QCD at the Femtoscale in the Era of Big Data

Shaping PDFs analysis with Neural Networks

Chiara Bissolotti **Argonne National Laboratory**

Valerio Bertone, Radja Boughezal, Frank Petriello

Problem statement **QCD** at the femtoscale

can not directly observe partons due to confinement, a fundamental property of QCD

instead, we rely on indirect methods, such as deep inelastic scattering experiments, to infer their distributions

inverse problem

Parton distributions

Collinear Parton Distribution Functions

PDF fit scheme

minimize with respect to PDF parameters

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Data and observables we aim to

replicate the results of HERAPDF2.0

***** reduced cross sections

cuts: $Q > 3 \,\mathrm{GeV}$, $W > 1.5 \,\mathrm{GeV}$

conservative cuts

Total number of points: 1016

H1 and ZEUS

Statistics **Monte Carlo replicas**

$$\mathcal{G}(\mathbf{x}^{(k)})$$

Covariance matrix

$$C_{ij} = \delta_{ij} \sigma_{i,\text{unc}}^2 + \sum_{\beta} \sigma_{i,\text{corr}}^{(\beta)} \sigma_{j,\text{corr}}^{(\beta)}$$

Replica generation

$$\mathbf{x}^{(k)} = \boldsymbol{\mu} + \mathbf{L} \cdot \mathbf{r}^{(k)}$$

r standard normal random variables

Gaussian assumption

$$\propto \exp\left[-(\mathbf{x}^{(k)}-\boldsymbol{\mu})^T \mathbf{C}^{-1}(\mathbf{x}^{(k)}-\boldsymbol{\mu})\right]$$

Cholesky decomposition $\mathbf{C} = \mathbf{L} \cdot \mathbf{L}^T$

each replica fitted independently

$$\Gamma \simeq \mu_i$$
 $\frac{1}{N_{\text{rep}}} \sum_k x_i^{(k)} x_j^{(k)} \simeq \mu_i \mu_j + C_{ij}$

$$\mathbf{x}^{(k)} = \boldsymbol{\mu} + \mathbf{L} \cdot \mathbf{r}^{(k)}$$

 $\overline{N_{\mathrm{rep}}}$.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Gaussian assumption $\mathcal{G}(\mathbf{x}^{(k)}) \propto \exp\left[-(\mathbf{x}^{(k)} - \boldsymbol{\mu})^T \mathbf{C}^{-1} (\mathbf{x}^{(k)} - \boldsymbol{\mu})\right]$

$$\sum_{k} x_i^{(k)} \simeq \mu_i \qquad \frac{1}{N_{\text{rep}}} \sum_{k} x_i^{(k)} x_j^{(k)} \simeq \mu_i \mu_j + 0$$

Methodology - MLE **Maximum Likelihood Estimation**

$\max_{\boldsymbol{\theta}} \ln \left(\mathcal{L}(\boldsymbol{\theta} | \boldsymbol{d}) \right) \to \min_{\boldsymbol{\theta}} \left(\frac{1}{2} [\boldsymbol{t}(\boldsymbol{\theta}) - \boldsymbol{d}]^T \mathbf{C}^- \right)$

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

likelihood function

$$\mathcal{L}(\boldsymbol{\theta}|\boldsymbol{d}) \equiv \mathcal{P}(\boldsymbol{d}|\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{C}|}} \exp\left(-\frac{1}{2}[\boldsymbol{t}(\boldsymbol{\theta}) - \boldsymbol{d}]^T \mathbf{C}^{-1}[\boldsymbol{t}(\boldsymbol{\theta}) - \boldsymbol{d}]\right)$$

$${}^{-1}[\boldsymbol{t}(\boldsymbol{ heta}) - \boldsymbol{d}] \bigg) \equiv rac{1}{2} \min_{\boldsymbol{ heta}} \chi^2(\boldsymbol{ heta})$$

minimization carried out by ceres-so ver

trust region

Levenberg-Marquardt

combines the gradient-descent algorithm to the Gauss-Newton method

need the knowledge of the

derivatives of the χ^2 with respect to the parameters θ

analytic derivatives provided by NNAD

Methodology - Neural Network

$$N_k(\boldsymbol{\xi}; \{\omega_{ij}^{(\ell)}, \theta_i^{(\ell)}\}) = \phi_L \left(\sum_{j^{(1)}}^{N_{L-1}} \omega_{kj^{(1)}}^{(L)} y_{j^{(1)}}^{(L-1)} + \theta_k^{(L)}\right)$$

NNAD C++ Library: arXiv:2005.07039

NN Analytic Derivatives - NNAD **Simplified case**

theory prediction as a convolution

$$\hat{f}(\xi,\zeta) = \sum_{i=1} \left[C_i \otimes_{\xi} N_i(\xi,\zeta) \right]$$

thanks to the feed forward nature of the NN it's possibile to write these derivatives in a closed form

