys. Rev. Lett. 126, 172502 (2021)

Brendan T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz Phys. Rev. Lett. 126, 172503 (2021)

The Nuclear Mass Radius Puzzle in $\mathbf{A + A}$

Ultra-Peripheral Heavy-Ion Collisions

Ultra-relativistic charged nuclei produce the strongest electromagnetic fields in the Universe

Photon Nucleus interactions:

$\gamma \mathbb{P} \rightarrow \rho^{0}, J / \psi$, etc. : Photo-nuclear production of vector mesons ($J^{P}=1^{-}$)

- Photon from the EM field of one nucleus fluctuates to a $q \bar{q}$ pair, interacts with pomeron (or Reggeon @ RHIC)
- Photon quantum numbers $J^{P C}=1^{--}$

Shining light on Gluons

- Photo-nuclear measurements have been used to study OCD matter already for decades[1-3]
- Well known process for probing the hadronic structure of the photon
- Photon energies $\gtrsim 10 \mathrm{GeV}$: probe gluon distribution - Interaction through Pomeron (two gluon state at lowest order)
- Lower energy scattering: probe gluons + quarks: Reggeon interactions are important
- Photon quantum numbers $J^{P C}=1^{--}$
- Can transform into a 'heavy photon'
- i.e. a vector meson $\left(\rho^{0}, \phi, J / \psi\right)$ with $J^{P}=1^{-}$
[1] H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010).
[2] ZEUS Collaboration. Eur. Phys. J. C 2, 247-267 (1998).
[3] See refs 1-25 in [2]

Past Photo-Nuclear Measurements

- STAR has studied $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$(and direct $\pi^{+} \pi^{-}$production) in the past

Line shape results from amplitude level contributions:
$\rho^{0} \rightarrow \pi^{+} \pi^{-}+$Drell Söding
(direct $\pi^{+} \pi^{-}$) $+\omega \rightarrow \pi^{+} \pi^{-}$

Past Photo-Nuclear Measurements

- STAR has studied $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$(and direct $\pi^{+} \pi^{-}$production) in the past

Coherent Interactions:

- Photon interacts with the entire nucleus
- Diffractive structure in $p_{T}^{2} \approx-t$
- Transverse momentum related to Fourier transform of nuclear size

Past Photo-Nuclear Measurements

- STAR has studied $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$(and direct $\pi^{+} \pi^{-}$production) in the past

Coherent Interactions:

- Photon interacts with the entire nucleus
- Diffractive structure in $p_{T}^{2} \approx-t$
- Transverse momentum related to Fourier transform of nuclear size

STAR Collab.............ev. Lett. 89, 272302 (2002).
STAR Collaboration et al. Phys. Rev. Lett. 102, 112301 (2009). STAR Collaboration et al. Phys. Rev. C 96, 054904 (2017).

Past Photo-Nuclear Measurements

Other measurements at RHIC \& LHC include:

Photoproduction of J/ ψ in Au+Au UPC at $\sqrt{S_{N N}}=200 \mathrm{GeV}$
PHENIX Phys.Lett.B679:321-329,2009
ρ^{0} vector mesons in $\mathrm{Pb}-\mathrm{Pb}$ UPC at $\sqrt{S_{N N}}=$ 5.02 TeV

ALICE, JHEPO6 (2020) 35
J / Ψ in $\mathrm{Pb}+\mathrm{Pb}$ UPC at $\sqrt{S_{N N}}=2.76 \mathrm{TeV}$ CMS, Phys. Lett. B 772 (2017) 489
... and many more
So what's the problem?

Nuclear Mass radius, too big?

Photo-nuclear measurements have historically produced a |t| slope that corresponds to a mysteriously large source!

STAR (2017): $|t|$ slope $=407.8 \pm 3(\mathrm{GeV} / \mathrm{c})^{-2}$
\rightarrow Effective radius of 8 fm
$\left(R_{\text {Au }}^{\text {charged }} \approx 6.38 \mathrm{fm}\right)$
ALICE (Pb) : $|\mathrm{t}|$ slope $=426 \pm 6 \pm 15(\mathrm{GeV} / \mathrm{c})^{-2}$
\rightarrow Effective radius of 8.1 fm
$\left(R_{P b}^{\text {charged }} \approx 6.62 \mathrm{fm}\right)$

Extracted nuclear radii are way too large to be explainable

[^2]
So what's new after 20+ years?

