
Staggered bosons and critical 
spin chains

David Berenstein, UCSB, INT Tensor Network Workshop

Based on 2303.12837, + Work in progress with P.T. Lloyd


Research supported by



Teaching old bosons a new trick
When considering Hamiltonian formulations of physical questions


with bosonic variables (degrees of freedom),

  we need both position and momenta.


In the Hamiltonian formalism they appear on the same footing.


Can we harness this idea to make new interesting models?

Get away from the distinction of p vs x somehow.




Staggered fermions

• Fermion degrees of freedom are distributed over a lattice region (even vs 
odd sites). Other half of Kogut-Susskind.


• Helps with doublers.


• Also, Majorana fermions (half a fermion) are interesting for topological 
reasons: Kitaev.  



Goals

• Search for interesting lattice realizations of gapless field theories (towards 
minimal number of variables)


• Enjoy some symmetry protection that is not available in conventional field 
theories.


• One example: half bosons in 1D (and some generalizations)



Overview

• Hamiltonian formulation of the chiral boson.


• Half boson on a lattice: staggered bosons.


• Topology and zero modes.


• Interacting models and critical spin chains.


• Fractons.



Chiral boson is “half a boson”

∂tϕ = c∂xϕ
Only a left mover: does not give rise to modular invariant 

partition function (a.k.a. a nice Euclidean path integral). 


 

 A full boson with a nice Euclidean partition function


has both a left and a right mover.

The left mover is nevertheless a proper field theory (integer QHE).

Laughlin, Wen, Stone,…



Hamiltonian formulation

{ϕ(x), ϕ(x′ )} = ∂xδ(x − x′ )

H = ∫ c
ϕ2

2

There is no relevant deformation (polynomial) that gaps this system.

 (Easy proof, anomaly matching)

Time derivative is not the canonical conjugate!

We only need  (one bosonic variable, rather than two)ϕ

We write a Poisson bracket structure between fundamental degrees of freedom



What are these commutation relations?

c=1 (chiral) current algebra in position space

ϕ ≃ J(x+)

The right hand side is the anomaly (contact term: total derivative)

Poison brackets become commutators in quantum theory.



Turn it into a lattice

• Work idea of half boson on a lattice.


• Anomaly matching of 2d gravitational anomaly prevents a theory of a 
lattice that produces just a left mover 


• What do we get? 


• Gapless vs. gapped question. 

(cL − cR)UV = 0



How to make half a boson

x, p → q
We still want non-trivial Poisson brackets. 

Idea is that the boson degrees of freedom 


become slightly delocalized, so that a notion of   reside at different sites 

(staggered degrees of freedom).


x, p



In practice

We do a discretized version of the derivative of the delta function.

{qi, qj} = δi,j−1 − δi,j+1

There is a Sign choice: this sign choice is called left moving, 
 if we change signs, we call it right moving.



Poisson bracket matrix

ωIJ =

0 1 0 …
−1 0 1 ⋱
0 −1 0 ⋱
⋮ ⋱ ⋱ ⋱

Constant and  antisymmetric: defines a 

classical  phase space.



Hamiltonian 1.0

H =
1
2 ∑ q2

i

·qi = qi+1 − qi−1

We get a discretized version of chiral equation of motion.

·q ∼ 2∂xq

Copy/paste the chiral boson Hamiltonian



Mode expansion: Fourier in position
ω(k) = − 2 sin(k)

Nielsen-Ninomiya argument predicts doublers (anomaly matching as well). 

The system has to have a right mover!

Straightforward to quantize: raising/lowering depends

 on sign of ω(k)

The mode at k is conjugate to the mode at -k.



Left movers

Right moversFerromagnetic ordered

Antiferromagnetic  (Neel) ordered

Important:    is a single valued function of k.

Deformations don’t alter the fact that


 there are crossings of zero.

ω(k)

ω(k) = 0INFRARED



Neel ordering
qj → q̃j = (−1)jqj

Turns the left moving half boson 

into a right moving half boson: 


it changes signs in the Poisson bracket.



Non-trivial Parity invariance

qj → q̃−j = (−1)jq−j

a†
k → a†

π−k

At the level of Fourier modes



Symmetry protection
Left and right movers can not mix if translation

 invariance is preserved: they are at different


 values of k (the modes do not hybridize)

Massless bosons protected, even in the presence

 of perturbative interactions.



It is a critical theory
k = 2πn/L

ω̃ = ω(L/4π) ∼ n
Only one positive frequency mode per n (near k=0).


Negative n is negative frequency (lowering operator).

Similar statement for π − k ∼ n2π/L



Zero modes
Finite periodic lattice:

Even number of sites: even number of zero modes

(2,0) depending on if periodic (blue)


or anti periodic (red). 


These states are parity invariant



Odd number of lattice sites
Odd lattice sites: one zero mode.

For right movers, n is half integer.

REASON: a non degenerate Poisson bracket 
requires an even number of variables.

