## State-of-the-art calculations for large nuclei

Benjamin Bally

#### INT - Seattle - 25/01/2023





## 1 Introduction

2 Ab initio methods and matrix elements

3 Mean-field and Projected Generator Coodinate Method

MR-EDF calculations of heavy nuclei

### 6 Conclusion



### Introduction

Ab initio methods and matrix elements

Mean-field and Projected Generator Coodinate Method

MR-EDF calculations of heavy nuclei

### **6** Conclusion





# Nuclear chart: global EDF calculations





## Nuclear chart: reach of ab initio methods









## Nuclear chart: highlights







- Ab initio and EFT
  - ◊ Several approaches but mainly for "spherical" nuclei and still limited in A



- Ab initio and EFT
  - Several approaches but mainly for "spherical" nuclei and still limited in A
  - Effective theory for deformed nuclei

Papenbrock, NPA 852, 36 (2011); Papenbrock et al., PRC 102, 044324 (2020)



- Ab initio and EFT
  - Several approaches but mainly for "spherical" nuclei and still limited in A
  - Effective theory for deformed nuclei
     Papenbrock, NPA 852, 36 (2011); Papenbrock et al., PRC 102, 044324 (2020)
- Energy density functional
  - ◊ Global calculations (mainly at mean field level)
     → Talks of Witek and Anatoli



- Ab initio and EFT
  - Several approaches but mainly for "spherical" nuclei and still limited in A
  - Effective theory for deformed nuclei
     Papenbrock, NPA 852, 36 (2011): Papenbrock et al., PRC 102, 044324 (2020)
- Energy density functional
  - ◊ Global calculations (mainly at mean field level)
     → Talks of Witek and Anatoli
  - Time-dependent evolution (e.g. fission)



- Ab initio and EFT
  - Several approaches but mainly for "spherical" nuclei and still limited in A
  - Effective theory for deformed nuclei

Papenbrock, NPA 852, 36 (2011); Papenbrock et al., PRC 102, 044324 (2020)

- Energy density functional
  - ◊ Global calculations (mainly at mean field level)
     → Talks of Witek and Anatoli
  - Time-dependent evolution (e.g. fission)
  - Detailed multi-reference EDF (MREDF) calculations for selected nuclei



- Ab initio and EFT
  - Several approaches but mainly for "spherical" nuclei and still limited in A
  - Effective theory for deformed nuclei

Papenbrock, NPA 852, 36 (2011); Papenbrock et al., PRC 102, 044324 (2020)

- Energy density functional
  - ◊ Global calculations (mainly at mean field level)
     → Talks of Witek and Anatoli
  - Time-dependent evolution (e.g. fission)
  - Detailed multi-reference EDF (MREDF) calculations for selected nuclei
- Nuclear shell model (but probably less relevant in our context)
  - Monte Carlo Shell Model (talk of T. Otsuka, EMMI, Heidelberg 10/2022)



## Introduction

### 2 Ab initio methods and matrix elements

### Mean-field and Projected Generator Coodinate Method

### MR-EDF calculations of heavy nuclei

#### **6** Conclusion



- Main principles:
  - $\diamond~$  Consider Z protons and N neutrons interacting
    - $\Rightarrow$  *Z* + *N* = *A*-body problem



- Main principles:
  - ♦ Consider Z protons and N neutrons interacting  $\Rightarrow$  Z + N = A-body problem
  - ♦ Solve Schrödinger equation:  $H|\Psi\rangle = E|\Psi\rangle$



- Main principles:
  - ♦ Consider Z protons and N neutrons interacting  $\Rightarrow$  Z + N = A-body problem
  - Solve Schrödinger equation:  $H|\Psi\rangle = E|\Psi\rangle$
  - Use nuclear Hamiltonian linked to QCD
    - $\Rightarrow$  Effective Field Theory (EFT) is the modern gold standard



- Main principles:
  - ♦ Consider Z protons and N neutrons interacting  $\Rightarrow$  Z + N = A-body problem
  - Solve Schrödinger equation:  $H|\Psi\rangle = E|\Psi\rangle$
  - ◊ Use nuclear Hamiltonian linked to QCD
     ⇒ Effective Field Theory (EFT) is the modern gold standard
  - Use methods that can be improved systematically towards the exact solution



