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Crilerio f or Colleclive Molion
Itr surveyittg thc <lltta orr rrr.rt'lt'i irr lt 1,;vlrr rrr:rss t't,11iorr, llrct'r'lrtr'

two basic criteria used Ior clcr: itlirrg wlrr,tlrt,r'r'o[[r'r't.ivt'plrcrrorrtt,rur
occur:

1. Regularities in spectra charactcristic oI collct:tivc urorlt:s. 'l'lr.
simplest are the uniform spacing oI the vibrator aucl the J(J rl)-typ,,
spectrum of the rotator. A less decisive criterion is the systenurl it'
occurrence of a given type of level in different nuclei.

2. Strong electromagnetic matrix elements, either diagonal (t'.g.,
E2 moments) or nondiagonal (e.g., EL transitions). By "strong" llt.r',,,
we mean at least several times larger than a typical value for a sirrlil,
proton. The matrix element for a proton transition between a particl,.
state of orbital angular momentum L and one of L = 0 is:

(LM le61xal00) = h I"* [u1(r)rLuo(r;]r, ar

where the u's are radial wave functions. For a rough estimate, we
may replace the integrat by the Lth moment of the density distributiorr
p(r) of the nucleus concerned:

(rL; = .f rL p(r) dr //p(r) dr

Sum Rules
An alternative version of criterion (2) is that the transition exhausts

at least a fair fraction (say - 5 per cent) of a sum rule. There are
two sum rules that are relevant; in obvious notations, these are

E I ("lQrr,o l0) l'= (0 l(Qrlo)'lo) = s*u*rl
n

P (En - Eo)l(nlOr"o lo) l',n

= |(o l[Qrlo,lH,Q1.1sJJ lo) = sr*rl
We caII these the non-energy-weighted (NEW) and energy-weighted
(EW) sum rules. The only sum that can be evaluated exactly (i.e.,
without reference to a model) is the EWS1,2 for T = 0:

c 0L - h'A, L(2L + 1) (r2L-2 )"Ew - 8rM

The only assumption is that H contains no explicitly velocity-depend-
ent forces (exchange forces are permitted) . Stricily, this value is

l\ l, t I r l , /l l\

()lrtlttttItl wlt(.rr llrr';'.tottttrl r;l:tlI ltltl; l;Ittt O, lrttl;ttty ('()l'l'('('ti()ll l()l'll()ll
zt,r'o spilt i:; stttltll. ll is; lot'tttttltlt'(ltltl trros;l olrrit't'vt'tl tttotlt's ltl)l)()ltl
Io lx, (ot'lll'('ilssttttl('rl to lrt') 'l' 0. 'l'lrt'r'xct'ptiorr is tltt'!l l tnocle,

wlrictr is 't' l. It)xt:Itarrgtr Iolt't's t'trtttt'ilrtttt' t,, Sp'1y1L, atrd a moctel

is neeclt'tl Ior thcir cvirluzrtioli. I'liis has bectr cloue by Bethe and
Lcvinger3 lor tho E1 mode using tl.re independent-particle model'
'fhe same model cau be used to evaluate SNEWTL'

(t*u*'")sheu moder = fi <.zt'> "

The factor z lies between f and 1, but depends on multipole order
and the nucleus in general. It represents the correction due to the
contribution from the cross term" ,iLrlLYL(i)YL(j) in Q2; for odd

multipoles such terms contribute only through antisymmetrization'
For even multipoles they contribute anyway, and can be obtained from
(o lalo)' = o (for spin o).

This value ior SlgB,ggTL hr" been observed to be violated by single
transitions (e.g., E2 transitionsa in Ni58, Niuo), so that it is not reli-
able. This is not surprising, since it is Iikely that tie zero-point mo-
tion for the appropriate multipole mode, although small, could in-
crease t*r*'" considerably if it were included in the wave function'
In Chap. 7 we find that this motion gives

('*r*'")"ou. *oa"r = (
, \tt21l k2 \, \BL'cn/

A(zL + 1)
4n

rzL-2
R -2

For suitable values of 81' ,CL' , this can exceed the above shell-
model value of SNnwtL. Unfortunately, one does not have any inde-
pendent source at present for the evaluation of B1', C1'. Thus the
NEW sum rule cannot be used, since we do not know its sum, but only
a lower limit, viz., the shell-model value.

0bserved Focts
The criteria (1) and (2) have Ied to the identification of various col-

Iective modes from the data. The following kinds have been discussed,
but not all confirmed by experiment.