So what's new after 20+ years?

Recent discovery of the Breit-Wheeler process in Heavy-ion Collisions

The Breit-Wheeler Process

Collision of Two Light Quanta
G. Breit* and John A. Wheeler,** Department of Physics, New York University (Received October 23, 1934)

- Non-linear effect forbidden in classical electromagnetism

- At lowest order, two Feynman diagrams contribute and interfere
- Breit-Wheeler process: real photon collisions \rightarrow important distinction
- Finally observed after $85+$ years \Rightarrow Applications in nuclear physics

Progress Towards the Breit-Wheeler Process

SLAC E-144 Experiment

- Non-linear Breit-Wheeler Process: $\gamma+n \gamma_{0} \rightarrow e^{+} e^{-}$
- Two step process: Compton backscattering
- Energy threshold requires $n>4$ with $\langle n\rangle=6.44$

$$
10^{18} \mathrm{~W} / \mathrm{cm}^{2} \text { laser }
$$

\rightarrow No pair measurements
\rightarrow No angular measurements

Excess of ~ 100
positrons detected
in 20,000 shots

Burke et al., PRL79, 1626 (1997)
Hu \& Müller, PRL107, 090402 (2010)

Ultra-Peripheral Heavy Ion Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field

Weizäcker-Williams Equivalent Photon Approximation (EPA):
\rightarrow In a specific phase space, transverse EM fields can be quantized as a flux of quasi-real photons
Weizsäcker, C. F. v. Zeitschrift für Physik 88 (1934): 612

$$
n \propto \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \approx|\vec{E}|^{2} \approx|\vec{B}|^{2}
$$

$Z \alpha \approx 1 \rightarrow$ High photon density Ultra-strong electric and magnetic fields:
\rightarrow Expected magnetic field strength $\overrightarrow{\mathbf{B}} \approx \mathbf{1 0}^{\mathbf{1 4}}-\mathbf{1 0}^{\mathbf{1 6}} \mathbf{T}$
Skokov, V., et. al. Int. J. Mod. Phys. A 24 (2009): 5925-32

Test QED under extreme conditions

K. Hattori and K. Itakura, Photon and Dilepton Spectra from Nonlinear QED Effects in

Supercritical Magnetic Fields Induced by Heavy-lon Collisions, Nuclear and Particle Physics Proceedings 276-278, 313 (2016).
Light-by-Light scattering: ATLAS, Phys. Rev. Lett. 123, 052001 (2019)

Access to Photon Polarization

- Breit-Wheeler Process: $\gamma \gamma \rightarrow e^{+} e^{-}$
$-\vec{E}--\vec{B} \otimes z$

- Polarization vector ξ : aligned radially with the "emitting" source
- Intrinsic photon spin converted into orbital angular momentum
- Observable as anisotropy in $e^{ \pm}$ momentum - a $\cos 4 \phi$ modulation

Access to Photon Polarization Proven!

$$
-\vec{E}--\vec{B} \quad \otimes z
$$

- The incoming photon polarization leads to vacuum birefringence [Toll, 1952], visible as a $\cos 4 \phi$ modulation
\Rightarrow Precision understanding of the photon wavefunction and sensitivity to polarization

[^3]
Access to Photon Polarization Proven!

Highest press coverage of any paper in high energy nuclear physics

Entanglement Enabled Quantum Interference

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Both possibilities occur simultaneously

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Gluons from nucleus

We can use the same experimental observable as the Breit-Wheeler process to access photon polarization

Access to initial photon polarization

Interference of two amplitudes

\{Quantum\} Double-Slit Experiment

- The double slit experiment is foundational in quantum mechanics

Quantum Double slit Experiment

- Shoot single electron (photon) through a double slit
- Wave interference observed!
- Quantum mechanics generally requires the interfering states to be indistinguishable

Water waves interfering in a double slit

Novel Form of Quantum Interference

Similar to double-slit experiment

BUT WAIT...

The ρ^{0} lifetime is only ($c \tau \sim 1 \mathrm{fm}$) \rightarrow Decays to $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$

Interference occurs between distinguishable particles

Entanglement Enabled Intensity Interference $\left(\mathbf{E}^{2} \mathbf{I}^{2}\right)$

Possible theoretical explanation from Frank Wilczeck's group at MIT -
Entanglement enabled interference of amplitudes from non-identical particles
J. Cotler, F. Wilczek, and V. Borish, Annals of Physics 424, 168346 (2021).