- Main principles:
  - ♦ Consider Z protons and N neutrons interacting  $\Rightarrow$  Z + N = A-body problem
  - Solve Schrödinger equation:  $H|\Psi\rangle = E|\Psi\rangle$
  - $\diamond~$  Use nuclear Hamiltonian linked to QCD  $\Rightarrow~$  Effective Field Theory (EFT) is the modern gold standard
  - $\diamond~$  Use methods that can be improved systematically towards the exact solution
  - Estimate the uncertainties (in principle)



- Main principles:
  - Consider Z protons and N neutrons interacting  $\Rightarrow Z + N = A$ -body problem
  - Solve Schrödinger equation:  $H|\Psi\rangle = E|\Psi\rangle$
  - Use nuclear Hamiltonian linked to QCD
    - $\Rightarrow$  Effective Field Theory (EFT) is the modern gold standard
  - $\diamond~$  Use methods that can be improved systematically towards the exact solution
  - Estimate the uncertainties (in principle)
- Many theoretical frameworks exist:
  - Coupled Cluster (CC)
  - Self-Consistent Green's Functions (SCGF)
  - No-Core Shell Model (NCSM)
  - In-Medium Similarity Renormalization Group (IMSRG)
  - Valence-Space IMSRG (VS-IMSRG)
  - Nuclear Lattice Effective Field Theory (NLEFT)
  - Projected Generator Coordinate Method + Perturbation Theory (PGCM-PT)

٥ . . .



• In second quantization:

$$H = h^{(0)} + \sum_{ij} h^{(1)}_{ij} c^{\dagger}_i c_j + \frac{1}{(2!)^2} \sum_{ijkl} \overline{h}^{(2)}_{ijkl} c^{\dagger}_i c^{\dagger}_j c_l c_k + \frac{1}{(3!)^2} \sum_{ijklmn} \overline{h}^{(3)}_{ijklmn} c^{\dagger}_i c^{\dagger}_j c^{\dagger}_k c_n c_m c_l + \dots$$

## Nuclear Hamiltonian



• In second quantization:

$$H = h^{(0)} + \sum_{ij} h^{(1)}_{ij} c^{\dagger}_i c_j + \frac{1}{(2!)^2} \sum_{ijkl} \overline{h}^{(2)}_{ijkl} c^{\dagger}_i c^{\dagger}_j c_l c_k + \frac{1}{(3!)^2} \sum_{ijklmn} \overline{h}^{(3)}_{ijklmn} c^{\dagger}_i c^{\dagger}_j c^{\dagger}_k c_n c_m c_l + \dots$$

• "Bare" Hamiltonian

$$h^{(0)} = 0$$
  

$$h^{(1)} = T^{(1)}$$
  

$$\overline{h}^{(2)} = V^{(2)}$$
  

$$\overline{h}^{(3)} = W^{(3)}$$
  

$$\overline{h}^{(n>3)} = 0$$

## Rank reduction of the Hamiltonian

cea

• Consider an effective 2-body nuclear Hamiltonian

$$H = h^{(0)} + \sum_{ij} h^{(1)}_{ij} c^{\dagger}_i c_j + \frac{1}{(2!)^2} \sum_{ijkl} \overline{h}^{(2)}_{ijkl} c^{\dagger}_i c^{\dagger}_j c_l c_k$$

## Rank reduction of the Hamiltonian

• Consider an effective 2-body nuclear Hamiltonian

$$H = h^{(0)} + \sum_{ij} h^{(1)}_{ij} c^{\dagger}_i c_j + \frac{1}{(2!)^2} \sum_{ijkl} \overline{h}^{(2)}_{ijkl} c^{\dagger}_i c^{\dagger}_j c_l c_k$$

