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Complicated Inverse Problem

● Factorization theorems involve convolutions of hard perturbatively 
calculable physics and non-perturbative objects

● Parametrize the non-perturbative objects and perform global fit
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Experiments to probe pion structure
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Drell-Yan (DY)
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Drell-Yan (DY)
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JAM analysis with threshold resummation

• Highly dependent on perturbative approach
• NLO and NLO+NLL double Mellin methods 

better on theoretical grounds 0.75 0.8 0.85 0.9 0.95 1x
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Including lattice QCD data from HadStruc

• Can lattice QCD simulations help to constrain pion distributions?
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Goodness of fit

• Scenario A: 
experimental data 
alone
• Scenario B: 

experimental + lattice, 
no systematics
• Scenario C: 

experimental + lattice, 
with systematics
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Effective 𝛽 from 1 − 𝑥 !"##
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Calculations 
from QCD do 
not predict 
𝛽!"" = 2



What about the transverse direction?

• The E615 𝜋-induced fixed-target DY experiment measured the 
transverse momentum spectrum of the 𝜇#𝜇$

• JAM was able to fit the large-𝑞% through collinear factorization
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Drell-Yan (DY)
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• 𝑝% dependent DY in collinear factorization
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Effects of Each Dataset

• Not much 
impact from 
the transverse-
momentum 
dependent DY 
data
• Data are quite 

noisy 
statistically
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What about the small-𝑞"?
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TMD 
factorization

• These data are much more 
precise

• Can they tell us anything about 
parton distributions?



The TMD factorization

• Up to now have worked with collinear factorization
• Observables with small-𝑝% have a different type of factorization 

theorem – transverse-momentum dependent (TMD) factorization
• In collinear Drell-Yan, we had 2 collinear PDFs convoluted with hard 

part
• We extracted 𝜋 PDFs while assuming the target nuclear PDF

• At small-𝑝% it is 2 TMDPDFs convoluted with hard part
• Must parametrize both the 𝜋 TMDPDF and the target nuclear TMDPDF

• Necessary to understand the nuclear background
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Factorization for low-𝑞" Drell-Yan

• Again, a hard part with two functions that describe structure of beam
and target
• So called “𝑊”-term, valid only at low-𝑞%
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TMD factorization in Drell-Yan 

• In small-𝑞& region, use the Collins-Soper-Sterman (CSS) formalism and 
𝑏∗ prescription
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TMD factorization in Drell-Yan 

• In small-𝑞& region, use the Collins-Soper-Sterman (CSS) formalism and 
𝑏∗ prescription
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TMD factorization in Drell-Yan 

• In small-𝑞& region, use the Collins-Soper-Sterman (CSS) formalism and 
𝑏∗ prescription
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Non-perturbative 
pieces

Perturbative 
pieces

Can these data constrain the 
pion collinear PDF?

Non-perturbative piece of the CS kernel



Nuclear TMDPDFs

• The TMD-factorization allows for the description of a quark inside a 
nucleus to be *𝑓(/*
• However, the intrinsic non-perturbative structure will in-principle 

change from nucleus-to-nucleus
• Want to model these in terms of protons and neutrons as we don’t 

have enough observables to separately parametrize different nuclei
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Nuclear TMDPDFs – working hypothesis

• We must model the tungsten TMDPDF from proton 

• Each object on the right side independently obeys the CSS equation
• Assumption that the bound proton and bound neutron follow TMD 

factorization

• Make use of isospin symmetry in that 𝑢/𝑝/𝐴 ↔ 𝑑/𝑛/𝐴, etc.
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Building of the nuclear TMDPDF

• Then taking into account the intrinsic non-perturbative, we model the 
flavor-dependent pieces of the TMDPDF as
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Datasets in the analysis

• Total of 383 number of points
• All fixed target, low-energy data
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Kinematics in 𝑥#, 𝑥$
• Using the kinematic 

mid-point from each 
of the bins, we show 
the range in 𝑥- and 
𝑥.
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Parametrizations of the TMDs

