INT PROGRAM INT-24-2A

QCD at the Femtoscale in the Era of Big Data

June 10, 2024 - July 5, 2024

Extraction of Transverse Momentum Dependent Distributions

Patrick Barry, Argonne National Lab

barry@anl.gov

Motivation

- All visible matter is made up of atoms
- The mass of these atoms are largely from the nucleus
- The nucleus is made up of protons and neutrons

© Encyclopædia Britannica, Inc.

Motivation

- In turn, these protons and neutrons are made of quarks and gluons
- We want to study the structure of the nuclear matter

What's the problem?

Quarks and gluons are **not** directly measurable because of **color** confinement!

Have to be inferred from experimental data

How to handle this

- We make use of QCD, which allows us to study the structure of hadrons in terms of partons (quarks, antiquarks, and gluons)
- Use factorization theorems to separate hard partonic physics out of soft, nonperturbative objects to quantify structure

Factorization Theorems

- Deep Inelastic Scattering (DIS) $|\mathcal{M}|^2$ at Leading Order shown to the right
- At large $Q^2 = -q^2$, can decouple the soft part from the hard part
- At short distances, virtual photon picks out individual parton

Strong coupling constant

• Because of large enough energy scales, we can safely compute hard coefficients perturbatively in α_S

Game plan

What to do:

- Define a structure of hadrons in terms of quantum field theories
- Identify physical observables that can be theoretically factorized with controllable approximations, or factorizable lattice QCD observables
- Perform global QCD analysis as structures are universal and are the same in all processes

Complicated Inverse Problem

• Factorization theorems involve convolutions of hard perturbatively calculable physics and non-perturbative objects

$$\frac{d\sigma}{d\Omega} \propto \mathcal{H} \otimes \boldsymbol{f} = \int_{x}^{1} \frac{d\xi}{\xi} \mathcal{H}\left(\frac{x}{\xi}\right) \boldsymbol{f}(\xi)$$

• Parametrize the non-perturbative objects and perform global analysis

Collinear structure – parton distribution function (PDF)

- Describes the collinear momentum distributions of quarks and gluons
- Partons have momentum along the direction of the hadron

Collinear structure – parton distribution function (PDF)

• Evolution in the renormalization scale according to DGLAP:

$$\frac{\partial f(x,\mu^2;\boldsymbol{\theta})}{\partial \log \mu^2} = \int_x^1 dz \ \mathcal{P}\left(\frac{x}{z},\alpha_S(\mu^2)\right) f(x,\mu^2;\boldsymbol{\theta})$$

 In practice, we implement the evolution in Mellin space

Transverse momentum dependent structure (TMD PDF)

 Describes the collinear momentum and transverse momentum that partons carry

How to access from current experiments?

Semi-inclusive deep inelastic scattering (SIDIS)

Drell-Yan (DY) Q, q_T

ົງ

 $f_{q/\mathcal{N}}(x_1, m{k}_{\perp 1}^2; \mu, \zeta_1) f_{ar{q}/\mathcal{N}}(x_2, m{k}_{\perp 2}^2; \mu, \zeta_2) \delta^{(2)}(m{k}_{\perp 1} + m{k}_{\perp 2} - m{q}_T)$

How to practically build the cross section

- Practically, the TMD is more convenient to work in the Fourierconjugate space
- Evolution equations in μ and ζ become much simpler

$$\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu,\zeta) = (2\pi)^2 \int d^2 \boldsymbol{k}_T e^{-i\boldsymbol{b}_T \cdot \boldsymbol{k}_T^2} f_{q/\mathcal{N}}(x,\boldsymbol{k}_\perp^2;\mu,\zeta)$$

$$\frac{d^{3}\sigma}{dQ^{2}dydq_{T}^{2}} = \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s}\mathcal{P}\sum_{q}H_{q\bar{q}}^{\mathrm{DY}}(Q,\mu_{Q})\int\frac{d^{2}\boldsymbol{b}_{T}}{(2\pi)^{2}}e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{q}_{T}}\tilde{f}_{q/\mathcal{N}}(x_{1},b_{T};\mu,\zeta_{1})\tilde{f}_{\bar{q}/\mathcal{N}}(x_{2},b_{T};\mu,\zeta_{2})$$

• To connect with measurements, typical choices: $\mu = Q$, $\zeta = Q^2$

Operator product expansion (OPE)

• At small b_T , the TMD PDF can be described in terms of its OPE:

$$\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu_0,\zeta_0) = \sum_j \int_x^1 \frac{d\xi}{\xi} \tilde{\mathcal{C}}_{q/j}(x/\xi,b_T;\mu_0,\zeta_0) f_{j/\mathcal{N}}(\xi;\mu_0)$$

where \tilde{C} are the Wilson coefficients, and $f_{q/N}$ is the collinear PDF

• Here, sum over all flavors of quarks and gluons with nonzero contributions in \tilde{C} for off-diagonal components at $\mathcal{O}(\alpha_S)$

Operator product expansion (OPE)

$$\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu_0,\zeta_0) = \sum_j \int_x^1 \frac{d\xi}{\xi} \tilde{\mathcal{C}}_{q/j}(x/\xi,b_T;\mu_0,\zeta_0) f_{j/\mathcal{N}}(\xi;\mu_0)$$