Observation of Interference in $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

Intrinsic photon spin transferred to ρ^{0} ρ^{0} spin converted into orbital angular momentum between pions Observable as anisotropy in $\pi^{ \pm}$ momentum

Momentum Dependence

Clear structure reminiscent of the diffractive cross section

Clear difference between Au+Au, U+U -> sensitivity to nuclear geometry

Null case: $\mathrm{p}+\mathrm{Au}$
B STAR: Signal $\pi^{+} \pi^{-}$pairs

W. Zha, J. D. Brandenburg, L. Ruan, Z. Tang, Exploring the double-slit
interference with linearly polarized photons. Phys. Rev. D 103, 033007 (2021).

Origin of the Entanglement?

Case 1 : \{Entangled\} Double-Slit Experiment

- Well known that particle decay (or interaction in general) leads to entanglement
$\left\langle\rho^{0} \mid \pi^{+} \pi^{-}\right\rangle \neq\left\langle\rho^{0} \mid \pi^{+}\right\rangle\left\langle\rho^{0} \mid \pi^{-}\right\rangle$
- Individually the π^{+} wavefunctions interfere and separately the π^{-}
- Phase locking (through entanglement) causes π^{+}and π^{-} to interfere at the real particle level

Similar to Entanglement Enabled Intensity Interference ($\mathbf{E}^{2} \mathbf{I}^{2}$)

Possible theoretical explanation from Frank Wilczeck's group at MIT Entanglement enabled interference of amplitudes from non-identical particles

Case 1 : \{Entangled\} Double-Slit Experiment

- Well known that particle decay (or interaction in general) leads to entanglement
$\left\langle\rho^{0} \mid \pi^{+} \pi^{-}\right\rangle \neq\left\langle\rho^{0} \mid \pi^{+}\right\rangle\left\langle\rho^{0} \mid \pi^{-}\right\rangle$
- Individually the π^{+} wavefunctions interfere and separately the π^{-}
- Phase locking (through entanglement) causes π^{+}and π^{-} to interfere at the real particle level

Similar to Entanglement Enabled Intensity Interference ($\mathbf{E}^{2} \mathbf{I}^{2}$)

"What's so wonderful," Cotler says, "is that these contemporary experiments are still pushing the boundaries of our understanding of both quantum mechanics and measurement and opening up new horizons for both theory and experiment." - Jordan Cotler

Case 2: Entanglement: Nobel Prize 2022

Entangled particles that never met

Two pairs of entangled particles are emitted from different sources. One particle from each pair is brought together in a special way that entangles them. The two other particles (1 and 4 in the diagram) are then also entangled. In this way, two particles that have never been in contact can become entangled.

Quantum teleportation:

Transferring quantum information through entanglement

Can something similar happen at the wavefunction level?

Case 3 : Entangled from within?

Maybe the entanglement originates even earlier in the interaction?

We expect that the nucleus (and the nucleons) are highly entangled states

BUT...

We have no experimental proof of this entanglement at rest

Comparison with theory

B STAR: Signal $\pi^{+} \pi^{-}$pairs

H. Xing, C. Zhang, J. Zhou, Y.-J. Zhou, The cos 2ϕ azimuthal asymmetry in ρ^{0} meson production in ultraperipheral heavy ion collisions. J. High Energ. Phys. 2020, 064 (2020).

B STAR Signal $\pi^{+} \pi^{-}$pairs vs. models

interference with linearly polarized photons. Phys. Rev. D 103, 033007 (2021).

Nuclear Tomography and the Neutron skin

Interference Reveals Event Configurations

- Case I : Photon \& Pomeron are (anti-) parallel

- Case II : Photon \& Pomeron are perpendicular

Motivation for 2D Analysis : P_{x} vs P_{y}

- Photon polarization is aligned with \vec{b} (exactly for point source)
- Two source interference takes place in x-axis (impact parameter direction)

Phys. Rev. D 103, 033007 (2021), https://arxiv.org/abs/2006.12099

2D "Imaging" : Clear difference in P_{x} vs. P_{y}

- Express ρ^{0} transverse momentum in two-dimensions:
- $P_{x}=p_{T} \times \cos \phi$
- $P_{y}=p_{T} \times \sin \phi$
- Clear asymmetry in P_{x} vs. P_{y} due to interference effect in both $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{U}+\mathrm{U}$
- Illustrated "2D" tomography

|t| vs. ϕ, which radius is 'correct'?