• First perform single fits of these data to explore various aspects
• Many types of parametrizations have been used in the past
• For the “intrinsic” non-perturbative TMD, we perform fits with each 

of the following
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Gaussian Exponential
Gaussian-to-
Exponential



Parametrizations

• We can test whether or not the 𝑥-dependence is important for these 
functions (it is!)
• For these 𝑔( functions, we have the following

• 4 free parameters for each scheme (5 for Gaussian-to-Exponential)
• We may also open up these for each flavor in the proton (𝑢, 𝑑, and 
𝑠𝑒𝑎) and for the pion (𝑣𝑎𝑙, 𝑠𝑒𝑎)
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Problem describing data

• The E288 400 GeV data are 
difficult to describe the same 
above and below the Υ
resonance
• Theory overpredicts data 

when 𝑄 > 11GeV
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Problem describing data

• The E288 400 GeV data are 
difficult to describe the same 
above and below the Υ
resonance
• Theory overpredicts data 

when 𝑄 > 11GeV
• Could treat as separate

datasets – separate 
normalizations:
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MAP parametrization

• A recent work from the MAP collaboration (arXiv:2206.07598) used a 
complicated form for the non-perturbative function

• 11 free parameters for each hadron! (flavor dependence not 
necessary) (12 if we include the nuclear TMD parameter)barryp@jlab.org 27
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Resulting 𝜒$ for each parametrization
• MAP gives best 

overall
• How significant?
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E772 data

• Let’s take a look at the data and theory agreement
• Data do not always follow the general trend and uncertainties appear 

underestimated
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A few words on nuclear dependence

• The ratios from the E866 
experiment provided a look 
to nuclear effects in TMDs 
as well as the importance
of nuclear collinear effects
• Ignoring any nuclear

corrections in TMDs and
collinear PDFs
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Including nuclear dependence

• Better description 
when including the 
nuclear dependence 
in the collinear PDF 
and TMD
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Strategy

• Given our single fits, we will freeze the proton (nuclear) TMD and 
open up pion PDF parameters
• Perform a simultaneous fit of both pion PDF and TMDPDF parameters
• Use the MAP parametrization
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Description of 𝜋𝐴 data

• Well describe the 
E615 data in the 
(𝑥/ , 𝑞%) spectrum:  
𝜒./npts = 1.63
• Can also describe 

rest of the 
experimental data:
𝜒010. /npts = 0.98
• Overall 𝑍-score=
0.62
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Impact on PDFs
• Slight reduction in uncertainties
• Overall very consistent with totally collinear analysis
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Future extension: Can LHC constrain PDFs?

• From Bury, et al. arXiv:2201.07114

• The outer green band is the uncertainty from MSHT20 PDFs
• Red band is the statistical uncertainty from the data
• Largest uncertainty comes from PDF itself!
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What about the entire 𝑞"-spectrum?

• The JAM collaboration has shown the 
ability to perform a global analysis 
separately of the large-𝑞% and small- 𝑞%
regions
• Tackle the challenging “asymptotic region”
• Can we combine these analyses in the 𝜋-

sector?
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Conclusions

• We have made strides in collinear pion PDF phenomenology by 
introducing available datasets and theoretical advances
• Inclusion of 𝑞%-dependent DY data is consistent with collinear data
• Next step to analyze MC on 𝜋𝐴 and 𝑝𝐴 data combined
• Get statistical uncertainty on CS kernel

• Extend framework to LHC data and nucleon PDFs
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Backup Slides
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Two-hadron *𝐾 extractions

• The Collins-Soper kernel is 
the most universal quantity 
in TMD physics
• No dependence on flavor, 

species, or type of TMD
• Extracted from single fit to 

both 𝑝𝐴 and 𝜋𝐴 data
• Green lattice points from 

Shanahan, et al., Phys. Rev. 
D 104, 114502 (2021)
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Fitting the Data and Systematic Corrections