- \tilde{C} contains terms proportional to $\log\left(\frac{\mu_0 b_T}{c_1}\right)$ and $\log\left(\frac{\zeta}{\mu^2}\right)$, where $C_1 = 2e^{\gamma_E}$
- To eliminate logarithms, choose initial scale $\mu_0 = C_1/b_T$ and $\zeta_0 = C_1^2/b_T^2$
- For each b_T , there is a new initial scale μ_0
- Evolve $\mu_0 \rightarrow \mu$ and $\zeta_0 \rightarrow \zeta$ for each b_T

b_* prescription – a large b_T regulator

- When b_T gets too large, the scale μ_0 becomes too small to evaluate the TMD perturbatively
 - Have to regulate the large b_T behavior
- A common approach is the b_* -prescription

$$\mathbf{b}_*(\mathbf{b}_T) \equiv rac{\mathbf{b}_T}{\sqrt{1+b_T^2/b_{\max}^2}}.$$

Must choose an appropriate value; a transition from perturbative to non-perturbative physics

 $\mu_b = \frac{U_1}{b_{\pi}(\mathbf{b}_T)}.$

- At small b_T , $b_*(b_T) = b_T$
- At large b_T , $b_*(b_T) = b_{\max}$

Evolution equations for the TMD PDF

Introduction of non-perturbative functions

• Because $b_* \neq b_T$, have to non-perturbatively describe large b_T behavior

Completely general – independent of quark, hadron, PDF or FF

$$g_K(b_T; b_{\max}) = - ilde{K}(b_T, \mu) + ilde{K}(b_*, \mu)$$

Non-perturbative function dependent in principle on flavor, hadron, etc.

$$e^{-g_{q/\mathcal{N}(A)}(x,b_T)} = \frac{\tilde{f}_{q/\mathcal{N}(A)}(x,b_T;\mu,\zeta)}{\tilde{f}_{q/\mathcal{N}(A)}(x,b_*;\mu,\zeta)}$$

Putting all the pieces together

• A single TMD PDF

 \tilde{C} are perturbatively calculable

Explicit dependence on collinear PDF

In practice, integral is done with a Mallin invaraian

Perturbatively calculable evolution, can be saved in storage.

If we use ζ -prescription, the integral over μ' is trivial

$$\begin{split} \tilde{f}_{q/\mathcal{N}}(x, b_T; \mu, \zeta) = & \sum_j \int_x^1 \frac{d\xi}{\xi} f_{j/\mathcal{N}}(\xi; \mu_{b_*}) \tilde{C}_{q/j}\left(\frac{x}{\xi}, b_*; \mu_{b_*}, \mu_{b_*}^2\right) / \\ & \text{In practice, integral is done with a Mellin inversion} \\ & \text{ively calculable} \\ \text{, can be saved} \\ \text{, can be saved} \\ \tilde{\zeta} \text{-prescription,} \\ \text{al over } \mu' \text{ is} \end{split}$$

TMD factorization in Drell-Yan

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^{2}} = \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s}\sum_{j,jA,jB}H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_{Q},a_{s}(\mu_{Q}))\int \frac{\mathrm{d}^{2}b_{\mathrm{T}}}{(2\pi)^{2}}e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}}$$

$$\times e^{-g_{j/A}(\boldsymbol{x}_{A},b_{\mathrm{T}};\boldsymbol{b}_{\mathrm{max}})}\int_{\boldsymbol{x}_{A}}^{1}\frac{\mathrm{d}\xi_{A}}{\xi_{A}}f_{jA/A}(\xi_{A};\mu_{b_{*}})\tilde{C}_{j/jA}^{\mathrm{PDF}}\left(\frac{\boldsymbol{x}_{A}}{\xi_{A}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right)$$
Perturbative pieces
$$\times e^{-g_{j/B}(\boldsymbol{x}_{B},b_{\mathrm{T}};\boldsymbol{b}_{\mathrm{max}})}\int_{\boldsymbol{x}_{B}}^{1}\frac{\mathrm{d}\xi_{B}}{\xi_{B}}f_{jB/B}(\xi_{B};\mu_{b_{*}})}\tilde{C}_{j/jB}^{\mathrm{PDF}}\left(\frac{\boldsymbol{x}_{B}}{\xi_{B}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right)$$

$$\times \exp\left\{-g_{K}(b_{\mathrm{T}};b_{\mathrm{max}})\ln\frac{Q^{2}}{Q_{0}^{2}}+\tilde{K}(b_{*};\mu_{b_{*}})\ln\frac{Q^{2}}{\mu_{b_{*}}^{2}}+\int_{\mu_{b_{*}}}^{\mu_{Q}}\frac{\mathrm{d}\mu'}{\mu'}\left[2\gamma_{j}(a_{s}(\mu'))-\ln\frac{Q^{2}}{(\mu')^{2}}\gamma_{K}(a_{s}(\mu'))\right]\right\}$$
Non-perturbative piece of the CS kernel

TMD factorization in Drell-Yan

• We combine the two b_{T} -space TMD PDFs into \widetilde{W}

$$\frac{d^3\sigma}{dQ^2dydq_T^2} = \frac{4\pi^2\alpha^2}{9Q^2s}\mathcal{P}\sum_q H_{q\bar{q}}^{\mathrm{DY}}(Q,\mu_Q)\int \frac{d^2\boldsymbol{b}_T}{(2\pi)^2}e^{i\boldsymbol{b}_T\cdot\boldsymbol{q}_T}\widetilde{W}(b_T,Q,s,y;\mu,\zeta)$$

- Notice that \widetilde{W} is independent of q_T
- Simplify according to Hankel transform

$$\frac{d^3\sigma}{dQ^2dydq_T^2} = \frac{4\pi^2\alpha^2}{9Q^2s}\mathcal{P}\sum_q H_{q\bar{q}}^{\mathrm{DY}}(Q,\mu_Q)\int_0^\infty db_T b_T J_0(b_Tq_T)\widetilde{W}(b_T,Q,s,y;\mu,\zeta)$$