Now instead of p_{x} and p_{y} lets look at $|t|$ with a 2D approach

- Drastically different radius depending on ϕ, still way too big
- Notice how much better the Woods-Saxon dip is resolved for $\phi=\pi / 2$-> experimentally able to remove photon momentum, which blurs diffraction pattern
- Can we extract the 'true' nuclear radius from |t| vs. ϕ information?

Imaging the Nucleus with Polarized Photons

STAR: Photonuclear $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

Interference pattern used for diffraction tomography of gluon distribution \rightarrow analog to x-ray diffraction tomography

First high-energy measurements of gluon distribution with sub-femtometer resolution
Technique provides quantitative access to gluon saturation effects
BUT measurements via other vector mesons are needed for to validate QCD theoretical predictions/interpretations
Future measurements with ϕ meson and J/ ψ are important

Nuclear Radius Comparison

$\mathrm{Au}+\mathrm{Au}(\mathrm{fm}) \quad \mathrm{U}+\mathrm{U}(\mathrm{fm})$
Charge Radius
6.38 (long: 6.58, short: 6.05)
6.81 (long: 8.01, short: 6.23)
Inclusive |t| slope (STAR 2017) [1]
7.95 ± 0.03
7.47 ± 0.03
7.98 ± 0.03
6.53 ± 0.03 (stat.) ± 0.05 (syst.) 7.29 ± 0.06 (stat.) ± 0.05 (syst.)
Tomographic technique*
6.45 ± 0.27
6.90 ± 0.14
Cornell [3]
6.74 ± 0.06
0.17 ± 0.03 (stat.) ± 0.08 (syst.)
0.44 ± 0.05 (stat.) ± 0.08 (syst.)
Neutron Skin *
(Tomographic Technique)
$\sim 2 \sigma \quad \sim 4.7 \sigma \quad$ (Note: for $\mathrm{Pb} \approx 0.3$)

Precision measurement of nuclear interaction radius at high-energy
Measured radius of Uranium shows evidence of significant neutron skin
[1] STAR Collaboration, L. Adamczyk, et al., Phys. Rev. C 96, 054904 (2017). [2] H. Alvensleben, et al., Phys. Rev. Lett. 24, 786 (1970). [3] G. McClellan, et al., Phys. Rev. D 4, 2683 (1971).

Nuclear Radius Comparison

$\mathrm{Au}+\mathrm{Au}(\mathrm{fm}) \quad \mathrm{U}+\mathrm{U}(\mathrm{fm})$
Charge Radius
6.38 (long: 6.58, short: 6.05) 6.81 (long: 8.01, short: 6.23)

Inclusive |t| slope (STAR 2017) [1]
7.95 ± 0.03
7.47 ± 0.03
7.98 ± 0.03
Tomographic technique*
6.53 ± 0.03 (stat.) ± 0.05 (syst.)
6.45 ± 0.27
6.74 ± 0.06

Neutron Skin *	0.17 ± 0.03 (stat.) ± 0.08 (syst.)	0.44 ± 0.05 (stat.) ± 0.08 (syst.)
(Tomographic Technique)		

(Tomographic Technique)
$\sim 2 \sigma \quad \sim 4.7 \sigma \quad$ (Note: for $\mathrm{Pb} \approx 0.3$)
*STAR Collaboration, Sci. Adv. 9, eabq3903 (2023)

Precision measurement of nuclear interaction radius at high-energy
Measured radius of Uranium shows evidence of significant neutron skin
[1] STAR Collaboration, L. Adamczyk, et al., Phys. Rev. C 96, 054904 (2017). [2] H. Alvensleben, et al., Phys. Rev. Lett. 24, 786 (1970). [3] G. McClellan, et al., Phys. Rev. D 4, 2683 (1971).

Neutron Skins across Nuclei

The neutron skin of 208Pb

Tomography of ultrarelativistic nuclei with polarized photon-

Overview of attention for article published in Science Advances, January 2023

(3) About this Attention Score

In the top 5\% of all research
outputs scored by Altmetric

High Attention Score compared to
outputs of the same age (99th
percentile) se había hecho.