El(T = Ji. The E1 "giant dipole" resonance was the first nuclear
collective mode to be identified. The suggestion that it be visualized
as a collective oscillation of neutrons against protons (i'e., T = 1) was
made in 1948 by Gotdhaber and Teller.s (The corresponding T = 0
mode for E1 is of no interest, since it corresponds to movement of

S =
X

i

(Ei � E0)| < i|r2Y20(✓)|0 > |2 ⇡ 3~2
4⇡mN

A(1.2 fmA1/3)2

Most of sum rule is in the giant quadrupole resonance
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How does that affect the extracted beta?

Significant for 96Ru  but not for 238U



—one-body + two-body Hamiltonian
—spherical shell-model basis of a full major shell for p,n  
—Woods-Saxon single-particle potential
—separable residual interaction
—delivers by MC the full many-body wave function 
—delivers MC expectation values of one-body operators
—and their exponentials

The auxiliary-field Monte Carlo (AFMC) calculational framework

To calculate instantaneous lab-frame quadrupole distribution:

Simple example:  lab-frame quadrupole moment of a prolate rigid rotor:

P (q) =
1

q0(3 + 6q/q0)1/2
for �q0/2 < q < q0

i.e., we replace heiφQ̂20iσ by ð1=NΩÞ
P

jheiφQ̂20ðΩjÞiσ. Here
Q̂20ðΩÞ ¼ R̂Q̂20R̂−1 with R̂ being the rotation operator for
angle Ω. Details will be given elsewhere.
We next discuss a few simple examples that can be

treated analytically or nearly so.
Rigid rotor.—As a first simple example, we consider an

axially symmetric rigid rotor with an intrinsic quadrupole
moment q0 in its ground state. The distribution of its
spectroscopic quadrupole operator in the laboratory frame
Q20 ¼ q0ð3 cos2 θ − 1Þ=2 can be calculated in closed form.
For a prolate rotor (q0 > 0)

PgsðqÞ ¼

8
<

:

! ffiffiffi
3

p
q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 q

q0

q #−1
for − q0

2 ≤ q≤ q0

0 otherwise:
ð5Þ

This distribution is shown in Fig. 1. The oblate rotor
(q0 < 0) distribution is obtained from (5) by replacing q
with −q and q0 with jq0j. The moments of the distribution
(5) can be calculated from a simple recursion relation; their
values for 2 ≤ n ≤ 5 are given in Table I.

20Ne.—As a simple illustration in nuclear spectroscopy,
we consider the light deformed nucleus 20Ne. The orbital
part of the single-particle wave functions are taken to be the
states of the N ¼ 2 harmonic oscillator shell, i.e., the sd
shell. The single-particle eigenvalues of Q20 are −2, 1, and
4 (in units of b2 [16]) with degeneracies of 6, 4, and 2,
respectively. The many-particle eigenvalues of Q̂20 for 20Ne
in the valence sd shell thus range from −8 to 16 with a
uniform spacing of 3. The distribution PβðqÞ at β ¼ 0 is
just the distribution of these eigenvalues.
We have used this nucleus as a simple test of the AFMC

method. Here we take the single-particle energies according
to the USD interaction [17] and consider an attractive
quadrupole-quadrupole interaction −χ ~Q· ~Q, with ~Q2μ¼P

ir
2
i Y2μðr̂iÞ and χ ¼ ð8π=5Þð38.5=A5=3Þ MeV=b4 [18].

In Fig. 2 we show the quadrupole distribution of the 20Ne
ground state. The discrete nature of the many-particle
eigenvalues of Q̂20 is evident; the distribution is a set of δ
functions at integers−8;−5;…; 13; 16. The envelope of the

strengths has the skewed shape that looks qualitatively
similar to the prolate rigid-rotor distribution.
SCMF.—It is instructive to compare our results with

those of the thermal SCMF, e.g., the finite-temperature
Hartree-Fock-Bogoliubov (HFB) approximation. The HFB
solution is characterized by temperature-dependent one-
body density matrix ρβ and pairing tensor κβ. In general,
two types of phase transitions can occur vs temperature, a
pairing transition and a deformed-to-spherical shape tran-
sition [19–21]. A shape phase transition is also the generic
result of a Landau theory in which the order parameter is
the quadrupole deformation tensor [22]. The vast majority
of deformed HFB ground states are axially symmetric [23],
i.e., hQ̂2μi ¼ 0 for μ ≠ 0. The second-order invariant
hQ̂ · Q̂imay be calculated in HFB by usingWick’s theorem

hQ̂ · Q̂i ¼ Q2
0 þ

X

μ

ð−Þμtr½Q2μð1 − ρβÞQ2−μρβ&

þ
X

μ

ð−Þμtr½Q2μκβQT
2−μκ'

