

Probing inner-jet correlations in hot QCD

17th October 2023, INT

João Barata, BNL

Mainly based on:

2305.10476, xxxx.xxxx, with J.-P. Blaizot, Y. Mehtar-Tani

2307.08943, with Y. Mehtar-Tani

xxxx.xxxx, with P. Caucal, A. Soto-Ontoso, R. Szafron

xxxx.xxxx, with R. Szafron

Entropy and Energy correlators to understand jets

These capture particular aspects of the distribution, but not the most natural ones from the QFT perspective

Can we directly target the intrinsic correlations inside jets? Is this fundamentally different? (in a calculable and measurable way)

Most jet quenching observables compute projections of the final particle distribution inside jets (e.g. mass)

Entropy and Energy correlators to understand jets

Today I will talk about two possible ways to go forward in this direction inherited from HET:

Jet entropy

Encapsulates multipoint correlators and can be generalized for mixed states

Energy Correlators (inside jets)

Measures correlations within final particle distribution, similar to CMB physics

Outline

In-medium jet density matrix and its entropy with J.-P. Blaizot, Y. Mehtar-Tani

Is the jet entropy sensitive to the in-medium jet evolution ? Can it resolve the structure of the jet? How?

Towards understanding jet Energy Correlators in heavy ions with Y. Mehtar-Tani; P. Caucal, A. Soto-Ontoso, R. Szafron; R. Szafron How do jet Energy Correlators (ENCs) behave in HI? Do we understand their evolution from the theory side? How can we learn about the perturbative sector?

Outline

In-medium jet density matrix and its entropy with J.-P. Blaizot, Y. Mehtar-Tani

Towards understanding jet Energy Correlators in heavy ions with Y. Mehtar-Tani; P. Caucal, A. Soto-Ontoso, R. Szafron; R. Szafron

Quark reduced density matrix in matter 2305.10476, with J.-P. Blaizot, Y. Mehtar-Tani

The single parton wave function satisfies

Coupling to matter background

$$\left[i\partial_t + \frac{\partial_\perp^2}{2E} + gA(\boldsymbol{r},t)\right]\psi(\boldsymbol{r},t) = 0$$

Light-front kinetic energy

The reduced density matrix can be defined as

$$\rho \equiv \operatorname{tr}_{A}(\rho[A]) = \left\langle |\psi_{A}(t)\rangle \langle \psi_{A}(t)| \right\rangle_{A}$$

We use Gaussian approximation for the background field

$$g^{2}\left\langle A^{a}(\boldsymbol{q},t)A^{\dagger b}(\boldsymbol{q}',t')\right\rangle_{A} = \delta^{ab}\delta(t-t')(2\pi)^{2}\delta^{(2)}(\boldsymbol{q}-\boldsymbol{q}')$$

Constructing the evolution equations

 $m{b} \equiv rac{m{r} + ar{m{r}}}{2}, \quad m{x} \equiv m{r} - ar{m{r}} \qquad m{K} = rac{m{k} + ar{m{k}}}{2}, \quad m{\ell} = m{k} - ar{m{k}}$

$$3 \otimes \bar{3} = 1 \oplus 8$$
$$\rho(t) \equiv \rho_{\rm s} + t^a \rho_{\rm o}^a = \frac{1}{N_c} \operatorname{Tr}_c(\rho) + 2 t^a \operatorname{Tr}_c(t^a \rho)$$

For color singlet:

$$\langle \boldsymbol{k} | \rho_{\rm s}(t) | \bar{\boldsymbol{k}} \rangle = C_F \int_{\boldsymbol{q}} \int_0^t dt' \, e^{i \frac{(\boldsymbol{k}^2 - \bar{\boldsymbol{k}}^2)}{2E}(t-t')} \\ \times \gamma(\boldsymbol{q}) \left[\langle \boldsymbol{k} - \boldsymbol{q} | \rho_{\rm s}(t') | \bar{\boldsymbol{k}} - \boldsymbol{q} \rangle - \langle \boldsymbol{k} | \rho_{\rm s}(t') | \bar{\boldsymbol{k}} \right]$$