• In-medium 2-body reduction (similar to usual normal-order 2-body approx.) Frosini *et al.*, EPJA 58, 63 (2022) Reference state  $|\Phi\rangle$  with one-body density:  $\rho_{ij} = \langle \Phi | a_i^{\dagger} a_i | \Phi \rangle$ 

$$h^{(0)} = 0 \qquad h^{(0)} = \frac{1}{3!} W^{(3)} \cdot \rho^{\otimes(3)}$$

$$h^{(1)} = T^{(1)} \qquad \implies \qquad h^{(1)} = T^{(1)} - \frac{1}{2!} W^{(3)} \cdot \rho^{\otimes(2)}$$

$$\overline{h}^{(2)} = V^{(2)} \qquad \overline{h}^{(2)} = V^{(2)} + W^{(3)} \cdot \rho$$

$$\overline{h}^{(3)} = 0$$

(Example:  $\left[W^{(3)} \cdot \rho\right]_{ijln} = \sum_{kn} W^{(3)}_{ijklmn} \rho_{nk}$ )



# Rank reduction of the Hamiltonian

• Consider an effective 2-body nuclear Hamiltonian

$$H = h^{(0)} + \sum_{ij} h^{(1)}_{ij} c^{\dagger}_i c_j + \frac{1}{(2!)^2} \sum_{ijkl} \overline{h}^{(2)}_{ijkl} c^{\dagger}_i c^{\dagger}_j c_l c_k$$

• In-medium 2-body reduction (similar to usual normal-order 2-body approx.) Frosini *et al.*, EPJA 58, 63 (2022) Reference state  $|\Phi\rangle$  with one-body density:  $\rho_{ij} = \langle \Phi | a_i^{\dagger} a_i | \Phi \rangle$ 

$$\begin{aligned} h^{(0)} &= 0 & h^{(0)} &= \frac{1}{3!} W^{(3)} \cdot \rho^{\otimes (3)} \\ h^{(1)} &= T^{(1)} & & \\ \overline{h}^{(2)} &= V^{(2)} & & \\ \overline{h}^{(3)} &= W^{(3)} & & \\ \hline{h}^{(2)} &= V^{(2)} + W^{(3)} \cdot \rho \\ & & \overline{h}^{(3)} &= 0 \end{aligned}$$

(Example:  $\left[W^{(3)} \cdot \rho\right]_{ijln} = \sum_{kn} W^{(3)}_{ijklmn} \rho_{nk}$ )

• Error < 3% for excitation energies





• SHO basis:  $|a\rangle \equiv |n_a, l_a, s_a = \frac{1}{2}, j_a, m_{j_a}, t_a = \frac{1}{2}, m_{t_a}\rangle$ 

with  $m_{j_a} \in \llbracket -j_a, j_a \rrbracket$  and  $m_{t_a} \in \llbracket -t_a, t_a \rrbracket$ 

cea

- SHO basis:  $|a\rangle \equiv |n_a, l_a, s_a = \frac{1}{2}, j_a, m_{j_a}, t_a = \frac{1}{2}, m_{t_a}\rangle$ with  $m_{j_a} \in [\![-j_a, j_a]\!]$  and  $m_{t_a} \in [\![-t_a, t_a]\!]$
- Principal quantum number:  $e_a = 2n_a + l_a$
- Limit for single-particle states  $|a\rangle$ :  $\forall a, e_a \leq e_{\max}$



- SHO basis:  $|a\rangle \equiv |n_a, l_a, s_a = \frac{1}{2}, j_a, m_{j_a}, t_a = \frac{1}{2}, m_{t_a}\rangle$ with  $m_{j_a} \in [\![-j_a, j_a]\!]$  and  $m_{t_a} \in [\![-t_a, t_a]\!]$
- Principal quantum number:  $e_a = 2n_a + l_a$
- Limit for single-particle states  $|a\rangle$ :  $\forall a, e_a \leq e_{\max}$



 $\Rightarrow$  all elements  $V_{abcd} = \langle ab | V^{(2)} | cd \rangle$  taken into account





generally

- SHO basis:  $|a\rangle \equiv |n_a, l_a, s_a = \frac{1}{2}, j_a, m_{j_a}, t_a = \frac{1}{2}, m_{t_a}\rangle$ with  $m_{j_a} \in [\![-j_a, j_a]\!]$  and  $m_{t_a} \in [\![-t_a, t_a]\!]$
- Principal quantum number:  $e_a = 2n_a + l_a$
- Limit for single-particle states  $|a\rangle$ :  $\forall a, e_a \leq e_{\max}$