β&; ð6Þ

where Q0 ≡ trðQ20ρβÞ is the intrinsic axial quadrupole
moment. The remaining terms on the rhs of (6) represent
the contributions due to quantal and thermal fluctuations.
We shall compare our AFMC results for rare-earth nuclei
with the HFB theory in the next section.
Rare-earth nuclei.—Here we present results for rare-

earth nuclei. The single-particle orbitals are taken from a
Woods-Saxon potential plus spin-orbit interaction; they
span the 50–82 shell plus 1f7=2 orbital for protons and the
82–126 shell plus 0h11=2; 1g9=2 orbitals for neutrons. We
use the same interaction as in Refs. [24,25]. The quadru-
pole moments are scaled by a factor of 2 to account for the
model space truncation.
We first examine 154Sm, a strongly deformed nucleus

with an intrinsic quadrupole moment of Q0 ∼ 1600 fm2, as
determined experimentally from in-band electric quadru-
pole transitions [26]. AFMC PβðqÞ distributions are shown
in Fig. 3 at three temperatures. The distributions appear
continuous because the many-particle eigenvalues of
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FIG. 1. The ground-state distribution PgsðqÞ vs q=q0 for a
prolate rotor with intrinsic quadrupole moment q0.
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FIG. 2 (color online). The AFMC ground-state quadrupole
distribution PgsðqÞ for 20Ne. The sharp δ-like peaks demonstrate
the discrete nature of the spectrum of Q̂20 and their envelope
resembles the prolate rigid-rotor distribution in Fig. 1.
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Q̂20 are closely spaced. At the lowest temperature of
T ¼ 0.1 MeV (bottom panel), e−βĤ effectively projects
out the ground-state band. We observe the characteristic
skewed distribution of the prolate rotor. The dashed line is
the rotor distribution (5) with q0 taken at the HFB value of
Q0. The middle panel is the distribution at the HFB shape
transition temperature, T ¼ 1.14 MeV. The distribution is
less skewed, but, nevertheless, it retains some trace of a
prolate character. The HFB excitation energy at this temper-
ature is about 25MeV, much higher than energies of interest
for spectroscopy and for the neutron-capture reaction.
The top panel shows the distribution at T ¼ 4 MeV. At
this high excitation the distribution is featureless and close
to a Gaussian.
We have also calculated PβðqÞ for 148Sm, which is

spherical in its HFB ground state. They are more symmetric
and change less with temperature, consistent with the
absence of a coherent quadrupole moment.
Invariants.—Figure 4 shows the second-order invariant

hQ̂ · Q̂i vs temperature T for 148Sm and 154Sm. The AFMC
results (circles) are compared with the HFB results (dashed
lines) of Eq. (6). In HFB, hQ̂ · Q̂i for 148Sm can be entirely
attributed to the fluctuation terms in (6). There is a small
kink at T ¼ 0.4 MeV associated with the pairing transition,
but by and large the curve is flat. The same is true of the
AFMC curve. In contrast, hQ̂ · Q̂i in 154Sm is very different
at low temperatures. In HFB, the intrinsic quadrupole
moment Q0 is large, and it persists up to a temperature
of the order of 1 MeV, close to the spherical-to-deformed
phase-transition temperature. The AFMC results are in
semiquantitative agreement at the lowest temperatures

showing that the intrinsic quadrupole moment is not an
artifact of the HFB. The sharp kink characterizing the HFB
shape transition [19,20] is washed out, as is expected in a
finite-size system. Nevertheless, a signature of this phase
transition remains in the rapid decrease of hQ ·Qi with
temperature. In AFMC deformation effects survive well
above the transition temperature, in that hQ ·Qi continues
to be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used to

define effective values of the intrinsic shape parameters β; γ
[27] of the collective Bohr model [28, Sec. 6B-1a]. The
model assumes an intrinsic frame in which the quadrupole
deformation parameters α2μ ¼

ffiffiffiffiffiffi
5π

p
hQ̂2μi=3r20A5=3 are exp-

ressed as α20 ¼ β cos γ, α22 ¼ α2−2 ¼ ð1=
ffiffiffi
2

p
Þβ sin γ, and

α2$1 ¼ 0. Effective β and γ can then be determined from
the corresponding invariants

β¼
ffiffiffiffiffiffi
5π

p

3r20A
5=3 hQ̂ ·Q̂i1=2; cos3γ¼−

ffiffiffi
7

2

r
hðQ̂×Q̂Þ ·Q̂i
hQ̂ ·Q̂i3=2

: ð7Þ

In addition, we can extract a measure Δβ of the fluctuations
in β using the second- and fourth-order invariants