For color octet:

$$\langle \boldsymbol{k} | \rho_{\mathrm{o}}(t) | \bar{\boldsymbol{k}} \rangle = C_F \int_{\boldsymbol{q}} \int_{0}^{t} dt' \, e^{i \frac{(\boldsymbol{k}^2 - \bar{\boldsymbol{k}}^2)}{2E}(t - t')} \\ \times \gamma(\boldsymbol{q}) \left[\langle \boldsymbol{k} - \boldsymbol{q} | \rho_{\mathrm{o}}(t') | \bar{\boldsymbol{k}} - \boldsymbol{q} \rangle + \frac{1}{2N_c C_F} \langle \boldsymbol{k} | \rho_{\mathrm{o}}(t') | \bar{\boldsymbol{k}} \rangle \right]$$

There are 3 important timescales in this problem:

The natural spreading time for the initial wavepacket

$$t_0 = \frac{E}{\mu^2}$$

The timescale for interactions to become *noticeable*

$$t_1 = \frac{\mu^2}{\hat{q}}$$

The timescale for spatial displacement

$$t_2^3 = \frac{E^2}{\hat{q}\mu^2}$$

$$t_2^3 = t_1 t_0^2 \qquad \theta_\mu^2 = \frac{\mu^2}{E^2}, \quad \theta_c^2(t) = \frac{1}{\hat{q}t^3}, \quad \theta_{\rm br}^2(t) = \frac{1}{\hat{q}t^3}$$

$$t_0 > t_2 > t_1$$

Medium-parton interactions
dominate evolution

 $\hat{q} = 0.3 \,\mathrm{GeV}^3$, $\mu = 0.3 \,\mathrm{GeV}$, and $E = 200 \,\mathrm{GeV}$ $t_1 \simeq 0.06 \; \text{fm}$ $t_2 \simeq 22.80 \; \text{fm}$ $t_0 \simeq 444.44 \,\,{\rm fm}$

 $t_2^3 = t_1 t_0^2$

VS

 $t_0 < t_2 < t_1$

Natural wave packet spreading determines evolution

$$t_1 \simeq 0.06 \text{ fm}$$
 $t_2 \simeq 2$

22.80 fm $t_0 \simeq 444.44 \,\,{\rm fm}$

 $t_1 \simeq 0.06 \text{ fm}$

$t_2 \simeq 22.80 \text{ fm}$ $t_0 \simeq 444.44 \,\,{\rm fm}$

- 10

- 5

-0.02

- 0.01

 $t_1 \simeq 0.06 \text{ fm}$

 $t_0 \simeq 444.44 \,\,{\rm fm}$ $t_2 \simeq 22.80 \; \mathrm{fm}$

 $t_1 \simeq 0.06 \text{ fm}$ $t_2 \simeq 2$

 $t_2 \simeq 22.80 \text{ fm}$ $t_0 \simeq 444.44 \text{ fm}$

a poratory

Entropy as a measure of quantum to classical transition

Jet entropy and gluon radiation

2307.01792, with X. Du, M. Li, W. Qian, C. Salgado also 2208.06750, 2104.04661, and previous works by M. Li et al

$$=e^{-iHt}\left|\psi_{0}\right\rangle$$

Jet evolution can be formulated in Hamiltonian formalism

Using new techniques from QIS, this allows to explore real time dynamics

Jet entropy and gluon radiation

Jet entropy and gluon radiation in pr

Going beyond: assuming the decoherence mechanism in the hardest subjets in a jet

$$S = -\sum_{n} \int d\Pi_n \frac{dP}{d\Pi_n} \log \frac{dP}{d\Pi_n} = \sum_{n} S_n$$

At leading logarithmic accuracy and using a physical gauge, we can then write

Going beyond: assuming the decoherence mechanism in the QGP works at late times, we can write the entropy for the

 $E_i > E_c$ $\theta > \theta_c$

2019, Neill, Waalewijn

Example: modified splitting kernel

Medium induced radiation: at LO the modified splitting function can always be written as

The entropy variation with respect to the vacuum then reads

$$\frac{d\sigma}{\sigma} \left(1 + F_{\rm med}\right)$$

 10^{0} 18

$$\frac{d[\Delta S](p_t)}{d\theta} \approx \frac{2\alpha_s}{\pi \theta} \left\{ \int_{z_c}^1 \frac{dz}{z} \log\left[\frac{e^{F_{\rm med}(\theta, z)}}{1 + F_{\rm med}(\theta, z)}\right] \right\}$$

which exhibits a sharp transition between the coherent and decoherent regimes

This offers another way to understand the structure of jets

Outline

In-medium jet density matrix and its entropy with J.-P. Blaizot, Y. Mehtar-Tani

Towards understanding jet Energy Correlators in heavy ions with Y. Mehtar-Tani; P. Caucal, A. Soto-Ontoso, R. Szafron; R. Szafron