SUMMARY

Scientists See Quantum Interference between Different Kinds of Particles for First Time

A newly discovered interaction related to quantum entanglement between dissimilar particles opens a new window into the nuclei of atoms

\square NATONAL Esta es la imagen más precisa de un átomo

National Geographic, 12 Jan 2023
Ciencia Un misterioso fenómeno cuántico desvela una imagen de un átomo como nunca

Таинственный квантовый феномен позволил ученым заглянуть в сердце атома
Popmech, 12 Jan 2023
, 09:24 Теперь у исследователей есть новый инструмент, который уже позволил расширить научное представление о протонах и нейтрона..

- ~ 15k Downloads

 (from SA)- Already more than 10 citations
the science times What Does Atom's Heart Look Like? Quantum Interference Enables Researchers To Delve Into Atoms Like Never Before

Future Directions and Applications

Elliptic Gluon Tomography (Tensor Pomeron)

Elliptic gluon distribution: correlation
between impact parameter and momentum

- Clear signature of elliptic gluon distribution within nuclei.
Complimentary measurements at RHIC and EIC

Testing Quantum Mechanics

Decoherence and collapse are fundamental open questions of Quantum Mechanics \rightarrow Test wavefunction collapse in femto-scale environment

1. Measurement of photonuclear process in peripheral to central collisions
2. Comparison of $\rho^{0} \rightarrow \pi^{+} \pi^{-}$vs. $J / \psi \rightarrow l^{+} l^{-}$(better from theoretical side)

- Will interaction with medium induce decoherence?

- Unlike leptons, π interact via strong force
- Presence of strongly interacting medium \rightarrow wavefunction collapse?
- I.e. no interference?
- Difference between pion vs. lepton final states?

Diffractive Production in non-UPC

- STAR and ALICE have demonstrated that diffractive photo-nuclear interactions can occur even in peripheral collisions

STAR Collaboration, PRL.121(13), 132301 (2018).
J. Adam et al. (ALICE Collaboration) Phys. Rev. Lett. 116, 222301

- At smaller impact parameters \rightarrow greater overlap of photon polarization vectors, larger interference effect expected

Source of Entanglement?

$$
\rho^{0} \rightarrow \pi^{+} \pi^{-} \text {vs. } J / \psi \rightarrow e^{+} e^{-}
$$

- For $\rho^{0} \rightarrow \pi^{+} \pi^{-}$(spin 0 daughters)

$$
\begin{equation*}
\frac{d^{2} N}{d \cos \theta d \phi}=\frac{3}{8 \pi} \sin ^{2} \theta[1+\cos 2(\phi-\Phi)], \tag{1}
\end{equation*}
$$

$$
2\langle\cos (2 \phi)\rangle=\cos (2 \Phi)
$$

- For $\rho^{0} \rightarrow e^{+} e^{-}(\operatorname{spin} 1 / 2$ daughters $)$

$$
\begin{array}{r}
\frac{d^{2} N}{d \cos \theta d \phi}=\frac{3}{16 \pi}\left(1+\cos ^{2} \theta\right)\left[1-\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos 2(\phi-\Phi)\right] \\
2\langle\cos (2 \phi)\rangle=-\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos (2 \Phi)
\end{array}
$$

Where the angle Φ denotes the angle between the photon polarization plane and vector meson production plane.

$\rho^{0} \rightarrow e^{+} e^{-}$: Relevant for $J / \psi \rightarrow e^{+} e^{-}$case
STAR J/ ψ measurement in 2023-2025 : $\pm 4 \%$ @ $50 \mathrm{MeV} / \mathrm{c}$

Access to Hadronic Light-by-Light

Interference with the hadronic light-by-light diagram
Leads to a unique signature -> odd spin configurations

Summary

1. Discovery of interference between distinguishable particles!
2. Technique for precise neutron skin measurement at high energy

- Exact source of entanglement still unclear - nuclei as entangled objects?
- Potential for testing fundamental aspects of quantum mechanics
- Many future opportunities: ${ }^{208} \mathrm{~Pb}$, elliptic gluons, hadronic light-by-light, etc.

Thank you!