ðΔβ=βÞ2 ¼ ½hðQ̂ · Q̂Þ2i − hQ̂ · Q̂i2&1=2=hQ̂ · Q̂i: ð8Þ

The invariants themselves are calculated from the moments
of PβðqÞ using the relations in Table I. As expected, the
deformed 154Sm has a larger deformation β than 148Sm
(0.232 vs 0.137), but a smaller deformation angle γ (13.4°
vs 21.6°) that is closer to an axial shape. The deformed
nucleus is more rigid in that it has a smaller Δβ=β, 0.51 for
154Sm vs 0.72 for 148Sm.
Summary.—We have demonstrated that the distribution

of the axial quadrupole operator can be computed in the
AFMC method, and that it conveys important information
about deformation and the intrinsic shapes of nuclei at finite
temperature. In particular, the expectation values of β2,
β3 cos 3γ, and the fluctuation in β2 can be extracted as a
function of temperature. With these moments, it should be
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FIG. 3 (color online). Probability distributions PβðqÞ for 154Sm
at T ¼ 0.1 MeV, T ¼ 1.14 MeV (shape transition temperature),
and T ¼ 4 MeV. The low-temperature distribution is compared
with the rigid-rotor distribution (dashed line) and reflects the
strongly deformed character of this nucleus.
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148Sm (left) and the deformed 154Sm (right). The AFMC results
(solid circles) are compared with the HFB results (dashed lines).
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Transformation to Intrinsic frame 

Shape parameters are defined by the invariants

C. N. GILBRETH, Y. ALHASSID, AND G. F. BERTSCH PHYSICAL REVIEW C 97, 014315 (2018)

the quadrupole operators in coordinate space but not in the
truncated CI shell model space. We believe the effect of their
noncommutation is small and so we will ignore this in the
following. Working in a basis of simultaneous eigenstates of
Q̂2µ with eigenvalues q2µ, we then rotate to an intrinsic frame,
in which we will denote the quadrupole components by q̃2µ.
This frame is defined by the conditions

q̃21 = q̃2 −1 = 0, q̃22 = q̃2 −2 = real. (28)

To calculate the fourth-order invariants, we expand

(q̃ × q̃)(J ) · (q̃ × q̃)(J ) =
∑

µ

(−)µ(q̃ × q̃)(J )
µ (q̃ × q̃)(J )

−µ (29)

as well as (q̃ × q̃)(J )
µ =

∑
m(2 m 2 µ − m|J µ)q̃2mq̃2µ−m.

Only terms with even µ contribute to the sum in this frame.
Evaluating the Clebsch-Gordan coefficients and simplifying,
one obtains

(q̃ × q̃)(J ) · (q̃ × q̃)(J ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
5

(
q̃2

20 + 2q̃2
22

)2
, J = 0

2
7

(
q̃2

20 + 2q̃2
22

)2
, J = 2

18
35

(
q̃2

20 + 2q̃2
22

)2
, J = 4

. (30)

Since (q̃2
20 + 2q̃2

22) = q̃ · q̃ = q · q in this frame, we obtain
Eq. (27).

B. Relations of the quadrupole invariants to moments of Q̂20

When the invariant is unique at a given order, its expec-
tation value can be computed directly from the correspond-
ing laboratory-frame moment of Q̂20, defined by ⟨Q̂n

20⟩ =∫
qnP (q)dq. For a rotationally invariant system, the expec-

tations ⟨Q̂n
20⟩ for n = 2,3,4 are related to the invariants by [2]

⟨Q̂ · Q̂⟩ = 5
〈
Q̂2

20

〉
, (31)

⟨(Q̂ × Q̂)(2) · Q̂⟩ = −5

√
7
2

〈
Q̂3

20

〉
, (32)

⟨(Q̂ · Q̂)2⟩ = 35
3

〈
Q̂4

20

〉
, (33)

⟨(Q̂ · Q̂)((Q̂ × Q̂) · Q̂)⟩ = −11
2

√
7
2

〈
Q̂5

20

〉
. (34)

We now derive Eqs. (31)–(33). For Eq. (31), note that ⟨Q̂ ·
Q̂⟩ =

∑
µ(−)µ⟨Q̂2µQ̂2−µ⟩ =

∑
µ⟨Q̂†

2µQ̂2µ⟩, since Q̂
†
2µ =

(−)µQ̂2−µ (i.e., Q̂2µ is an Hermitian operator). But for a
rotationally invariant system, ⟨T̂ (J )

M T̂
(J ′)†
M ′ ⟩ ∝ δJ,J ′ δM,M ′ and is

independent of M for any spherical tensor operator T̂ (J ). This
leads to relation (31).