A practical overview of ENCs

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int dt \, r^2 n^i T^{0i}(t, r \, \vec{n})$$

$$\frac{d\Sigma}{d\theta} = \int_{\vec{n}_1,\vec{n}_2} \frac{\langle \mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)\rangle}{p_t^2} \delta(\vec{n}_1 \cdot \vec{n}_2 - \cos\theta) \qquad \longrightarrow \qquad \frac{d\Sigma}{d\theta} = \int_z \frac{d\sigma}{\sigma d\theta dz} z(1-z)$$

ENCs boil down to measuring projections of correlations functions of the flow/light-ray operator

$$\langle 0 | \bar{\psi}(x) \mathcal{E}(\vec{n_1}) \mathcal{E}(\vec{n_2}) \psi(0) | 0 \rangle$$

For the two point functions one can show

EECs at LO in heavy ions

 θ [Log]

in preparation, with P. Caucal, A. Soto-Ontoso, R. Szafron

1. Non-perturbative region:

Vacuum: sensitive to confinement scale

In-medium: modifications to hadronization pattern, connection to QCD phase diagram (?)

2. Perturbative region:

Vacuum: Described by γ_{ii} of the relevant spin-3 operators

In-medium: pQCD computable jet modifications

3. Wide angle region:

Vacuum: no modification with respect to 2. Pablos QM23 **In-medium:** wake (?), non-perturbative soft-physics (?), perturbative medium modifications (?)

Critical step: make sense of **perturbative baseline** to access all regions

EECs at LO in heavy ions 2307.08943, with Y. Mehtar-Tani

Simple exercise: include energy loss and understand types of splittings at each angle

EECs at LO in heavy ions

Interpolate between hard collinear and soft wide splittings

$$dI^{\text{med}} = dI^{h.c.}\Theta(\min(z, 1-z)p_t > \omega_c) + dz$$

 $\omega_c = \hat{q}L^2$

$dI_{z\to 0}^{\text{s.w.}}\Theta(zp_t < \omega_c) + dI_{(1-z)p_t\to 0}^{\text{s.w.}}\Theta((1-z)p_t < \omega_c)$

Behavior largely depends on modeling and interplay between splitting function enhancement and energy loss suppression

Behavior qualitatively distinct from hard splitting approximation

Suppressing soft particle contamination

To make sense of **perturbative baseline** one needs to clean soft uncorrelated radiation

Two methods:

1. EECs on subjets inside a jet:

2. Higher power EEC + track functions:

in preparation, with P. Caucal, A. Soto-Ontoso, R. Szafron

Suppressing soft particle contamination: subjets

Matching at LO:

Particles:

$$\frac{1}{N_c} \operatorname{Tr}_c \langle x | \mathcal{E}(\vec{n}_2) \mathcal{E}(\vec{n}_3) | 0 \rangle = \frac{2g^2 C_F}{2\theta^2 (2\pi)^3} \int_0^1 dz \, z(1-z) P(z) \int \frac{dEE^2}{(2\pi)^3 2E} E^3 \not n e^{-\frac{1}{2}} e^{-\frac{1}{2}} \int_0^1 dz \, z(1-z) P(z) \int \frac{dEE^2}{(2\pi)^3 2E} E^3 \not n e^{-\frac{1}{2}} \int_0^1 dz \, z(1-z) P(z) \, dz$$

Subjets:

$$= \frac{2g^2 C_F}{2\theta^2 (2\pi)^3} \int_{z^{-}}^{z^+} dz \, z(1-z) P(z) \int \frac{dEE^2}{(2\pi)^3 2E} E^3 \not\!\!/ e^{-ix \cdot nE} \Theta\left(E > \frac{4k_{\rm cut}}{\theta}\right)$$

Numerics/MC:

Ongoing: understanding resummation for subjets

They allow for higher angular resolution but are non-perturbative like FFs

Ideal for ENCs since only moments are necessary

$$\frac{d\Sigma^{(n)}}{d\theta}_{\text{tracks}} = \int_{E_1, E_2} \int_{x_1, x_2} x_1^n T(x_1) x_2^n T(x_2) \frac{E_1^n E_2^n}{Q^{2n}} \frac{d\sigma}{\sigma dz d\theta} = \int_0^1 dz T_a^{[n]}(\theta p_t) T_b^{[n]}(\theta p_t) z^n (1-z)^n \frac{d\sigma}{\sigma dz d\theta}$$