Fixed target DY data example – E288 400 GeV

- $E \frac{d^3\sigma}{dp^3} = \frac{d^2\sigma}{\pi dy dq_T^2}$
 - We must **integrate** over the range in Q^2
 - Only fit $q_T < 0.2 Q$
 - In this dataset, we are given a rapidity value y = 0.03
 - Evaluate the differential cross section at central points in q_T bin
 - Uncertainties are relatively large
 - 25% normalization uncertainty

- For each bin of Q, we evaluate at 5 Q interval points
- For each of those Q points, we compute \widetilde{W} as a function of b_T along 100 points from 10^{-4} to $11~{\rm GeV^{-1}}$
- Build a 1d interpolated version of \widetilde{W} over b_T
- Perform b_T integration for the q_T values from the dataset
- Perform Q integration

Parallelization details

- Two parallelized tasks:
 - 1. Computation of \widetilde{W} for all kinematic points all (b_T, Q, s, y) needed for interpolation
 - 2. Performing the integral over b_T for all the q_T points
- Upon initialization run over all kinematics and create an empty storages for each kinematic point

Computation of differential cross sections on master node

- Takes information from storage from the workers
- Interpolates over Q for each bin
- Integrates over Q
- Sends value to the residuals

Fixed target performance

- These computations are relatively quick and efficient
- 8 workers on 16 cpu allocation
- 224 data points
- 91.2 seconds (CSS prescription)
- 13.1 seconds (ζ -prescription)

Collider data - LHC

- These data are *much* more precise than the fixed-target counterparts
- Spectrum is peaked around the Z-boson, which is a narrow peak near Q = 91 GeV
- Optimized TMD region goes to larger q_T more oscillatory integrand

Collider data - LHC

• Reported data are more integrated quantities

$$\frac{d\sigma}{dq_T} = \frac{1}{\Delta q_T} \int dq_T \int dQ \int dy \mathcal{P}(Q, y, q_T) \int db_T b_T J_0(b_T q_T) \widetilde{W}(Q, y, b_T, s)$$

- Instead of a given y value, we have to integrate over the range provided
- Bins in q_T are wider, so performing a bin averaging becomes necessary
- Here, we introduce the fiducial volume \mathcal{P} this is computable when we know the grid points to use no parameter dependence

Strategy to compute b_T integral efficiently

- Bessel function is highly oscillatory
- Subdivide integrations over b_T at the nodes of the Bessel function
- Compute integrations for each region and sum

Implementation

• Pass through the bTnodes in argument

```
bTmin =1e-5
bTmax =10
if len(bTnodes)==0:
    W=quad(get_WZ_integrand,args,bTmin,bTmax,ngrid=4,eps_rel=1e-10,eps_abs=1e-10)
else:
    flag='calculating'
    W=quad(get_WZ_integrand,args,bTmin,bTnodes[0],ngrid=4,eps_rel=1e-10,eps_abs=1e-10)
    for i in range(len(bTnodes)-1):
        if flag=='finished': continue
        intgrl=quad(get_WZ_integrand, args, bTnodes[i], bTnodes[i+1], ngrid=4, eps_rel=1e-10, eps_abs=1e-10)
        W+=intgrl
        if np.abs(intgrl)/W < 1e-4: flag='finished'</pre>
    if flag!='finished':
        W+=quad(get_WZ_integrand,args,bTnodes[-1],bTmax,ngrid=4,eps_rel=1e-10,eps_abs=1e-10)
born=2*pT/2/np.pi
return born*W
```

Implement a truncation if the next integral is relatively small

- Stop computing integrations after certain point
- Assume rest of integral = 0

Strategy – collider data

- Parallelization is same task force as the fixed target regime
- We set a predefined grid of (Q, y) to compute $\frac{d^3\sigma}{dQ^2dydq_T^2}$, and interpolate over the 2d grid to compute the Q and y integrals using a fixed Gaussian quadrature for a given q_T
- Hard code the q_T integrations with fixed Gaussian quadrature points
- To speed up test the accuracy of fewer grid points against the uncertainty on the data

Reducing number of grid points

- As a baseline, we use 50 points in y
 - We can see that 10 y points has an order of magnitude less % difference than the uncertainty on the data

Performance of the collider regime

- Example on the ATLAS 8 TeV dataset (most precise): 0 < |y| < 0.4
- 8 workers on 16 cpu allocation
- 8 data points
- (CSS): ~180 seconds \rightarrow ~50 seconds: 50 y points \rightarrow 5 y points
- (ζ): ~140 seconds \rightarrow ~15 seconds: 50 y points \rightarrow 5 y points

Varying number of workers

• Example for low energy datasets – not really sure how to interpret

Preliminary results

- Open both collinear and TMD parameters
- Fit to all TMD data and DIS and DY data more conservative cuts
- No bootstrap yet on the data only fits to central values
- We need more results to make any conclusions, but we are making progress

6 replicas

Zeta - NLO+N3LL - fit TMDs and PDFs to collinear and TMD data

Fixed target

	expt	obs	npts	chi2/npts	Z-score	norm_e	
dy_qT-12881	E288	Ed3sigma/dp3	31	0.607475	1.724092	0.66197	
dy_qT-12882	E288	Ed3sigma/dp3	41	0.983002	0.003593	0.640664	
dy_qT-12883	E288	Ed3sigma/dp3	64	0.889252	0.591703	0.71856	
dy_qT-10605	E605	Ed3sigma/dp3	43	1.112895	0.576295	0.713713	
dy_qT-10772	E772	Ed3sigma/dp3	45	3.291467	7.097962	0.674534	