For the third moment, write
〈
Q̂3

20

〉
=

∑

J

(2 0 2 0|J 0)
〈
(Q̂ × Q̂)(J )

0 Q̂20
〉
, (35)

=
∑

J,K

(2 0 2 0|J 0)(J 0 2 0|K 0)
〈
(Q̂×Q̂)(J )×Q̂)(K)

0

〉
.

(36)

Due to rotational invariance only the K = 0 term contributes,
which also fixes J = 2. Using (2 0 2 0|2 0) = −

√
2/7 and

(2 0 2 0|0 0) = 1/
√

5, we obtain Eq. (32).

The fourth moment of Q̂20 can be calculated in a similar
manner by writing

〈
Q̂4

20

〉
=

∑

J,J ′,K

(2 0 2 0|J 0)(2 0 2 0|J ′ 0)(J 0 J ′ 0|K 0)

×
〈
[(Q̂ × Q̂)(J ) × (Q̂ × Q̂)(J ′)](K)

0

〉
. (37)

Again, only K = 0 contributes to the sum, requiring
J = J ′. Also (2 0 2 0|J 0) ̸= 0 only for J = 0,2,4. Not-
ing that (T̂ (J ) × T̂ (J ))(0)

0 = (−)J (T̂ (J ) · T̂ (J ))/
√

2J + 1 and
(J 0 J 0|0 0) = (−)J /

√
2J + 1, we obtain

〈
Q̂4

20

〉
=

∑

J

(2 0 2 0|J 0)2

2J + 1
⟨(Q̂ × Q̂)(J ) · (Q̂ × Q̂)(J )⟩ . (38)

Expressing the fourth-order invariants ⟨(Q̂ × Q̂)(J ) · (Q̂ ×
Q̂)(J )⟩ in terms of (Q̂ · Q̂)2 using Eq. (27), we find the result
in Eq. (33).

Relation (34) for the fifth-order invariant can be derived in
a similar manner.

C. Effective deformation parameters

We now use the quadrupole invariants to define effective de-
formation parameters which can be calculated from quantities
known only in the laboratory frame. We define quadrupole
deformation parameters α2µ using a liquid drop model for
which [23]

q2µ = 3√
5π

r2
0 A5/3α2µ. (39)

The quadrupole deformation parameters in the intrinsic
frame α̃2µ can be parametrized by the intrinsic parameters β,γ
of the collective Bohr Hamiltonian (see Sec. 6B-1a of Ref. [1])

α̃20 = β cos γ ; α̃22 = α̃2−2 = 1√
2
β sin γ . (40)

We can write the quadrupole invariants in terms of α̃20 and α̃22
and then express them in terms of β,γ . The three lowest-order
invariants are then given by β2, β3 cos(3γ ), and β4.

The second- and third-order invariants can be used to define
effective values of the intrinsic shape parameters β,γ

β =
√

5π

3r2
0 A5/3

⟨Q̂ · Q̂⟩1/2; cos 3γ = −
√

7
2

⟨(Q̂ × Q̂) · Q̂⟩
⟨Q̂ · Q̂⟩3/2

.

(41)

We can also define an effective fluctuation &β in β from

(&β/β)2 = [⟨(Q̂ · Q̂)2⟩ − ⟨Q̂ · Q̂⟩2]1/2/⟨Q̂ · Q̂⟩. (42)

Table I shows the effective values of β and γ calcu-
lated for the two isotope chains of even-mass samarium
and neodymium nuclei using Eqs. (41) and (42). Within
each isotope chain, the effective values of β increase with
neutron number as the nucleus becomes more deformed. The
nuclei within each isotope chain also become more rigid as
indicated by the decrease of &β/β. The respective values
of the effective γ decrease, being closer to triaxiality for
the spherical nuclei and closer to axiality for the deformed
nuclei.
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The invariants are related to powers of the operator
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the quadrupole operators in coordinate space but not in the
truncated CI shell model space. We believe the effect of their
noncommutation is small and so we will ignore this in the
following. Working in a basis of simultaneous eigenstates of
Q̂2µ with eigenvalues q2µ, we then rotate to an intrinsic frame,
in which we will denote the quadrupole components by q̃2µ.
This frame is defined by the conditions

q̃21 = q̃2 −1 = 0, q̃22 = q̃2 −2 = real. (28)

To calculate the fourth-order invariants, we expand

(q̃ × q̃)(J ) · (q̃ × q̃)(J ) =
∑

µ

(−)µ(q̃ × q̃)(J )
µ (q̃ × q̃)(J )

−µ (29)

as well as (q̃ × q̃)(J )
µ =

∑
m(2 m 2 µ − m|J µ)q̃2mq̃2µ−m.