• Limit for two-particle states  $|ab\rangle$ :  $\forall a, b, e_a + e_b \le e_{2\max} = 2e_{\max}$ 

 $\Rightarrow$  all elements  $V_{abcd} = \langle ab | V^{(2)} | cd \rangle$  taken into account

• Limit for three-particle states  $|abc\rangle$ :  $\forall a, b, c, e_a + e_b + e_c \le e_{3max} < 3e_{max}$ 

 $\Rightarrow$  not all elements  $W_{abcdef} = \langle abc | W^{(3)} | def \rangle$  taken into account





generally

generally

## Scaling of $V_{ijkl}$ with the basis size





# Scaling of $W_{ijklmn}$ with the basis size





# Scaling of $W_{ijklmn}$ with the basis size







 Store only required linear combinations of matrix elements Miyagi et al., PRC 105, 014302 (2022)





### Introduction

#### Ab initio methods and matrix elements

### 3 Mean-field and Projected Generator Coodinate Method

### MR-EDF calculations of heavy nuclei

### **6** Conclusion



• Variational principle:  $\delta \langle \Phi | H | \Phi \rangle = 0$


- Variational principle:  $\delta \langle \Phi | H | \Phi \rangle = 0$ 
  - $|\Phi\rangle \equiv$  Product states (Slater determinants or Bogoliubov quasi-particle states)
  - $\rightarrow$  entirely defined by their one-body densities



- Variational principle:  $\delta \langle \Phi | H | \Phi \rangle = 0$ 
  - $|\Phi\rangle \equiv$  Product states (Slater determinants or Bogoliubov quasi-particle states)
  - $\rightarrow$  entirely defined by their one-body densities
- Allow  $|\Phi\rangle$  to deform  $\rightarrow \langle \Phi | Q_{\lambda\mu} | \Phi \rangle \equiv \langle \Phi | r^{\lambda} Y_{\lambda\mu}(\theta, \phi) | \Phi \rangle \neq 0$



- Variational principle:  $\delta \langle \Phi | H | \Phi \rangle = 0$ 
  - $|\Phi\rangle \equiv$  Product states (Slater determinants or Bogoliubov quasi-particle states)
  - $\rightarrow$  entirely defined by their one-body densities
- Allow  $|\Phi\rangle$  to deform  $\rightarrow \langle \Phi | Q_{\lambda\mu} | \Phi \rangle \equiv \langle \Phi | r^{\lambda} Y_{\lambda\mu}(\theta, \phi) | \Phi \rangle \neq 0$
- Symmetry-unrestricted calculations favor deformed solutions



- Variational principle:  $\delta \langle \Phi | H | \Phi \rangle = 0$ 
  - $|\Phi\rangle \equiv$  Product states (Slater determinants or Bogoliubov quasi-particle states)
  - $\rightarrow$  entirely defined by their one-body densities
- Allow  $|\Phi\rangle$  to deform  $\rightarrow \langle \Phi | Q_{\lambda\mu} | \Phi \rangle \equiv \langle \Phi | r^{\lambda} Y_{\lambda\mu}(\theta, \phi) | \Phi \rangle \neq 0$
- Symmetry-unrestricted calculations favor deformed solutions

• Capture strong collective correlations keeping the simple one-body picture

## Constrained calculations



• Variation:  $\delta \langle \Phi | H - \sum_{\lambda \mu} \eta_{\lambda \mu} Q_{\lambda \mu} | \Phi \rangle = 0$  with  $\langle \Phi | Q_{\lambda \mu} | \Phi \rangle = q_{\lambda \mu}$ 

### Constrained calculations



- Variation:  $\delta \langle \Phi | H \sum_{\lambda \mu} \eta_{\lambda \mu} Q_{\lambda \mu} | \Phi \rangle = 0$  with  $\langle \Phi | Q_{\lambda \mu} | \Phi \rangle = q_{\lambda \mu}$
- Build a set:  $\{|\Phi(q_i)\rangle, q_i \equiv \{q_{i,\lambda\mu}\}\}$