Te	evatron					
	expt	obs npts	chi2	/npts Z	-score	norm_e
dy_qT-90001	CDF	dsig/dpT	30	0.780858	0.832231	0.992312
dy_qT-90002	CDF	dsig/dpT	36	1.949567	3.259774	1.051179
dy_qT-90003	D0	dsig/dpT	14	0.711364	0.723025	1.079405

	exp	t ods	npts	chi2/npts	Z-score	norm_e
dy_qT-70101	ATLAS	dsig/dpT	8	5.232315	4.679255	0.983501
dy_qT-70102	ATLAS	dsig/dpT	8	1.79634	1.456697	0.983501
dy_qT-70103	ATLAS	dsig/dpT	8	1.402437	0.879483	0.983501
dy_qT-70104	ATLAS	dsig/dpT	8	3.624246	3.415888	0.983501
dy_qT-70105	ATLAS	dsig/dpT	8	1.987644	1.708013	0.983501
dy_qT-70106	ATLAS	dsig/dpT	8	1.295692	0.705334	0.983501
dy_qT-30001	LHCb	dsig/dpT	10	1.062624	0.286185	0.978208
dy_qT-40001	LHCb	sig	10	1.41666	0.971992	0.992076
dy_qT-50001	LHCb	sig	10	1.902854	1.751828	0.986994
dy_qT-20011	CMS	dsig/dpT	15	3.150494	3.986823	0.966343
dy_qT-20012	CMS	dsig/dpT	15	1.284569	0.835131	0.966343
dy_qT-20013	CMS	dsig/dpT	15	0.677952	0.874066	0.966343
dy_qT-20014	CMS	dsig/dpT	15	0.469023	1.713193	0.966343
dy_qT-20015	CMS	dsig/dpT	15	0.570745	1.277703	0.966343

Zeta - NLO+N3LL - fit TMDs and PDFs to collinear and TMD data

DIS

	expt	obs	npts	chi2/npts	Z-score	norm_e
idis-10010	SLAC	F2	218	1.047646	0.521561	1.051022
idis-10016	BCDMS	F2	348	1.184574	2.32412	0.994994
idis-10020	NMC	F2	273	1.752686	7.25825	1.03092
idis-10026	HERA II NC e+ (1)	sig_r	402	1.588192	7.128131	
idis-10027	HERA II NC e+ (2)	sig_r	75	1.157858	0.973823	
idis-10028	HERA II NC e+ (3)	sig_r	259	0.979654	0.203777	
idis-10029	HERA II NC e+ (4)	sig_r	209	1.071991	0.751404	
idis-10030	HERA II NC e-	sig_r	159	1.641513	4.852066	
idis-10031	HERA II CC e+	sig_r	39	1.135045	0.646196	
idis-10032	HERA II CC e-	sig_r	42	1.032389	0.219479	
idis-10011	SLAC	F2	228	0.828944	1.910629	1.052565
idis-10017	BCDMS	F2	254	1.19829	2.131071	1.023282
idis-10021	NMC	F2d/F2p	174	1.111182	1.036343	1.002163

expt	obs	npts	chi2/npts	Z-score	norm_e
E866	M3 dsig/dM dxF	184	1.405966	3.498452	1.086221
E866	sigpd/2sigpp	15	2.100541	2.432061	0.992887
E906	sigpd/2sigpp	6	1.032193	0.248422	0.999449

Т	ota	
		•

DY

	expt	obs	npts	chi2/npts	Z-score	norm_e
total			3342	1.295128	inf	

dy-10001

dy-20001

dy-20002

Zeta - NLO+N3LL - fit TMDs and PDFs to collinear and

49

Zeta - NLO+N3LL - fit TMDs and PDFs to collinear and TMD data Resulting PDFs

Summary

- Computational time is right now a bottleneck in our simultaneous extractions of TMDs and PDFs
- Precision of the theoretical calculation must match or be better than the uncertainties of the data
- More replicas are needed to draw meaningful conclusion from preliminary results
- We need to more rigorously explore the perturbative accuracies and the way we implement the TMDs

Backup

Drell-Yan kinematics

- Q^2 is the invariant mass of the virtual photon
- y is the rapidity, $y = \frac{1}{2}\log \frac{q^+}{q^-}$ is a measure of how forward/backward the $q\bar{q}$ annihilation occurred relative to the beam line

p

- q_T is the transverse momentum of the virtual photon, which is inherited by the $\mu^-\mu^+$
- *s* is the incoming center of mass energy squared of the hadrons
- $x_1 = Q/\sqrt{s}e^y$, $x_2 = Q/\sqrt{s}e^{-y}$ are the partonic momentum fractions relative to the parent hadrons
- ${\mathcal P}$ is a fiducial volume more on this later

Deriving nonperturbative functions

• Start with the ζ -scale evolution – either for b_T or b_*

$$ilde{f}_{q/\mathcal{N}}(x, b_T; \mu, \zeta) = ilde{f}_{q/\mathcal{N}}(x, b_T; \mu, Q_0^2) \exp\left(ilde{K}(b_T; \mu) \log rac{\sqrt{\zeta}}{Q_0}
ight)$$

$$\tilde{f}_{q/\mathcal{N}}(x,b_*;\mu,\zeta) = \tilde{f}_{q/\mathcal{N}}(x,b_*;\mu,Q_0^2) \exp\left(\tilde{K}(b_*;\mu)\log\frac{\sqrt{\zeta}}{Q_0}\right)$$