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

NNAD C++ Library: arXiv:2005.07039

chi-square formula

$$\chi^2 \left\{ \omega_{ij}^{(\ell)}, \theta_i^{(\ell)} \right\} = \sum_{k=1}^{N_{\text{data}}} \left(\frac{\hat{f}(\xi_k, \zeta_k; \{\omega_{ij}^{(\ell)}, \theta_i^{(\ell)}\}) - d_k}{\sigma_k} \right)$$

the computation of the gradient of the χ^2 requires the derivatives

$$\frac{\partial \chi^2}{\partial \theta_i^{(\ell)}}$$

NN Analytic Derivatives computation of the gradient of the χ^2

$$\frac{\partial \chi^2}{\partial \omega_{ij}^{(\ell)}} = 2 \sum_{k=1}^{N_{\text{data}}} \left(\frac{\left[\mathbf{C} \otimes_{\xi} \mathbf{N} \right] (\xi_k, \zeta_k) - d_k}{\sigma_k^2} \right) \left[\mathbf{C} \otimes_{\xi} \frac{\partial \sigma_k^2}{\partial \theta_k} \right]$$

NNAD C++ Library: arXiv:2005.07039

$$\hat{f}(\xi,\zeta) = \sum_{i=1} \left[C_i \otimes_{\xi} N_i(\xi,\zeta) \right]$$

backward propagation

apply chain rule, starting from the output layer all the way back

NN Analytic Derivatives computation of the gradient of the χ^2

backward propagation

apply chain rule, starting from the output layer all the way back

defining: $\mathbf{\Sigma}^{(\ell)} \equiv \prod_{i=1}^{\ell+1} \mathbf{S}^{(lpha)}, \quad S_{i,i}^{(\ell)} \equiv z_i^{(\ell)} \omega_{i,i}^{(\ell)}$ $\alpha = L$

NNAD C++ Library: arXiv:2005.07039

$$\hat{f}(\xi,\zeta) = \sum_{i=1} \left[C_i \otimes_{\xi} N_i(\xi,\zeta) \right]$$

$$\begin{array}{l} \begin{array}{l} \left[\partial \mathbf{N} \\ \omega_{ij}^{(\ell)} \end{array} \right] (\xi_k, \zeta_k), \\ \end{array} \\ \begin{array}{l} \left[\begin{array}{c} \left[\partial N_k \\ \partial \omega_{ij}^{(\ell)} \end{array} \right] = \left[\partial y_k^{(L)} \\ \partial \omega_{ij}^{(\ell)} \end{array} \right] \\ = \left[z_k^{(L)} \frac{\partial x_k^{(L)}}{\partial \omega_{ij}^{(\ell)}} \\ \end{array} \right] \\ \end{array} \\ \begin{array}{l} \left[z_k^{(L)} \omega_{kj^{(1)}}^{(L)} \right] \frac{\partial y_{j^{(1)}}^{(L-1)}}{\partial \omega_{ij}^{(\ell)}} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left[z_k^{(L)} \omega_{kj^{(1)}}^{(L)} \right] \frac{\partial y_{j^{(2)}}^{(L-2)}}{\partial \omega_{ij}^{(\ell)}} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left[z_k^{(L)} \omega_{kj^{(1)}}^{(L)} \right] \left[z_{j^{(1)}}^{(L-1)} \omega_{j^{(1)}j^{(2)}}^{(L-2)} \right] \frac{\partial y_{j^{(2)}}^{(L-2)}}{\partial \omega_{ij}^{(\ell)}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left[z_k^{(L)} \omega_{kj^{(1)}}^{(L)} \right] \left[z_{j^{(1)}}^{(L-1)} \omega_{j^{(1)}j^{(2)}}^{(L-2)} \right] \frac{\partial y_{j^{(2)}}^{(L-2)}}{\partial \omega_{ij}^{(\ell)}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left[z_k^{(L)} \omega_{kj^{(1)}}^{(L)} \right] \left[z_{j^{(1)}}^{(L-1)} \omega_{j^{(1)}j^{(2)}}^{(L-2)} \right] \frac{\partial y_{j^{(2)}}^{(L-2)}}{\partial \omega_{ij}^{(\ell)}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} z_k^{(L)} \omega_{kj}^{(L-2)} \\ z_k^{(L)} \omega_{kj}^{(L-2)} \\ \end{array} \\ \end{array} \\ \begin{array}{l} z_k^{(L)} \omega_{kj}^{(L-2)} \\ z_k^{(L)} \omega_{kj}^{(L-2)} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} z_k^{(L)} \omega_{kj}^{(L-2)} \\ z_k^{(L)} \omega_{kj}^{(L-2)} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} z_k^{(L)} \omega_{kj}^{(L-2)} \\ z_k^{(L)} \omega_{kj}^{(L-2)} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$$

NN Analytic Derivatives computation of the gradient of the χ^2

$$\frac{\partial \chi^2}{\partial \omega_{ij}^{(\ell)}} = 2 \sum_{k=1}^{N_{\text{data}}} \left(\frac{\left[\mathbf{C} \otimes_{\xi} \mathbf{N} \right] (\xi_k, \zeta_k) - d_k}{\sigma_k^2} \right) \left[\mathbf{C} \otimes_{\xi} \frac{\partial \sigma_k^2}{\partial \theta_k} \right]$$

backward propagation matrix **D** can be computed recursively moving backwards

NNAD C++ Library: arXiv:2005.07039

allows to compute the derivatives w.r.t. all free parameters of a NN

NN Analytic Derivatives Performance

Number of parameters

NNAD C++ Library: arXiv:2005.07039

performance advantage

Framework **C++ code - 'NavyPier'**

NangaParbat

data handling, χ^2 , covariance matrix, uncertainties treatment Monte Carlo replica generation, statistical analysis...

