Searching for Light Dark Matter

Nicole Bell

g [HE UNIVERSITY OF R
MELBOURNE > ! %TTER
PARTICLE PHYSICS

INT Program on Dark Matter in Compact Objects, Stars, and in Low Energy Experiments, U.Washington, Seattle — 4 August 2022 — Nicole Bell, U.Melbourne



Collaborators

Giorgio Busoni, James Dent, Matthew Dolan, Bhaskar Dutta, Sumit Ghost, Jason Kumar,
Rafael Lang, Theo Motta, Jayden Newstead, Maura Ramirez-Quezada, Alex Ritter,
Subir Sabharwal, Sandra Robles, Anthony Thomas, Michael Virgato, Tom Weiler

INT Program on Dark Matter in Compact Objects, Stars, and in Low Energy Experiments, U.Washington, Seattle — 4 August 2022 — Nicole Bell, U.Melbourne



Outline:

» Direct detection of light dark
» Migdal effect
» Inelastic dark matter

» Dark matter capture in Stars
» Kinetic heating

» Indirect detection limits on annihilation of light dark matter
» Annihilation to neutrinos
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Dark Matter Direct
Detection

_—Top Photosensor

Array
Anode (H—=F

Xenon Gas

-« Gate

~ U/ iaui

\D,?CQM/NG Liquid Xenon
R 77Q\E\

PARTICLE

— Bottom Photosensor
Array

Image: J. Aalbers et al. arXiv:2203.02309

INT Program on Dark Matter in Compact Objects, Stars, and in Low Energy Experiments, U.Washington, Seattle — 4 August 2022 — Nicole Bell, U.Melbourne




Direct Detection limits

Spin-independent (Sl) interactions Spin-dependent (SD) interactions
—> strong bounds due to coherent enhancement > weaker bounds
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Dark matter direct detection — low mass challenge
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New strategies to probe dark matter scattering

» New analyses to probe lower mass dark matter using existing detectors

o New signals in addition to, or instead of, nuclear recaoil
o Migdal effect, electron scattering, “boosted” dark matter, ...

» Complementary constraints from dark matter capture in stars
o Heating (Neutron stars, White Dwarfs) or detection of annihilation products
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Migdal effect

The ionization of an atom following a nuclear recoil

Image: M. Dolan et al.

- Useful in cases where the nuclear recoil is below threshold (i.e., low mass dark matter)

and we can instead detect the ionization signal

Migdal electrons: Egp max

Nuclear recoil: ER max =

Target mass
DM-nucleon reduced mass
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Bremsstralung

N N

¥+N->y+N (elastic scattering)

X+N->y+N+vy (inelastic)

If the elastic nuclear recoil is below threshold, is a photon brem signal detectable?

In principle, yes. In fact, the kinematics for Migdal and Brem are the same.
Er

But, the rates are suppressed compared to Midgal by a factor of ~ —
T

NFB, Dent, Newstead, Sabharwal & Weiler, PRD, arXiv:1905.00046
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Migdal effect
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Calibrating the Migdal effect

d’R  d°Ry
dEyrdE; dEnpdE;

X |Zion|2
= (standard DM-nucleus recoil rate) x (ionization rate)

Migdal effect has not yet been observed
- Need to calibrate theoretical uncertainties with experimental measurements
- The MIGDAL experiment aims to do this using a high energy neutron source

But this will not achieve the aim of a calibration in the regime relevant for dark
matter searches.
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Calibrating the Migdal effect at low recoil energy

Neutron beam fired at Xenon target

Neutron energy below 30 keV is optimal
for keeping majority of elastic scatters

‘gﬁ below experimental thresholds (1-5 keV).
P
s ]
2 Energy above 10 keV is away from most
& resonances.