Only terms with even µ contribute to the sum in this frame.
Evaluating the Clebsch-Gordan coefficients and simplifying,
one obtains

(q̃ × q̃)(J ) · (q̃ × q̃)(J ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
5

(
q̃2

20 + 2q̃2
22

)2
, J = 0

2
7

(
q̃2

20 + 2q̃2
22

)2
, J = 2

18
35

(
q̃2

20 + 2q̃2
22

)2
, J = 4

. (30)

Since (q̃2
20 + 2q̃2

22) = q̃ · q̃ = q · q in this frame, we obtain
Eq. (27).

B. Relations of the quadrupole invariants to moments of Q̂20

When the invariant is unique at a given order, its expec-
tation value can be computed directly from the correspond-
ing laboratory-frame moment of Q̂20, defined by ⟨Q̂n

20⟩ =∫
qnP (q)dq. For a rotationally invariant system, the expec-

tations ⟨Q̂n
20⟩ for n = 2,3,4 are related to the invariants by [2]

⟨Q̂ · Q̂⟩ = 5
〈
Q̂2

20

〉
, (31)

⟨(Q̂ × Q̂)(2) · Q̂⟩ = −5

√
7
2

〈
Q̂3

20

〉
, (32)

⟨(Q̂ · Q̂)2⟩ = 35
3

〈
Q̂4

20

〉
, (33)

⟨(Q̂ · Q̂)((Q̂ × Q̂) · Q̂)⟩ = −11
2

√
7
2

〈
Q̂5

20

〉
. (34)

We now derive Eqs. (31)–(33). For Eq. (31), note that ⟨Q̂ ·
Q̂⟩ =

∑
µ(−)µ⟨Q̂2µQ̂2−µ⟩ =

∑
µ⟨Q̂†

2µQ̂2µ⟩, since Q̂
†
2µ =

(−)µQ̂2−µ (i.e., Q̂2µ is an Hermitian operator). But for a
rotationally invariant system, ⟨T̂ (J )

M T̂
(J ′)†
M ′ ⟩ ∝ δJ,J ′ δM,M ′ and is

independent of M for any spherical tensor operator T̂ (J ). This
leads to relation (31).

For the third moment, write
〈
Q̂3

20

〉
=

∑

J

(2 0 2 0|J 0)
〈
(Q̂ × Q̂)(J )

0 Q̂20
〉
, (35)

=
∑

J,K

(2 0 2 0|J 0)(J 0 2 0|K 0)
〈
(Q̂×Q̂)(J )×Q̂)(K)

0

〉
.

(36)

Due to rotational invariance only the K = 0 term contributes,
which also fixes J = 2. Using (2 0 2 0|2 0) = −

√
2/7 and

(2 0 2 0|0 0) = 1/
√

5, we obtain Eq. (32).

The fourth moment of Q̂20 can be calculated in a similar
manner by writing

〈
Q̂4

20

〉
=

∑

J,J ′,K

(2 0 2 0|J 0)(2 0 2 0|J ′ 0)(J 0 J ′ 0|K 0)

×
〈
[(Q̂ × Q̂)(J ) × (Q̂ × Q̂)(J ′)](K)

0

〉
. (37)

Again, only K = 0 contributes to the sum, requiring
J = J ′. Also (2 0 2 0|J 0) ̸= 0 only for J = 0,2,4. Not-
ing that (T̂ (J ) × T̂ (J ))(0)

0 = (−)J (T̂ (J ) · T̂ (J ))/
√

2J + 1 and
(J 0 J 0|0 0) = (−)J /

√
2J + 1, we obtain

〈
Q̂4

20

〉
=

∑

J

(2 0 2 0|J 0)2

2J + 1
⟨(Q̂ × Q̂)(J ) · (Q̂ × Q̂)(J )⟩ . (38)

Expressing the fourth-order invariants ⟨(Q̂ × Q̂)(J ) · (Q̂ ×
Q̂)(J )⟩ in terms of (Q̂ · Q̂)2 using Eq. (27), we find the result
in Eq. (33).

Relation (34) for the fifth-order invariant can be derived in
a similar manner.