$$\chi^{2(k)} \equiv \left(\mathbf{T}(\theta^{(k)}) - \mathbf{x}^{(k)} \right)^T \cdot \mathbf{C}^{-1} \cdot \left(\mathbf{T}(\theta^{(k)}) - \mathbf{x}^{(k)} \right)^T$$

k: replica

theoretical prediction

NNLO

data, input cards with choices for NN, main code that runs the fit

Reproducing HERAPDF2.0 with NavyPier 'Sort of' benchmark

NavyPier

theoretical prediction

$$\hat{\sigma}$$
 \otimes

 $xg(x) = A_g$ $xu_v(x) = A_{uv}$ $xd_v(x) = A_{dv}$ $x\bar{U}(x) = A_{\bar{U}}$ $x\bar{D}(x) = A_{\bar{D}}$

HERA parameterization

$$x^{B_{g}}(1-x)^{C_{g}} - A_{gp}x^{B_{gp}}(1-x)^{C_{gp}},$$

$$x^{B_{uv}}(1-x)^{C_{uv}}(1+E_{uv}x^{2}),$$

$$x^{B_{dv}}(1-x)^{C_{dv}},$$

$$x^{B_{\bar{U}}}(1-x)^{C_{\bar{U}}}(1+D_{\bar{U}}x),$$

$$y^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}}.$$

Neural network structure for PDF extraction

tentative 1 of n...

parameterization no preprocessing function

$$xf_i(x,Q_0) = NN_i(x;\theta)$$
output of the NN, no factor in front

$$q^{\pm} \equiv q \pm \overline{q}$$

for $x \to 1$

 $xf_i(x, \mu_0 = 1.4 \text{ GeV}) = (N_i(x; \theta) - N_i(1; \theta))^2$

PDF extraction **NNLO** $xf_i(x,Q_0) = NN_i(x;\theta)$

stable results even when varying NN structure

large uncertainties and central values not so close to other extractions

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Neural network structure for PDF extraction

parameterization with preprocessing function

we changed the NN structure

one more output node

reduce the number of parameters

we changed the parameterization of the output nodes

Neural network structure for PDF extraction

parameterization with preprocessing function

as preprocessing functions we choose the

HERA parameterization in the form $\{g, u, \bar{u}, d, \bar{d}, s = \bar{s}\}$

$$\begin{split} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A_{a_p} x^{B_{s_p}} (1-x)^{C_{g_p}}, \\ xu(x) &= A_{U_b} x^{B_{U_b}} (1-x)^{C_{U_b}} (D_{U_b} x+1) + A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (E_{u_v} x^2 + x^2 + x^2) \\ xd(x) &= A_{D_b} (1-f_s) x^{B_{D_b}} (1-x)^{C_{D_b}} + A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{u}(x) &= A_{U_b} x^{B_{U_b}} (1-x)^{C_{U_b}} (D_{U_b} x+1), \\ x\bar{d}(x) &= A_{D_b} (1-f_s) x^{B_{D_b}} (1-x)^{C_{D_b}}, \\ xs(x) &= A_{D_b} f_s x^{B_{D_b}} (1-x)^{C_{D_b}} = x\bar{s}(x). \end{split}$$

14 free params + NN params

+1),

Sum rules

as integral constraints on extracted PDFs

* ... and analogously for other combinations:

$$T_3 = u^+ - d^+$$
$$T_8 = u^+ + d^+ - 2s^+$$

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

$$\begin{array}{l} \textbf{notation} \\ q^{\pm} \equiv q \pm \overline{q} \end{array}$$

$$V_3 = u^- - d^- \equiv 1$$

 $V_8 = u^- + d^- - 2s^- \equiv 3$

NN with preprocessing functions

in the spirt of 'proof of concept' 107 replicas

 $total \chi^2 = 0.9$

Results with preprocessing functions * preprocessing function parameters histograms

... still work in

progress ...

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

PDF bands **68% C.I.**

Conclusions and outlook (... it's still work in progress)

we managed to get a PDF extraction compatible with HERAPDF2.0

encouraging results with preprocessing function + NN ... we are dealing with the challenges, e.g. positivity

fit TMDS with NangaParbat

Beyond the Standard Model studies Argonne 31

Next step:

add Beyond the Standard Model to the framework

PDFS

┿

Standard Model Effective Field Theory

BSM framework **Standard Model Effective Field Theory**

 $\Delta Obs_n = Obs_n^{EXP} - Obs_n^{SM} =$

precise experimental measurements

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

precise SM predictions

$$= \frac{1}{\Lambda^2} \sum_k \mathcal{C}_k^{(6)}(\mu) a_{n,k}^{(6)}(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

precise EFT predictions

huge efforts to improve each one of these steps

