Correlating the neutron skin to the neutron star crust-core transition

Parveen Bano

July 13, 2022

School of Physics, Sambalpur University, India

Parveen Bano

Correlating the neutron skin to the neutron st

July 13, 2022 1 / 5

Nuclear Symmetry energy

Quantum Monte Carlo calculations using chiral EF1(N ⁺ LO) [Lonardom2020]	40±4
Neutron Star Observables Since GW170817 [Li21]	51 ± 13
Cooling process of a protoneutron star (PNS) [Nakazato2019]	40-60
Gravitational waves from GW170817 [Tong2020]	60.7 ± 10.9
Bayesian Inference from Radii of Canonical Neutron Stars [Xie2019]	$39.2^{+12.1}_{-8.2}$
Skyrme energy density functional [Zhang2020]	35-55
Electromagnetic and gravitational measurements of Neutron stars [Zhou2019]	$[39.4^{-6.4}_{+7.5}, 54.5^{-3.2}_{+3.1}]$
Microscopic calculations with various energy density functionals [Chen2015]	40.2 ± 12.8
Extended Skyrme-Hartree-Fock (eSHF) model and from PREX-II [Gang Yue2022]	62.8 ± 15.9
Bayesian Inference from Future Radius Measurements of Massive Neutron Stars [J Xie2020]	47^{+23}_{-22}
Experiments/Theoretical interactions	$E_{syss}(3\rho_0)[MeV]$
$SEI-Y(\gamma = 1/2)$	69.38
From Neutron Star Observables Since GW170817 [Li21]	$76.91^{+25.96}_{-25.96}$

Correlating the neutron skin to the neutron st

THE NEUTRON STAR CORE-CRUST TRANSITION Dynamical method

$$V_{dyn}(\rho, k) = \left(\frac{\partial \mu_{p}}{\partial \rho_{p}} + D_{pp}(\rho, k) + \frac{4\pi e^{2}}{k^{2}}\right) - \frac{\left[\partial \mu_{n}/\partial \rho_{p} + D_{np}(\rho, k)\right]^{2}}{\partial \mu_{n}/\partial \rho_{n} + D_{nn}(\rho, k)} - \frac{(4\pi e^{2})^{2}}{\partial \mu_{e}/\partial \rho_{e} + 4\pi e^{2}/k^{2}}$$

Thermodynamical Method

$$V_{Therm} = 2\rho \frac{\partial E_b(\rho, y_p)}{\partial \rho^2} + \rho^2 \frac{\partial^2 E_b(\rho, y_p)}{\partial \rho^2} - \left(\frac{\partial^2 E_b(\rho, y_p)}{\partial \rho \partial y_p}\rho\right)^2 / \frac{\partial^2 E_b(\rho, y_p)}{\partial^2 y_p}$$

Simple Effective Interaction (SEI)

$$V_{eff}(r) = t_0(1+x_0P_{\sigma})\delta(r) + \frac{t_3}{6}(1+x_3P_{\sigma})\left(\frac{\rho}{1+b\rho}\right)^{\gamma}\delta(r) + (W+BP_{\sigma}-HP_{\tau}-MP_{\sigma}P_{\tau})\mathbf{f(r)}$$

 $f(\mathbf{r}) = \frac{e^{-r/\alpha}}{r/\alpha} \quad (\text{Yukawa}), \ e^{-r^2/\alpha^2} \quad (\text{Gaussian}), \ e^{-r/\alpha} \quad (\text{Exponential}).$ SEI has 11 parameters:b, $t_0, x_0, t_3, x_3, \gamma, \alpha, W, B, H, M + W_0 \Rightarrow \text{Enters in the description of finite-nuclei.}$

Finite Nuclei: The quasilocal energy functional: $\varepsilon_0[\rho^{QL}] = \int H_0 d^3 R$ • $H_0 = \frac{\hbar^2}{2m}(\tau_n + \tau_p) + H_d^{Nucl} + H_{exch}^{Nucl} + H^{SO} + H^{Coul}$ Neutron-skin thickness($R_{skin} = R_n - R_p$)

Acknowledgments

- T.R. Routray, School of Physics, Sambalpur University, India.
- X. Viñas, Departament de Fsica Quntica i Astrofsica and Institut de Cincies del Cosmos(ICCUB), Facultat de Fsica, Universitat de Barcelona, Mart i Franqus 1, E-08028 Barcelona, Spain.
- Z. Naik, School of Physics, Sambalpur University, India.
- S P Pattnaik, Gangadhar Meher University, Sambalpur, India
- MANF Fellowship of UGC, India.

Thank you for your kind attention