- Xiaofeng Wang (PhD student)
- Zhen Wang (PhD Student)
- Isabel Xu (High School Student)
- Isaac Upsal (Post-doc)
- ChiYang (SDU)
- Wangmei Zha (USTC)
- Janet Seger (Creighton University)
- Frank Geurts (Rice University)
- Zhangbu Xu (BNL)
- Lijuan Ruan (BNL)
Papers related to this talk:
[1] JDB, W. Zha, and Z. Xu, Eur. Phys. J. A 57, 299 (2021).
[2] JDB, W. Li, et al., arXiv:2006.07365 [hep-ph, physics:nucl-th] (2020).
[3] W. Zha, JDB, Z. Tang, and Z. Xu, Physics Letters B 800, 135089 (2020).
[4] STAR Collaboration, Phys. Rev. Lett. 127, 052302 (2021).
[5] STAR Collaboration, Phys. Rev. Lett. 121, 132301 (2018).
[6] WZ, JDB, Phys. Rev. D 103, 3 (2021).
[7] JDB, PoS, Vol. 387 (2021).
[8] STAR Collaboration, Science Advances, (2023).
[9] JDB, W. Zha, Z. Xu, Report on Progress in Physics (2022).

Nuclear Geometry at (even) Higher Energy

- Work by Bjorn Shenke (BNL) et. al.
- Include full CGC treatment
- Interference between amplitudes
- Shape fluctuations

When saturation effects are included one obtains a good description of the exclusive J / Ψ production spectra in ultra peripheral lead-lead collisions as recently measured by the ALICE
https://arxiv.org/abs/2207.03712

Mysteriously large?

Photo-nuclear measurements have historically produced a |t| slope that corresponds to a mysteriously large source!

STAR (2017): $|t|$ slope $=407.8 \pm 3(\mathrm{GeV} / \mathrm{c})^{-2}$
ALICE $(\mathrm{Pb}):|\mathrm{t}|$ slope $=426 \pm 6 \pm 15(\mathrm{GeV} / \mathrm{c})^{-2}$
\rightarrow Effective radius of $>8 \mathrm{fm}$?!?
$\left(R_{A u}^{\text {charged }} \approx 6.38 \mathrm{fm}, R_{P b}^{\text {charged }} \approx 6.62 \mathrm{fm}\right)$

Mysteriously large?

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Interference between two indistinguishable cases

Connection to Hadronic Light-by-light

Hadronic Light-by-Light Interference to probe entanglement

Final state asymmetries due to QED-QCD interference, reveals phase between photon and gluon fields

- [1] JDB, J. Seger, Z. Xu, W. Zha, arXiv:2208.14943 [hep-ph]
- X. Wang, JDB, L. Ruan, F. Shao, Z. Xu, C. Yang, W. Zha, arXiv:2207.05595 [nucl-th]
- JDB, Z. Xu, W. Zha, C. Zhang, J. Zhou, Y. Zhou arXiv:2207.02478 [hepph]
- JDB, W. Zha, and Z. Xu, Eur. Phys. J. A 57, 299 (2021).
- W. Zha, JDB, Z. Tang, and Z. Xu, Phys. Lett. B 800, 135089 (2020).
- STAR Collaboration, Phys. Rev. Lett. 127, 052302 (2021).
- STAR Collaboration, Phys. Rev. Lett. 121, 132301 (2018).
- JDB, W. Li, et al., arXiv:2006.07365 [hep-ph, physics:nucl-th] (2020).

Discovery of the Breit-Wheeler Process

$$
-\vec{E}--\vec{B} \quad \otimes z
$$

- The incoming photon polarization leads to vacuum birefringence [Toll, 1952], visible as a $\cos 4 \phi$ modulation [1,2]
\Rightarrow Precision understanding of the photon wavefunction and sensitivity to polarization

STAR Collaboration, Phys. Rev. Lett. 127, 052302 (2021).
The $J_{Z}=2$ states lead to $\pm \cos 4 \phi$ azimuthal modulations

[^0]: D. Adhikari et al. (PREX Collaboration) Phys. Rev. Lett. 126, 172502 (2021)

 Brendan T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz Phys. Rev. Lett. 126, 172503 (2021)

[^1]: D. Adhikari et al. (PREX Collaboration) Phys. Rev. Lett. 126, 172502 (2021)

 Brendan T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz Phys. Rev. Lett. 126, 172503 (2021)

[^2]: J. Adam et al. (ALICE Collaboration), J. High Energy Phys. 1509 (2015) 095.

[^3]: STAR Collaboration, Phys. Rev. Lett. 127, 052302 (2021).