C. Effective deformation parameters

We now use the quadrupole invariants to define effective de-
formation parameters which can be calculated from quantities
known only in the laboratory frame. We define quadrupole
deformation parameters α2µ using a liquid drop model for
which [23]

q2µ = 3√
5π

r2
0 A5/3α2µ. (39)

The quadrupole deformation parameters in the intrinsic
frame α̃2µ can be parametrized by the intrinsic parameters β,γ
of the collective Bohr Hamiltonian (see Sec. 6B-1a of Ref. [1])

α̃20 = β cos γ ; α̃22 = α̃2−2 = 1√
2
β sin γ . (40)

We can write the quadrupole invariants in terms of α̃20 and α̃22
and then express them in terms of β,γ . The three lowest-order
invariants are then given by β2, β3 cos(3γ ), and β4.

The second- and third-order invariants can be used to define
effective values of the intrinsic shape parameters β,γ

β =
√

5π

3r2
0 A5/3

⟨Q̂ · Q̂⟩1/2; cos 3γ = −
√

7
2

⟨(Q̂ × Q̂) · Q̂⟩
⟨Q̂ · Q̂⟩3/2

.

(41)

We can also define an effective fluctuation &β in β from

(&β/β)2 = [⟨(Q̂ · Q̂)2⟩ − ⟨Q̂ · Q̂⟩2]1/2/⟨Q̂ · Q̂⟩. (42)

Table I shows the effective values of β and γ calcu-
lated for the two isotope chains of even-mass samarium
and neodymium nuclei using Eqs. (41) and (42). Within
each isotope chain, the effective values of β increase with
neutron number as the nucleus becomes more deformed. The
nuclei within each isotope chain also become more rigid as
indicated by the decrease of &β/β. The respective values
of the effective γ decrease, being closer to triaxiality for
the spherical nuclei and closer to axiality for the deformed
nuclei.
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There is a better way to parameterize the fluctuating shape [3].

P (�, �) = Kexp(�a�2 � b�3
cos(3�)� c�4

)

to be used with the integration measure
Z
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equations for a, b, and c:

χ2⟨β2⟩L = 5
〈
Q̂2

20

〉
, (22a)

χ3⟨β3 cos(3γ )⟩L = 35
2

〈
Q̂3

20

〉
, (22b)

χ4⟨β4⟩L = 35
3

〈
Q̂4

20

〉
, (22c)

where χ = 3√
5π

r2
0 A5/3 [see Eq. (12)].

2. Validation of the Landau-like expansion

In deriving the distribution (18), we expanded the logarithm
of P (T ,β, γ ) in the quadrupole invariants to fourth order.
In principle, higher-order invariants also contribute to this
expansion. To test the validity of the fourth-order expansion,
we can rewrite the distribution (18) in terms of the laboratory-
frame deformation variables α2µ,

P (T ,α2µ) = N (T )e−a(T )α·α+b(T )
√

7
2 [α×α]2·α−c(T )(α·α)2

,

(23)

where we have used Eqs. (17). We can then integrate over
the four variables α2µ with µ ̸= 0 to determine the marginal
distribution P (T ,α20) and thus the distribution P (q20) of the
axial quadrupole q20 in the laboratory frame. This distribution
can be compared directly with the AFMC distribution P (q20).

In Fig. 1 we compare the distribution P (q20) calculated
from the marginal distribution of Eq. (23) (solid line) with the
corresponding AFMC distribution (open circles) for 154Sm.
At the resolution seen in the figure, the agreement is perfect.
We conclude that the fourth-order Landau-like expansion is
sufficient at all temperatures.

C. Applications to samarium isotopes

We demonstrate our method for computing the intrinsic
shape distribution P (T ,β, γ ) for the family of even-mass
samarium isotopes 148−154Sm, which are known to exhibit a
crossover from spherical to deformed shapes [10,27,28].

Our single-particle shell-model space includes the orbitals
0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2, and 1f7/2 for protons, and
the orbitals 0h11/2, 0h9/2, 1f7/2, 1f5/2, 2p3/2, 2p1/2, 0i13/2,
and 1g9/2 for neutrons. The single-particle energies and wave
functions were obtained from a Woods-Saxon potential plus a
spin-orbit interaction using the parameters of Ref. [17]. The
interaction is a multipole-multipole interaction obtained by
expanding a separable surface-peaked interaction up to the
hexadecapole term, plus a monopole pairing interaction using
the coupling parameters given in Ref. [10].