• Take the ratio

$$\frac{\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu,\zeta)}{\tilde{f}_{q/\mathcal{N}}(x,b_*;\mu,\zeta)} = \frac{\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu,Q_0^2)}{\tilde{f}_{q/\mathcal{N}}(x,b_*;\mu,Q_0^2)} \exp\left(-\left[\tilde{K}(b_*;\mu) - \tilde{K}(b_T;\mu)\right]\log\frac{\sqrt{\zeta}}{Q_0}\right)$$

Deriving nonperturbative functions

$$\frac{\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu,\zeta)}{\tilde{f}_{q/\mathcal{N}}(x,b_*;\mu,\zeta)} = \frac{\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu,Q_0^2)}{\tilde{f}_{q/\mathcal{N}}(x,b_*;\mu,Q_0^2)} \exp\left(-\left[\tilde{K}(b_*;\mu) - \tilde{K}(b_T;\mu)\right]\log\frac{\sqrt{\zeta}}{Q_0}\right)$$

• Since the evolution of \widetilde{K} with respect to μ is b_T -independent, the μ -dependence of the difference cancels out, and we can write for general μ

$$\frac{\tilde{f}_{q/\mathcal{N}}(x,b_T;\mu,\zeta)}{\tilde{f}_{q/\mathcal{N}}(x,b_*;\mu,\zeta)} = \frac{\tilde{f}_{q/\mathcal{N}}(x,b_T;Q_0,Q_0^2)}{\tilde{f}_{q/\mathcal{N}}(x,b_*;Q_0,Q_0^2)} \exp\left(-g_K(b_T)\log\frac{\sqrt{\zeta}}{Q_0}\right)$$

Deriving nonperturbative functions

• We may also define the ratio of the TMDs themselves as being nonperturbative

$$-g_{q/\mathcal{N}}(x,b_T) \equiv \log\left(rac{ ilde{f}_{q/\mathcal{N}}(x,b_T;Q_0,Q_0^2)}{ ilde{f}_{q/\mathcal{N}}(x,b_*;Q_0,Q_0^2)}
ight)$$

• And we can write our full b_T -space TMD in terms of the b_* TMD and the nonperturbative functions

$$\tilde{f}_{q/\mathcal{N}}(x, b_T; \mu, \zeta) = \tilde{f}_{q/\mathcal{N}}(x, b_*; \mu, \zeta) \exp\left(-g_{q/\mathcal{N}}(x, b_T) - g_K(b_T) \log \frac{\sqrt{\zeta}}{Q_0}\right)$$

Ways to evolve the TMD

- We can evolve from (μ_i, ζ_i) up to (μ_f, ζ_f) in multiple ways
- (CSS): Separately evolve up in μ and ζ
- (**\zeta-prescription**): Evaluate the TMD PDF at the scales (μ_f, ζ_μ) , which is along the null-evolution line
 - $\tilde{f}_q(x, b_T; \mu_i, \zeta_i) = \tilde{f}_q(x, b_T; \mu_f, \zeta_\mu)$
 - Then evolve simply $\zeta_{\mu} \to \zeta_{f}$

MAP parametrization

• The MAP collaboration (JHEP 10 (2022) 127) used the following form for the non-perturbative function

$$f_{1NP}(x, \boldsymbol{b}_{T}^{2}; \zeta, Q_{0}) = \frac{g_{1}(x) e^{-g_{1}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1B}^{2}(x) \left[1 - g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}\right] e^{-g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1C}(x) e^{-g_{1C}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2},$$

$$g_{\{1,1B,1C\}}(x) = N_{\{1,1B,1C\}} \frac{x^{\sigma_{\{1,2,3\}}} (1 - x)^{\alpha_{\{1,2,3\}}^{2}}}{\hat{x}^{\sigma_{\{1,2,3\}}} (1 - \hat{x})^{\alpha_{\{1,2,3\}}^{2}}},$$

$$g_{K}(\boldsymbol{b}_{T}^{2}) = -g_{2}^{2} \frac{\boldsymbol{b}_{T}^{2}}{2}} \quad \text{CS kernel}$$

 11 free parameters for each hadron (flavor dependence not necessary) (12 if we include the nuclear TMD parameter)

Zeta in JAM

$$f^f_{NP}(x,b) = \frac{1}{\cosh\left(\left(\lambda_1^f(1-x) + \lambda_2^f x\right)b\right)},$$

- Parametrize $u, d, \overline{u}, \overline{d}$ and sea quarks ($s = \overline{s} = c = \overline{c} = b = \overline{b}$)
- Evaluates OPE at b_T (not b_*)
- Scale for PDFs in OPE i $\mu_{\rm OPE} = \frac{2e^{-\gamma_E}}{b} + 2 {\rm GeV}.$ and non-trivial logs appear
- Non-perturbative piece of the ζ -evolution $\mathcal{D}_{NP}(b) = bb^* \left| c_0 + c_1 \ln \left(\frac{b^*}{B_{NP}} \right) \right|$,
- Fit $c_0, c_1, B_{\rm NP}$

Bayesian Inference

• Minimize the
$$\chi^2$$
 for each replica

$$\chi^2(\boldsymbol{a}, \text{data}) = \sum_e \left(\sum_i \left[\frac{d_i^e - \sum_k r_k^e \beta_{k,i}^e - t_i^e(\boldsymbol{a}) / n_e}{\alpha_i^e} \right]^2 + \left(\frac{1 - n_e}{\delta n_e} \right)^2 + \sum_k \left(r_k^e \right)^2 \right)$$

• Perform N total χ^2 minimizations and compute statistical quantities $_1$ ____

Expectation value
$$\mathrm{E}[\mathcal{O}] = \frac{1}{N} \sum_{k} \mathcal{O}(\boldsymbol{a}_{k}),$$
Variance $\mathrm{V}[\mathcal{O}] = \frac{1}{N} \sum_{k} \left[\mathcal{O}(\boldsymbol{a}_{k}) - \mathrm{E}[\mathcal{O}] \right]^{2},$