—ETh=0keV

v Emp=1keV

<=+ Emy=5keV Assume a neutron energy of ~ 17 keV

0 100 102 10°
Neutron energy, £, (keV) . :
NFB, Dent, Lang, Newstead, Ritter, PRD, arXiv:2112.08514
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Source Cale. ratio
neutron (17 keV)|6.0 x 10~*

M igd a I Ca I i b rati O n reactor neutrinos| 1.7 x 1074

SNS neutrinos | 1.5 x 1072
1Cr neutrinos |5.4 x 107°
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Migdal calibration
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Inelastic dark matter
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Inelastic scattering

Standard direct detection searches look for DM-nucleon elastic scattering
The Migdal effect is type of inelastic scattering.

Dark matter-nucleus scattering can exhibit inelasticity in various ways:
* by exciting a low-lying nuclear state

 Migdal effect
* changing the dark matter particlemass: y;+ n— y, + n
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Inelastic dark matter
‘ X1 ‘ X2

Two almost degenerate dark matter states:
My My + 0m

Inelastic because the y; — x4 couple is absent and hence the dominant interaction is

X1 = XN

Kinematically forbidden unless mass splitting is small, dm < m

Direct detection experiments restricted to keV mass splittings, e.g., é <180 keV for Xenon
Bigger mass splittings accessible if DM is quasi-relativistic

DM scattering in neutron stars: dm ~ 300 MeV

* Boosted (e.g. Cosmic Ray upscattered) DM: ém ~100 MeV
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NFB, Dent, Dutta,

Direct Detection of Inelastic DM via Migdal Effect “e”

arXiv:2103.05890
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Boosted Dark Matter

Halo dark matter
- highly nonrelativistic
- low energy nuclear recoils in direct detection experiments

Could there be a population of higher-energy dark matter?

o Boosted DM produced from decay/annihilation of heavier dark states

o Cosmic-ray upscattered dark matter (“inverse direct detection”)

o DM produced in cosmic ray interactions in the atmosphere (“CR beam dump”)
o Solar reflected dark matter

o Supernova dark matter (light dark matter produced in galactic supernova)
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Cosmic ray up-scattered dark mater

Bringmann & Pospelov, PRL 2019
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NFB, Dent, Dutta, Ghosh, Kumar,

Cosmic-ray Upscattered Inelastic DM iarosooses
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Dark Matter Capture in Stars
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Dark Matter Capture in Stars

-> an alternative approach to Dark Matter Direct Detection experiments

Dark matter

particles * Dark matter scatters, loses energy,

becomes gravitationally bound to star

* Accumulates and annihilates in centre of
the star = neutrinos escape

In equilibrium:
Annihilation rate = Capture rate
- controlled by DM-nucleon scattering

The Sun Q Cross section
Neutrinos produced from - probes the same quantity as dark
decays of annihllation matter direct detection experiments

products may be detected.
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Capture, annihilation, evaporation

DM number density depends on Capture, Annihilation & Evaporation rates:

dN
X _ 2

Neglecting evaporation (negligible in the Sun for m, > 4 GeV) we have
C t
> N, (t) = \/:tanh (—) where Teq = 1/VCA
A Teq

Capture-annihilation equilibrium when t > 7,,: Cgnn = %AN)? = %C
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Neutron Stars

Due to their extreme density, neutron stars capture dark matter very efficiently.

Capture probability saturates at order unity when the
cross section satisfies the geometric limit

m, _
Oy, ~ TR? — ~ 10™*>cm?
M,

Heats the star to ~ 2000 K (Baryakhtar et al,PRL 2017)
- Kinetic energy transferred in capture/thermalisation
- Rest mass energy transferred if DM annihilates

INT Program on Dark Matter in Compact Objects, Stars, and in Low Energy Experiments, U.Washington, Seattle — 4 August 2022 — Nicole Bell, U.Melbourne



Neutron Star Heating: Advantages

DM velocity Non-rel Quasi-rel.
VKL v~05c
Cross-sections Can be suppressed by  Unsuppressed
velocity/momentum
Momentum transfer < 0(100 MeV) 0(10 GeV)
Density Normal matter Extremely high density

* no velocity/momentum suppression = sensitive to interactions that direct detection cannot probe
* not limited by recoil detection thresholds = sensitive to very low mass DM

* Similar sensitivity to Sl and SD scattering
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NFB, Busoni, Robles & Virgato,

Improved capture calculations AP 06, 528 00) Mo o3 ot 2021

Early treatments of the capture process used various simplifying assumptions.