Valence quark 
distribution in pion

Wilson coefficients 
for matching

Systematic corrections to parametrize Other potential 
systematic 
corrections the data 
is not sensitive to

•  𝑧(𝐵) 𝜈 : power corrections •  *+ 𝑃) 𝜈 : lattice spacing errors

•  𝑒,-! .,+ 𝐹) 𝜈 : finite volume corrections
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Integration lower bound is 0



Evolution equations for the TMDPDF
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Rapidity scale

Collins-Soper (CS) 
kernel

Has its own renormalization group equation

Anomalous dimension 
of CS kernel

Anomalous dimension 
of TMDPDF

Renormalization scale



Small 𝑏" operator product expansion

• At small 𝑏%, the TMDPDF can be described in terms of its OPE:

• where *𝐶 are the Wilson coefficients, and 𝑓2/3 is the collinear PDF
• Breaks down when 𝑏% gets large
• NB: the scale 𝜇 appears both in *𝐶 and 𝑓2/3
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Scale choice

• We see for instance the Wilson coefficients up to 𝒪 𝛼4

• We should choose a scale to maintain the perturbative accuracy
• Convenient choice: 𝜇 = 5!

6"
, where 𝐶- = 2𝑒$7#

• However, at large 𝑏%, the scale becomes too small to trust the 
factorization
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𝑏∗ prescription

• A common approach to regulating large 𝑏% behavior

• At small 𝑏%, 𝑏∗ 𝑏% = 𝑏%
• At large 𝑏% , 𝑏∗ 𝑏% = 𝑏89:
• Here, the renormalization scale is evaluated at

• This cancels all logarithms when 𝐶- = 2𝑒$7#
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Must choose an appropriate value; 
a transition from perturbative to 
non-perturbative physics



Introduction of non-perturbative functions

• Because 𝑏∗ ≠ 𝑏%, have to non-perturbatively describe large 𝑏%
behavior

Completely general –
independent of quark, 

hadron, PDF or FF

“Holy grail” in TMD pheno

Non-perturbative function 
dependent in principle on 

flavor, hadron, etc.
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Treatment of nuclear TMDPDFs

• We want to make use of knowledge of nuclear effects on the collinear 
side

• Where 𝑓;/*(𝑥, 𝜇), etc. is reported by EPPS16
• These formulas are also used for the corresponding antiquarks
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Bayesian Inference

• Minimize the 𝜒.
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Normalization 
parameter



Perturbative orders

• We use NLO+N2LL perturbative accuracy

• But where are expansions appropriate?
• Consider the fixed order pieces:
• Can multiply out each contribution
• Can truncate to only accuracy

by each piece
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𝑍-scores

• A measure of significance with 
respect to the normal distribution
• Null hypothesis is the expected 𝜒.

distribution
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𝑍-scores

• Example of 
significance of the 
𝜒. values with 
respect to the 
expected 𝜒.
distribution

barryp@jlab.org 50



Perturbative orders

• Perform single fit to 
determine the effects 
on the non-perturbative 
objects
• Red and blue curves 

correspond to previous 
page
• Conclusion: no 

difference for these 
fixed-target kinematics
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A brief word on 𝑏&'(
• The 𝑏89: parameter is a general shift from perturbative to non-

perturbative description in S𝑊
• Left: 𝑏89: = 2𝑒$7#/𝑚< Right: 𝑏89: = 0.5 GeV$-
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Result from changing 𝑏&'(
• While the agreement with the data is roughly the same, the biggest 

effect is in the normalizations
• Fitted normalization parameters show a needed enhancement on the 

resulting theory when decreasing the 𝑏89:
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Extensions

• While fixed-target DY may not greatly probe the collinear PDFs, 
collider data at e.g. the LHC may have greater constraints
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