Fiducial volume

• To make systematic uncertainties more uniform within the bins, experiments make fiducial cuts on the phase space of the detected leptons

Hard part

• Electroweak charges

Mapping out (Q, y) space

- Shapes are more intricate than in fixed target case
- For Q interpolation, we take out the Z-boson peak, as it appears the same in all calculations

2 replicas

- h:0/---+-

CSS - NLO+N2LL - fit TMDs and PDFs to collinear and qT data Preliminary

Fixed target expt obs npts chi2/npts Z-score norm_e dy_qr-721281 E288 Ed3sigma/dp3 31 1.381872 1.428279 0.780313 dy_qr-712826 E288 Ed3sigma/dp3 41 1.230335 1.044495 0.90703 dy_qr-71083 E288 Ed3sigma/dp3 41 1.230335 1.044495 0.90703 dy_qr-710805 E605 Ed3sigma/dp3 43 1.342743 1.5072 1.007165 ATLAS dsig/dp7 8 12.523221 inf 0.99863 dy_qr-70105 E605 Ed3sigma/dp3 43 1.342743 1.5072 1.007165 ATLAS dsig/dp7 8 5.65174 0.99863 dy_qr-70105 E605 Ed3sigma/dp3 43 1.342743 1.5072 1.007667 ATLAS dsig/dp7 8 5.65174 0.99863 dy_qr-70105 ATLAS dsig/dp7 8 5.989541 5.194743 0.99863 dy_qr-10072 E772 Ed3sigma/dp3 45 4.308618 inf 0.726885 dy_qr-70106 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>expt</th><th>obs</th><th>npts</th><th>chi2/npts</th><th>Z-score</th><th>norm_e</th></t<>										expt	obs	npts	chi2/npts	Z-score	norm_e
expt obs npts chi2/npts Z-score norm_e dy_qT-12881 E288 Ed3sigma/dp 3.1 1.38187 1.42827 0.780313 dy_qT-12882 E288 Ed3sigma/dp 4.1 1.23033 1.04449 0.90703 dy_qT-12883 E288 Ed3sigma/dp 4.1 1.36707 1.96749 1.029205 dy_qT-10805 E605 Ed3sigma/dp 4.3 1.34273 1.0572 1.047667 dy_qT-10772 E772 Ed3sigma/dp 4.3 1.34273 1.0572 1.047667 dy_qT-10772 E772 Ed3sigma/dp 4.3 1.34273 1.0572 1.047667 dy_qT-10772 E772 Ed3sigma/dp 4.3 0.30618 inf 0.726835 dy_qT-10772 E772 Ed3sigma/dp 4.3 0.30618 inf 0.726835 dy_qT-20010 LHCb dsig/dpT 10 1.721916 1.47838 0.999243 dy_qT-90001 CDF dsig/dpT 30 0.72809			Fixed ta	arget					dy_qT-70101	ATLAS	dsig/dpT	8	16.758502	inf	0.998635
4y.qT-12881 E288 Ed3sigma/dp3 31 1.381872 1.428279 0.780313 4y.qT-12882 E288 Ed3sigma/dp3 41 1.230335 1.044495 0.90703 4y.qT-12883 E288 Ed3sigma/dp3 64 1.376707 1.96796 1.029205 4y.qT-10605 E605 Ed3sigma/dp3 43 1.34274 1.5072 1.047667 4y.qT-10772 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 4y.qT-70106 ATLAS dsig/dpT 8 8.501749 6.685377 0.99863 4y.qT-10772 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 4y.qT-70106 ATLAS dsig/dpT 8 8.50149 6.685377 0.99863 4y.qT-10772 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 4y.qT-40001 LHCb dsig/dpT 8 5.99541 1.017247 4y.qT-90002 CDF dsig/dpT 30 0.72808 1.04949 1.04949 4y.qqT-20013 CMS dsig/dpT			expt	obs	npts	chi2/npts	Z-score	norm_e	dy_qT-70102	ATLAS	dsig/dpT	8	11.160682	7.991574	0.998635
dy_qt-12882 E288 Ed3sigma/dp3 41 1.20333 1.044495 0.90703 dy_qt-12883 E288 Ed3sigma/dp3 64 1.36707 1.96749 1.029205 dy_qt-10605 E605 Ed3sigma/dp3 43 1.342743 1.5072 1.047657 ATLAS dsig/dp1 8 8.567189 6.685377 0.99863 dy_qt-10072 E772 Ed3sigma/dp3 43 1.342743 1.5072 1.047657 1.047657 dy_qt-70106 ATLAS dsig/dp1 8 8.56218 6.69377 0.99863 dy_qt-10772 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 dy_qt-70106 ATLAS dsig/dp1 8 8.56218 6.709281 0.99863 dy_qt-10772 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 dy_qt-70106 ATLAS dsig/dp1 10 1.721916 1.47838 0.99863 dy_qt-qt-0001 LHCb dsig/dp1 10 1.665449 1.83921 1.02126	dy_c	T-12881	E288	Ed3sigma/dp3	31	1.381872	1.428279	0.780313	dy_qT-70103	ATLAS	dsig/dpT	8	12.523221	inf	0.998635
dy_qt-12883 E288 Ed3sigma/dp3 64 1.37670 1.967496 1.029205 ATLAS dsig/dpT 8 8.562184 6.709281 0.99863 dy_qt-10605 E605 Ed3sigma/dp3 45 4.308618 inf 0.726835 dy_qt-70105 ATLAS dsig/dpT 8 8.562184 6.709281 0.99863 dy_qt-10772 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 dy_qt-70106 ATLAS dsig/dpT 8 5.989541 5.194743 0.99863 dy_qt-10072 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 dy_qt-70106 ATLAS dsig/dpT 8 5.989541 5.194743 0.99863 dy_qt-20012 CMS dsig/dpT 10 1.721916 1.47838 0.99943 dy_qt-90001 CDF dsig/dpT 30 0.728009 1.079378 1.04394 dy_qt-20011 CMS dsig/dpT 15 1.775538 1.853965 0.99229 dy_qt-90003 D0 dsig/dpT 14 0.56428 1.250647 1.130121 dy_qt-2001	dy_q	T-12882	E288	Ed3sigma/dp3	41	1.230335	1.044495	0.90703	dv gT-70104	ATLAS	Tab/pizb	8	8.517499	6.685377	0.998635
