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Goals

= Multimessenger astrophysics — binary neutron star mergers

= Replace current moment-based treatment of neutrino transport in our new
NR code!

= Limited by numerical resolution due to computational cost — solutions have
to look decent at low resolutions

= Robust positivity preservation

= Ready for next-gen hardware — AthenaK is performance portable (GPUs!)




The Boltzmann equation
Distribution function for neutrinos F(x*, p*)/F(t,x, ¢, Q) governed by [Cardall+ 2013]
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The radiation-matter interaction term [Radice+ 2013]:
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= special relativity = single energy = elastic isotropic scattering = stationary
medium = h=c=1

emissivity absorption scattering energy density
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Modeling neutrino transport

Boltzmann solvers
Approximate approaches

Replace BE with more manageable equation

Phenomenological models: neutrino leakage
schemes [van Riper+ 1981, Ruffert+ 1996]

Moment based methods: Rewrite BE as a sum
of moments of F truncated at some finite order
— close system [Arnett 1977+, Foucart+ 2015,
Radice+ 2022].

M1: evolves E and first moment i.e. flux,
E:/FdQ, F":/Fp’dﬂ, Pi = fE, F).

Inexpensive, but not BE continuum limit.

Accuracy depends on choice of closure [Garett
& Hauck 2013], so choose wisely [Schotthéfer+
2022]

= 1D [Mezzacapa+ 1993, Sumiyoshi4+ 2005], 2D

[Livne+ 2004], 3D [Sumiyoshi+ 212, 2015]

Monte Carlo methods [Fleck+ 1971] — stochas-
tic. Explicit schemes expensive in diffusive regime
[Cleveland+ 2014], implicit diffusion schemes
problematic in GR

Discrete ordinates (Sy) [Mihalas+ 1984] — Dis-
cretize F along N angular bins. “ray effects” seen
in regions of low scattering and must be handled
with efficient filtering strategies [Hauck+ 2019]
See [White+ 2023] for finite volume implemen-
tation in AthenaK

Filtered spherical harmonics (FPy) [McClarren+
2010] — rotational invariance but oscillations —
filtering is needed, limiting [Laiu+ 2019]

Finite element method for angle — wavelet based
refinement schemes [Képhazi4+ 2015], multi Py
schemes [Ghazaie+ 2019]




Discretization in angle

Consider N basis functions for angle: F:= FPW4, multiply by W&, integrate over surface of unit sphere:
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to obtain the mass, stiffness and source matrices:
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= ME S8, can be pre-computed. So can the sources under certain cases.

= Choice of W4 determines the scheme. For FPp, choose real spherical harmonics W4 =
Yim(6, ¢) [Radice+ 2013]. Then M5 = §5.




Geodesic grids

All points on the grid represented in cartesian coordinates to avoid
singularities.

All triangular elements of the grid have almost equal area.
Base grid: A regular icosahedron on a unit sphere [Giraldo 1997]:
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Refinement: For an edge (Xa, Xg) of a A, find Xc projected on unit sphere

%o = (Xa + XB)

Figure: From Giraldo: Refining by 1 level

A: 12 angles

C: 2562 angles




Finite element basis functions

For each triangular element, use barycentric coordinates to represent
basis functions:
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B: FEM y basis

FEMy

= coupling between neigboring angles — “overlapping tent”
= Va6, 62,8)=2L+6+ &1

= “non-overlapping honeycomb”

1, & >&and &> &,
0, otherwise.

= Wa(&1,6,6) = {




Discretization in space
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= Asymptotic preserving DG scheme — correct rates in diffusion Bt

dominated regime.

= Divide numerical domain into elements [x; /2, X;13/2] comprising two
cells with cell centers xi and xj;+1

A: spatial grid and DG basis
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with corrections for zero speed modes
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= Use minmod or double minmod for limiting.



Positivity preservation & time integration

FPp: filtering

= For [Radice+ 2013]

= with filter strength
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FEMy: clipping limiter

= Truncates negative values of Ff‘ to zero, readjusts
other Ff‘ by rescaling by 0:
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The values of Ff‘ after limiting becomes

Alnew) _ OF2, if FA >0,
! 0, if FA <o.

= Conserves E point-wise.

Second-order RK method or a semi-implicit time integrator for the optically thick regime [McClarren+ 2008]
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Tests: Line source [Ganapol 1999]

= Test angular discretization with radiation
pulse

1
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= Analytical solution:

~ 1 H(t-r)
E(t,xy) = — -1
(txy) =5
= Choose ID with w = 0.03 [Garrett+ 2013]:
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= Solution:

E(t,x,y) = /R2 E(0, x, y)E(t,x — X,y — y)dX dy .



Tests: Line source contd ...

= Top left: Limited FEMy
solutions with angle

= Top right: Non-limited FEMy o W owow o wow
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Tests: Beam sources [Stone+ 1992]

= Two narrow beams of radiation
propagating in vacuum, evolved till
steady state.

= Directed at angles ¢; =~ 58.28°
and ¢ =~ 121.72°

= Sy performs the best!

= FEMypy has non-negative solutions which
improve with resolution.

= FPyy fails even with filtering.




Tests: Lattice [Brunner 2002]

= Test the efficiency of numerical schemes
in complex geometries.

= Central emitting square n = 1/4x.
= 11 white absorbing regions x, = 1.

= Blue and red regions are also
scattering ks = 10.

= Evolve till t~ 3.2




Tests: Lattice contd ...
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Tests: Cylinder source

= Infinite cylindrical source of radiation of
unit radius

= At low angular resolutions, propagation
speeds of solutions in the FEMpy and Sy
case are slower than the speed of light.

= Sy solutions shown “ray artifacts” and
are of worse quality than the solutions
produced by the other two methods.




Tests: Cylinder source contd ...

= Steady state exact solution:
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Conclusions

= Limiting for FEMp more robust than FPy for positivity preservation.
= Sy performs worse than FEMpy or FPp except the line test.

= FPy solutions sometimes retain small negative values in F. Filtering eliminates it
sometimes but at the cost of solution quality.

= A multi-energy GR variant being implemented in AthenaK.
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