Important physical effects include:

o Consistent treatment of NS structure
* Radial profiles of EoS dependent parameters, and GR corrections by solving the TOV eqns.
o Gravitational focusing
DM trajectories bent toward the NS star
o Fully relativistic (Lorentz invariant) scattering calculation
* Including the fermi momentum of the target particle
o Pauli blocking -
e Suppresses the scattering of low mass dark matter ot
o Neutron star opacity
e Optical depth
o Multi-scattering effects
* For large DM mass, probability that a collision results in capture is less than 1
o Momentum dependence of hadronic form factors
o Nucleon interactions

} NFB, Busoni, Motta, Robles, Thomas, & Virgato, PRL 2021
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NFB, Busoni, Robles & Virgato,

Improved capture calculations AP 06, 528 00) Mo o3 ot 2021

Early treatments of the capture process used various simplifying assumptions.

Important physical effects include:

o Consistent treatment of NS structure

See talks from

Sandra Robles and Michael Virgato

later in the program

e Optical depth ~—
o Multi-scattering effects

* For large DM mass, probability that a collision results in capture is less than 1
o Momentum dependence of hadronic form factors

. . NFB, Busoni, Motta, Robles, Thomas, & Virgato, PRL 2021
o Nucleon interactions
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Kinetic Heating Sensitivity (projected limits)

Ball-park sensitivity
= geometric
cross section
~10~*>cm?

Pauli blocking from
degenerate neutrons
restricts scattering
when mpy < 1 GeV.
Need: momentum
transfer > neutron
Fermi momentum

5 Anzuini, NFB, Busoni, Motta, Robles, Thomas & Virgato, arXiv:2108.02525
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Kinetic Heating Sensitivity: nucleon scattering

Spin-Independent (SI) Spin-Dependent (SD)
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Leptons in Neutron Stars

NS core composition (BSk24-1)

Beta equilibrium in the core
determines the composition:

muons
: electrons  Degenerate neutrons
5.09%
B6.37% .
neutrons protons * Smaller and approximately equal

electron and proton abundances

* Small muon component
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Kinetic Heating Sensitivity: lepton scattering
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White Dwarf Heating from DM Capture

Advantages of White Dwarfs over Neutron Stars:

* Existence of observational data!

* Physics of WD’s much better constrained than NSs
* Well-defined mass-radius relation
* Less uncertainty of the equation-of-state
* Better understood luminosity-age relations

We can equate observed luminosity of WD in DM rich environment with the heating rate
due to DM annihilation.

We will consider WD’s in the M4 globular cluster, assuming M4 formed in a DM subhalo.
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White dwarfs in M4 globular cluster

Best limits come from heavy stars (large capture rate) with low luminosity.

24 M4 WD observations Teu(K)
10 AL B L L BB BN LELELE LA B N BRI SR BB ™ 13500
- D1 m, = 100 MeV D1 m, = 10GeV
10321 A R 12000
3
o f Geometric limit Geometric limit p 10500
|
- 103 N {9000
< 1031 | )2 T 17500
L M= T
K L 2660 | 6000
30 L - A = s
100 LT e 4500
L_‘l;.‘t':-'ﬂf -
1029 _. 3000
0.2 04 06 08 10 12 14 0.2 04 06 08 10 1.2 14 1.6
M, (Mg) M, (Mg)

NFB, Busoni, Ramirez-Quezada, Robles & Virgato, arXiv:2104.14367
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White dwarfs in M4 globular cluster

DM-nucleon scattering DM-electron scattering
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/ collider \

WIMP parameter space =)

X

DM must annihilate efficiently in the early direct
Universe but to have escaped detection in detection
direct, indirect and collider searches

T @m
Search complementarity: \ indirect detection /

Direct detection Suppressed if scattering cross section depends on spin,
velocity or momentum

Indirect detection Suppressed if annihilation cross section is p-wave

Collider production Suppressed if DM couples to the SM through hidden-sector
portal interactions (e.g. a dark photon mediator)
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Indirect detection constraints = Leane, etal, arxiv:1805.10305

Fermi dSph limits Annihilation to “visible” SM states
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Annihilation to neutrinos

o Indirect detection limits — typically neglect the possibility that dark matter may
annihilate to “invisible” or hard-to-detect final states.