dy_qt-10605 E605 Ed3sigma/dp3 43 1.342743 1.5072 1.047657 ATLAS dsig/dp1 6 6.002164 0.709361 0.99863 dy_qt-10772 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 dy_qt-70106 ATLAS dsig/dp1 8 5.989541 5.194743 0.99863 TEVATOR TEVE dy_qt-70106 ATLAS dsig/dp1 8 5.989541 5.194743 0.99863 TEVATOR TEVE TEVE 41 4.0001 LHCb dsig/dp1 10 1.721916 1.47838 0.99943 dy_qt-40001 LHCb sig 10 1.665449 1.389321 1.02216 dy_qt-20001 CMS dsig/dp1 15 3.974359 4.995349 0.99229 dy_qt-90003 CDF dsig/dp1 30 0.72808 1.04394 1.04394 1.05444 1.95444 0.99229 dy_qt-90003 CDF dsig/dp1 30 0.72808 1.04394 1.04394 0.99229 dy_qt-20013 <	dy_q	T-12883	E288	Ed3sigma/dp3	64	1.376707	1.967496	1.029205	dy. gT_70105		deig/dpT	9	8 562184	6 700281	0.008635
dy_qt-10772 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 dy_qt-70106 ATLAS dsig/dpT 8 5.989541 5.194743 0.99863 dy_qt-10772 E772 Ed3sigma/dp3 45 4.308618 inf 0.726835 dy_qt-70106 ATLAS dsig/dpT 8 5.989541 5.194743 0.99863 TEVEN tinf 0.726835 dy_qt-30001 LHCb dsig/dpT 10 1.721916 1.47838 0.99943 dy_qt-70006 LHCb dsig/dpT 10 1.665449 1.389321 1.01217 dy_qt-90001 CDF dsig/dpT 30 0.728009 1.079378 1.04394 dy_qt-20012 CMS dsig/dpT 15 1.975538 1.853965 0.99229 dy_qt-90003 D0 dsig/dpT 36 1.61094 2.272648 1.105844 dy_qt-20012 CMS dsig/dpT 15 1.975538 1.853965 0.99229 dy_qt-90003 D0 dsig/dpT 14 0.564288 1.250647 1.130121 dy_qqt-20013 CMS dsig/dpT <th>dy_q</th> <th>T-10605</th> <th>E605</th> <th>Ed3sigma/dp3</th> <th>43</th> <th>1.342743</th> <th>1.5072</th> <th>1.047657</th> <th>uy_q1-70105</th> <th>ATLAS</th> <th>usig/upi</th> <th>0</th> <th>0.002104</th> <th>0.709201</th> <th>0.990035</th>	dy_q	T-10605	E605	Ed3sigma/dp3	43	1.342743	1.5072	1.047657	uy_q1-70105	ATLAS	usig/upi	0	0.002104	0.709201	0.990035
dy_qT-30001 LHCb dsig/dpT 10 1.72196 1.47838 0.99943 the problement of th	dy_c	T-10772	E772	Ed3sigma/dp3	45	4.308618	inf	0.726835	dy_qT-70106	ATLAS	dsig/dpT	8	5.989541	5.194743	0.998635
dy_q7-40001 LHCb sig 10 2.678211 2.768104 1.01327 dy_q7-50001 LHCb sig 10 2.678214 2.768104 1.01327 dy_q7-9002 cpr obs npt chi2/npt Z-score norme dy_q7-20012 CMS dsig/dpT 15 3.974359 4.995349 0.99229 dy_q7-9002 CDF dsig/dpT 36 1.0102 1.01034 dy_q7-20012 CMS dsig/dpT 15 1.775538 1.853965 0.99229 dy_q7-9003 D0 dsig/dpT 14 0.56428 1.250647 1.130121 dy_q7-20013 CMS dsig/dpT 15 1.07154 0.31287 0.99229 dy_q7-20015 CMS dsig/dpT 15 1.07154 0.31287 0.99229 0.99229									dy_qT-30001	LHCb	dsig/dpT	10	1.721916	1.47838	0.999438
Image: Properties of the serve of the s									dy_qT-40001	LHCb	sig	10	2.678211	2.768104	1.013274
exptobsnptschi2/nptsZ-scorenorm_edy_qT-20011CMSdsig/dpT153.9743594.9953490.99229dy_qT-90001CDFdsig/dpT300.7280091.0793781.043941.04394dy_qT-20012CMSdsig/dpT151.7755381.8539650.99229dy_qT-90002CDFdsig/dpT361.610942.2726481.1058441.105844dy_qT-20013CMSdsig/dpT151.2059870.6496040.99229dy_qT-90003D0dsig/dpT140.5642881.2506471.130121dy_qT-20014CMSdsig/dpT151.071540.3128170.99229dy_qT-20015CMSdsig/dpT150.4958971.592129_0 0.99229			leVatr	on					dy_qT-50001	LHCb	sig	10	1.665449	1.389321	1.022167
dy_qT-90001 CDF dsig/dpT 30 0.728009 1.079378 1.04394 dy_qT-20012 CMS dsig/dpT 15 1.775538 1.853965 0.99229 dy_qT-90002 CDF dsig/dpT 36 1.61094 2.272648 1.105844 dy_qT-20013 CMS dsig/dpT 15 1.205987 0.649604 0.99229 dy_qT-90003 D0 dsig/dpT 14 0.564288 1.250647 1.130121 dy_qT-20014 CMS dsig/dpT 15 1.07154 0.312817 0.99229 dy_qT-90005 CMS dsig/dpT 15 0.495897 1.592129_0 0.99229			expt	obs	npts	chi2/npts	Z-score	norm_e	dy_qT-20011	CMS	dsig/dpT	15	3.974359	4.995349	0.992292
dy_qT-90002 CDF dsig/dpT 36 1.61094 2.272648 1.105844 dy_qT-20013 CMS dsig/dpT 15 1.205987 0.649604 0.99229 dy_qT-90003 D0 dsig/dpT 14 0.564288 1.250647 1.130121 dy_qT-20014 CMS dsig/dpT 15 1.07154 0.312817 0.99229 dy_qT-20015 CMS dsig/dpT 15 0.495897 1.592129 0.99229	dy_qT-	90001	CDF	dsig/dpT	30	0.728009	1.079378	1.04394	dy_qT-20012	CMS	dsig/dpT	15	1.775538	1.853965	0.992292
dy_qT-90003 D0 dsig/dpT 14 0.564288 1.250647 1.130121 dy_qT-20014 CMS dsig/dpT 15 1.07154 0.312817 0.99229 dy_qT-20015 CMS dsig/dpT 15 0.495897 1.592129 0.99229	dy_qT-	90002	CDF	dsig/dpT	36	1.61094	2.272648	1.105844	dy_qT-20013	CMS	dsig/dpT	15	1.205987	0.649604	0.992292
dy_qT-20015 CMS dsig/dpT 15 0.495897 1.592129_0.99229	dy_qT-	90003	D0	dsig/dpT	14	0.564288	1.250647	1.130121	dy_qT-20014	CMS	dsig/dpT	15	1.07154	0.312817	0.992292
Darrywant.gov									dy_qT-20015 barry@anl.gov	CMS	dsig/dpT	15	0.495897	1.592129 ₆	4 0.992292