For HICs we need to understand RG evolution for these objects

in preparation, with R. Szafron

Track functions were proposed a decade ago to have theory analog of measurements made on charged particles

2013, Chang, Procura, Thaler, Waalewijn

$T_i(x,\mu)$: describes the fraction of energy from parton i going into e.g. charged particles

Vacuum RGE:
$$R\frac{\partial T_i(x,R)}{\partial R} = \frac{\alpha_s}{2\pi} \sum_{jk} \int_0^1 dz \hat{P}_{i \to jk}(z) \int_{x_1,x_2} T_j(x_1,R) T_k(x_2,R) \delta(x = zx_1 + (1-z)x_2)$$

In-medium we have several pieces:

Modified splitting function: same RG but with new anomalous dimensions

$$\gamma_{c \to ab}(j) = -\int_0^1 dz$$

In a very simple case using BDMPS motivated kernel, we find

$$\gamma_{med}(j) = -\int_0^1 \left\{ P(z) + \sqrt{\frac{\omega_c}{2p_t}} \left(2N_c \right) 2z\mathcal{K}(z) + c_{med} \right\}$$

in preparation, with R. Szafron

 $(P_{c \to ab}(z) + P_{c \to ab}^{\mathrm{med}}(z,\theta))z^{j-1}$

medium

vac

 $\log(\theta)$

Vacuum RGE:
$$R\frac{\partial T_i(x,R)}{\partial R} = \frac{\alpha_s}{2\pi} \sum_{jk} \int_0^1 dz \hat{P}_{i\to jk}(z) \int_{x_1,x_2} T_j(x_1,R) T_k(x_2,R) \delta(x=zx_1+(1-z)x_2)$$

In-medium we have several pieces:

Modified phase space: same RG but with new anomalous dimensions

$$\gamma(j,\theta) = -\int_0^1 dz \, P(z)\Theta_{P.S.}(\theta,z) z^{j-1}$$

In DLA limit we obtain the limiting form

$$\gamma(j,\mu) = \gamma_{\rm vac}(j,\mu) \left(1 - \left(\frac{2\hat{q}p_t}{\mu^4}\right)^{\frac{j-1}{3}} \right)$$

and extra constraints which modify the boundary of the RG evolution

in preparation, with R. Szafron

Vacuum RGE:
$$R\frac{\partial T_i(x,R)}{\partial R} = \frac{\alpha_s}{2\pi} \sum_{jk} \int_0^1 dz \hat{P}_{i \to jk}(z) \int_{x_1,x_2} T_j(x_1,R) T_k(x_2,R) \delta(x = zx_1 + (1-z)x_2)$$

In-medium we have several pieces:

Energy loss: more evolved RG and new anomalous dimensions; for the PDF we obtain

$$\frac{\partial q(x)}{\partial \log \mu^2} \approx \int_{x_1} \int_0^{(z-zx_1)p_t} d\varepsilon \, D(\varepsilon) \int_0^1 dz \, P\left(z + \frac{\varepsilon}{p_t}\right) q(x_1) \delta(x = x_1 z)$$

For the track functions we have double convolution of the same type, leading to the anomalous dimension

$$\gamma[j] = -\int_0^1 \int_{\varepsilon_1, \varepsilon_2} D(\varepsilon_1) D(\varepsilon_2) P\left(z + \frac{\varepsilon_1 + \varepsilon_2}{p_t}\right) z^{j-1}$$

This breaks energy conservation which can be imposed via

$$c_{med} = \int_0^1 \int_{\varepsilon_1, \varepsilon_2} D(\varepsilon_1) D(\varepsilon_2) P\left(z + \frac{\varepsilon_1 + \varepsilon_2}{p_t}\right) z$$

in preparation, with R. Szafron

similar to 2016, Mehtar-Tani, Tywoniuk

Can be easily computed in pQCD at LL accuracy

- Simplest in a family of QIS entanglement measures: mutual information, Qdiscord ...

- Need to understand leading calculations to make sense of any future data
- Great motivation to go towards higher order calculations in jet quenching
- Higher point correlators will give information about *shape* of correlations [JB, Moult, Sadofyev, xxxx.xxx]