X ] “Visible” states:
All Standard Y, 99, eTe™, ...
> Model — +
hinal states “Invisible” states:
A ’ 7]

o Can DM annihilate to neutrinos without producing charged fermions?
> Yes, e.g., “neutrino portal” models
o Annihilation to neutrinos — can we probe thermal-relic cross sections?
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Hyper-Kamiokande soperKarioka

o Next generation water-Cherenkov detector.
o Currently under construction
o Fiducial volume:

 Hyper-K: 188 kT
e Super-K: 22KkT

L
:
S
4.
%,
¥
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Hyper-K simulation

Neutrino flux from DM annihilation
e DarkSUSY

Atmospheric neutrino background
* Honda et al —above 100 MeV
* Fluka —below 100 MeV Next generation
water-Cherenkov detector.

Neutrinos cross sections
e GENIE
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Dark matter annihilation signal

NFW, 2QC — 90°

8"
ddyrq (ov) Jaa AN,
dE, 8tm3,, dE,
Annihilation k
cross section Spectrum per
annthilation
] LI -
Integral of 1023 1024

(density)? along J(GeViecm™)
line of sight

NFB, Dolan, Robles, arXiv: 2005.01950
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Dependence on halo profile is mild, as we undertake an all-sky analysis
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Dark matter annihilation signal + background
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Cross section limits: yx — vv

xx — v, 20 yrs, 90% CL
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Cross section limits: yx = u 'y~

o2 xx—pp, 20 yrs, 90% CL
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Conservative indirect detection limits

Annihilation to “invisible” SM states Annihilation to “visible” SM states
. R. Leane, et al., arXiv:1805.10305
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DM signal + DSNB (diffuse supernova neutrino background)
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DSNB + DM + atmospheric nu background

m, =20MeV, T; =6MeV
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Summary

» Key challenges in the detection of dark matter scattering:
o Next generation experiments will reach the “neutrino floor”
o Low mass DM signals fall below experimental thresholds

» New approaches:
o New techniques, or new analyses using existing detectors, such as Migdal.

» Alternative approach: dark matter capture in stars:
o heating of neutrons stars/white dwarfs — limits extend to low mass DM.

» Complementary information from indirect detection
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Backup slides
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Cooling and Heating

In the standard NS cooling scenario, nucleons and charged leptons in beta equilibrium

dT*®

_ 0 0 00 o
C ar —L, — Ly +Lpy + Lother heating

= cooling by v and y emission + heating due to dark matter

* Early cooling is dominated by neutrino emission
* Photon emission dominates at late times

Coolest known neutron star (PSR J2144-3933) has a temperature of 4.2 x 10* K.
Astrophys.J). 874 (2019) no.2, 175

* Old isolated neutron stars should cool to: 1000 K after ~ 10 Myr
100 K after ~ 1 Gyr
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Two critical effects neglected in all previous treatments:

Nucleon Structure and Strong Interactions in Dark Matter Capture in Neutron Stars

Nicole F. Bell,}:* Giorgio Busoni,> T Theo F. Motta,? ¥ Sandra
Robles,!* 8 Anthony W. Thomas,?' Y and Michael Virgato!s **

Phys. Rev. Lett. 127, 111803 (2021)

1. Momentum dependence of hadronic matrix elements:
* Nuclear recoil experiments — calculated in zero momentum transfer limit
* Neutron star scattering — momentum transfer ~ 10 GeV = couplings suppressed

2. Nucleon Interactions:
* Free fermi gas approach neglects strong interactions of nucleons
* Correct approach uses an effective nucleon mass

Changes the answers by up to 3 orders of magnitude!
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