Parity is broken



Open interval

• One zero mode if odd number of sites (NN boundary conditions)


• No zero modes if even number of sites (DN boundary conditions)

These are very similar to the counting of zero modes for Majorana fermions.

Reason is similar: need to pair two Majorana fermions to get a 


“frequency”: mass matrix  for Majorana fermions is an antisymmetric matrix. 



Making half bosons from full 
bosons



Projections from a full boson into half bosons:

xi, pi → qi = pi + xi+1

wi = pi+1 + xi

Two half bosons: one “left mover” and one “right mover”. 

They share the zero modes.

2N → 2N − 2 Some modes are missing

 in the projection: conjugate variables 


to zero modes



Another projection (doubled lattice)

N(x, p) → 2N(q)
q2i = pi, q2i+1 = xi+1 − xi

2N → 2N − 1 Miss conjugate variable to zero mode.

And we also miss one zero mode?

More carefully



Zero mode for odd q missing. 


If we add it by hand, we have that

xj+1 − xj → const

The extra zero mode in the x variables is interpreted as classical winding

in the x variables



Staggered bosons automatically 
come with (continuous) winding 

configurations. 

Classical version of T-duality: 

can’t distinguish  ·ϕ ↔ ∇ϕ



Theory is still critical if we add noise

H =
1
2 ∑ η(i)q2

i

η(i) ∼ 0.7 − 1.0



Low frequency modes are delocalized
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High frequency modes localized
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Low frequency (with noise)
w

Zoom in to Eigenvalue # (ordered by w) 

Still critical (evenly spaced), 

with double degeneracy from left and right movers 
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Rough Reason
ϕ ∼ ∂χ The half boson variable is like the 


current variable in the continuum limit.

H ∼ ∫ η(x)∂χ2

It is like having a (noisy at discretization level)  curved coordinate in the IR:

we can get rid of it by a change of variables (for position on the lattice x).



Interacting models and 
Finite Hilbert spaces



Gauging translations
Translations of q are symmetries of Poisson bracket. Finite translations


 can be gauged in quantum theory.

Kj = exp(iαqj)
With Baker-Campbell-Hausdorf

KjKj+1 = γKj+1Kj



γ ≃ exp(iα2)

If  is a root of unityγ

Kn
j

Commutes with everything (central):

K becomes a “finite matrix” of roots of unity.



Can be mapped to clock-shift matrices

K2i ≃ Qi K2i+1 ∼ Pi ⊗ P−1
i+1

K2i ∼ exp(iαpi), K2i+1 ∼ exp(iα(xi+1 − xi))

Because of gauging, can choose K^n=1 (central element)

Basically: magnetic translation algebra.



Spin chain Hamiltonians

Ĥ = − ∑ Ki + K−1
i = − ∑

j
[Qj + Q−1

j + Pj ⊗ P−1
j+1 + P−1

j ⊗ Pj+1]
Critical spin chains!

Each Q,P has a Hilbert space of dimension n attached to it.

Q,P are generalizations of Pauli matrices.



KjKj+1 = γKj+1Kj

γ = − 1 → QP = − PQ

They anticommute and reduce to 1 qubit per Q,P pair



Simplest cases
Critical Ising in a magnetic field ( ).


Three state Potts at criticality ( )


Spin chains at criticality with c=1 ( )

For n > 3

γ = − 1

γ3 = 1

γn = 1



n=4 is two copies of Ising

n>4 is BKT: there is a U(1) current algebra that survives

to the IR. 

Doing numerics on it with P.T. Lloyd



Higher dimensions
Add an extra dimension, keep half bosons on lattice sites and pick translation


invariant non-vanishing bracket with all nearest neighbors.

{qi,j, qℓ,m} = (δi,ℓ−1 − δi,ℓ+1)δj,m + δi,ℓ(δj,m−1 − δj,m+1)

+

+

-

-



ω( ⃗k) = − 2 sin(kx) − 2 sin(ky)
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1.5 Lines of zero modes that cross.

Protected by “single validness of ”


These are gapless fracton models 

( extra symmetries on lattice)

ω(k)

We get the following dispersion relation

Suggests we rotate lattice by 45 degrees.



Can also be mapped to P,Q matrices upon periodic gauging. 
Split even and odd lattice sites  

(face centered 2 D lattice) 

P−1
k,j ⊗ P−1

k,j+1 ⊗ Pk+1,j ⊗ Pk+1,j+1

Qk,j

+ -

This cannot be interpreted as hopping:

 “strongly coupled” in hopping intuition:


does look like a plaquette.



Recap

• Half-bosons in 1D: gapless and symmetry protected if translation 
invariance is preserved.


• Result is robust against “disorder”: gaplessness persists.


• On periodic identification of half bosons one automatically gets critical 
spin chains (at the exact BKT transition point)


• Leads to interesting fracton (free+interacting) 2+1 D theories.