We estimate the statistical errors in our AFMC results using
the block jackknife method (the method is described briefly in
Appendix B). At each temperature T , we use an imaginary-
time slice of !β = 1/64 MeV−1 and 5120 Monte Carlo
samples, consisting of 128 independent Monte Carlo walkers
(on different CPUs), each composed of 40 samples taken after
thermalization. We chose a sufficiently large number of decor-
relation sweeps for the samples to be generally decorrelated.
However, we observed that, for the more deformed isotopes,
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FIG. 1. The laboratory-frame axial quadrupole distribution
P (q20 ) for 154Sm at three distinct temperatures: (a) a high temperature,
T = 4 MeV; (b) an intermediate temperature, T = 1.1 MeV, near
the shape transition; and (c) a low temperature, T = 0.07 MeV.
Solid lines are the marginal distributions P (q20) obtained from the
Landau-like expansion of the intrinsic shape distribution [Eq. (18)],
with parameters a, b, and c determined from the AFMC moments
of q20. Open circles are the direct AFMC calculation of P (q20) using
Eqs. (10) and (11). For clarity, only every fifth AFMC point is included
in the plot. The uncertainties in the AFMC results are smaller than
the size of the symbols.

decorrelation of the moments ⟨Q̂n
20⟩ was difficult to achieve.

To obtain the correct uncertainty estimates, we chose in our
jackknife method each independent 40-sample walker as a
block over which we averaged all observables used in the next
steps of the analysis.

1. Moments of Q̂20 and the expansion parameters a, b, and c

The second, third and fourth moments of Q̂20 evaluated
from the AFMC distribution P (q20) are shown in Fig. 2 as
a function of temperature. In these results, we scaled Q̂20 by
a factor of 2 to account for core polarization effects. At any
given temperature T , the moments increase with the number
of neutrons.

We determined the parameters a, b, and c by numerically
solving Eqs. (22) to match the quadrupole invariants computed
using the distribution (18) with the AFMC moments ⟨Q̂n

20⟩
calculated from P (q20) for n = 2, 3, 4. Figure 3 shows the
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FIG. 4. Distributions P (T ,β, γ ) (shown in a logarithmic scale) in the β-γ plane for the even-mass samarium isotopes at different
temperatures: (a)–(d) a high temperature, T = 4 MeV; (e)–(h) an intermediate temperature, T = 0.8 MeV; and (i)–(l) a low temperature,
T = 0.07 MeV. A thermal shape transition from prolate to spherical shape is evident for all but the spherical nucleus 148Sm as the temperature
increases. A quantum shape transition from a spherical to a prolate shape is also observed near the ground state (T = 0.07 MeV) as the neutron
number increases.

The topography of the distribution P (T ,β, γ ) of Eq. (18)
is completely determined by the dimensionless parameter
τ = ac/b2 [25,26].6 In Fig. 6 we show τ as a function of
temperature T for the four even-mass samarium isotopes

6The stationary points of distribution (18) are axial with γ = 0 (β >

0) or γ = π/3 (β < 0) and hence can be characterized (up to an
overall scale) by a single parameter τ .

148−154Sm. In the Landau theory of quadrupole shape tran-
sitions the spherical and prolate maxima of P (T ,β, γ ) coexist
as local maxima within the interval τ = [0, 9/32] (shown
as the “mixed” region in the figure) with a first-order shape
transition between the spherical and prolate shapes occurring
at τ = 1/4. According to our AFMC calculations, these shape
transitions in 150Sm, 152Sm, and 154Sm occur, respectively, at
temperatures of T = 0.81 MeV, T = 1.03 MeV, and T = 1.29
MeV. The corresponding transition temperatures according to

0.1

1

10

100

1000

10000

-0.2 0 0.2

(a) 148Sm

P(
T

,
,

=0
)

-0.2 0 0.2

(b) 150Sm

-0.2 0 0.2

(c) 152Sm

-0.2 0 0.2

(d) 154Sm

FIG. 5. The distribution P (T ,β, γ = 0) (shown on a logarithmic scale) as a function of the axial deformation parameter β for the even-mass
samarium isotopes (a) 148Sm, (b) 150Sm, (c) 152Sm, and (d) 154Sm. The solid, dashed, and dotted lines correspond, respectively, to temperatures
of T = 0.07 MeV, T = 0.8 MeV, and T = 4 MeV.
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Solid line: the distribution P(q)
calculated from P(beta,gamma) above.
Circles:  P(q) from AFMC



Now here ’s a question:    would it be better to calculate  
the distribution of the pair of operators

(Q̂2,2 + Q̂2,�2), i(Q̂2,2 � Q̂2,�2)

These operators directly measure the v_2  components 
of the thickness function 

r2? cos(2�), r2? sin(2�)

avoiding the intrinsic shape entirely. 