2 replicas

CSS - NLO+N2LL - fit TMDs and PDFs to collinear and qT data **Preliminary** DIS

	expt	obs	npts	chi2/npts	Z-score	norm_e
idis-10010	SLAC	F2	218	1.798172	6.818831	1.063213
idis-10016	BCDMS	F2	348	1.131218	1.685498	1.002403
idis-10020	NMC	F2	273	1.9903	inf	1.045339
idis-10026	HERA II NC e+ (1)	sig_r	402	1.840115	inf	
idis-10027	HERA II NC e+ (2)	sig_r	75	1.221055	1.318634	
idis-10028	HERA II NC e+ (3)	sig_r	259	1.062278	0.723665	
idis-10029	HERA II NC e+ (4)	sig_r	209	1.12587	1.268656	
idis-10030	HERA II NC e-	sig_r	159	1.749297	5.533041	
idis-10031	HERA II CC e+	sig_r	39	1.258311	1.129105	
idis-10032	HERA II CC e-	sig_r	42	1.279029	1.247263	
idis-10011	SLAC	F2	228	1.646766	5.83784	1.062495
idis-10017	BCDMS	F2	254	1.063362	0.728933	1.031765
idis-10021	NMC	F2d/F2p	174	1.864843	6.51827	1.004052

DY

	expt	obs	npts	chi2/npts	Z-score	norm_e
dy-10001	E866	M3 dsig/dM dxF	184	2.31974	inf	1.071864
dy-20001	E866	sigpd/2sigpp	15	4.1107	5.149757	0.990762
dy-20002	E906	sigpd/2sigpp	6	1.317787	0.690254	0.995907

Total

	expt	obs	npts	chi2/npts	Z-score	norm_e
total		3	342	1.716182	inf	

CSS - NLO+N2LL - fit TMDs and PDFs to collinear and qT

CSS - NLO+N2LL - fit TMDs and PDFs to collinear and qT data Preliminary **PDFs** 0.1000.40fit fit fit 0.35 prior 0.0750.7 prior prior $\bar{d} - \bar{u}$ d_v Un $Q^{2} = 10$ $Q^2 = 10$ 0.30 0.050 $Q^2 = 10$ 0.6 $(x)^{0.5} fx$ 0.250.0250.200.000 0.3 0.15-0.0250.2 0.10-0.0500.10.05-0.0750.00 0.0 -0.10010-3 10-2 10-1 100 10^{-2} 10^{0} 10^{-3} 10^{-1} 10^{0} 10- 10^{-3} 10^{-2} 10^{-1} xxx2.01.0fit fit 1.0 -prior prior g/10d/uIL.s 1.8 0.8 $\dot{Q}^{2} = 10$ $Q^2 = 10^2$ $Q^2 = 10$ 0.8 1.6 0.6xf(x)1.4 0.40.41.2 0.2 0.2 fit prior 10 barry@an ¹67 1.00.0 10^{-4} 10^{-1} 10- 10^{-1} 10 10^{-1} 10^{-1} 10^{0} 10 10 xxx