### Constrained calculations



- Variation:  $\delta \langle \Phi | H \sum_{\lambda \mu} \eta_{\lambda \mu} Q_{\lambda \mu} | \Phi \rangle = 0$  with  $\langle \Phi | Q_{\lambda \mu} | \Phi \rangle = q_{\lambda \mu}$
- Build a set:  $\{|\Phi(q_i)\rangle, q_i \equiv \{q_{i,\lambda\mu}\}\}$





$$|\Phi(q_i)\rangle = \sum_{ZNJM\pi} \sum_{\epsilon} c_{\epsilon}^{ZNJM\pi}(q_i) |\Theta_{\epsilon}^{ZNJM\pi}(q_i)\rangle \implies \text{unphysical in nuclei}$$



$$|\Phi(q_i)\rangle = \sum_{ZNJM\pi} \sum_{\epsilon} c_{\epsilon}^{ZNJM\pi}(q_i) |\Theta_{\epsilon}^{ZNJM\pi}(q_i)\rangle \implies \text{unphysical in nuclei}$$

• Is it a problem?



$$|\Phi(q_i)\rangle = \sum_{ZNJM\pi} \sum_{\epsilon} c_{\epsilon}^{ZNJM\pi}(q_i) |\Theta_{\epsilon}^{ZNJM\pi}(q_i)\rangle \implies \text{unphysical in nuclei}$$

- Is it a problem?
- Not really, in nuclear physics we prefer to
  - ◊ Break symmetries at MF level ⇒ explore larger variational space
  - $\diamond$  Restore symmetries at BMF level  $\Rightarrow$  get good quantum numbers



$$|\Phi(q_i)\rangle = \sum_{ZNJM\pi} \sum_{\epsilon} c_{\epsilon}^{ZNJM\pi}(q_i) |\Theta_{\epsilon}^{ZNJM\pi}(q_i)\rangle \implies \text{unphysical in nuclei}$$

- Is it a problem?
- Not really, in nuclear physics we prefer to
  - ◊ Break symmetries at MF level ⇒ explore larger variational space
  - $\diamond~$  Restore symmetries at BMF level  $\Rightarrow$  get good quantum numbers
  - $\diamond$  Symmetry-breaking MF  $\xrightarrow{\text{reference states}}$  Symmetry-restored BMF

# Symmetry-breaking and quantum numbers



• Projection operators from Group Theory

 $P^{Z}P^{N} \equiv$  proton and neutron numbers  $P_{MK}^{J} \equiv$  angular momentum  $P^{\pi} \equiv$  parity

# Symmetry-breaking and quantum numbers



• Projection operators from Group Theory

 $P^{Z}P^{N} \equiv$  proton and neutron numbers  $P_{MK}^{J} \equiv$  angular momentum  $P^{\pi} \equiv$  parity

•  $P^{Z}P^{N}P^{J}_{MK}P^{\pi}|\Phi(q_{i})
angle$  has good quantum numbers

## Symmetry-breaking and quantum numbers

cea

• Projection operators from Group Theory

 $P^{Z}P^{N} \equiv$  proton and neutron numbers  $P_{MK}^{J} \equiv$  angular momentum  $P^{\pi} \equiv$  parity

-204

- $P^Z P^N P^J_{MK} P^{\pi} | \Phi(q_i) \rangle$  has good quantum numbers
- Projected Generator Coodinate Method  $|\Theta_{\sigma}^{ZNJM\pi}\rangle \equiv \sum_{q_i,K} f_{\sigma}^{ZNJM\pi}(q_i,K) P^Z P^N P_{MK}^J P^{\pi} |\Phi(q_i)\rangle$   $\delta \frac{\langle \Theta_{\sigma}^{ZNJM\pi} | H | \Theta_{\sigma}^{ZNJM\pi} \rangle}{\langle \Theta_{\sigma}^{ZNJM\pi} | \Theta_{\sigma}^{ZNJM\pi} \rangle} = 0$

β



#### Introduction

#### Ab initio methods and matrix elements

#### Mean-field and Projected Generator Coodinate Method

#### **4** MR-EDF calculations of heavy nuclei

#### **6** Conclusion



• The energy is represented as a functional of one-body densities

$$\langle \Phi | H | \Phi \rangle \equiv E[\rho, \kappa, \kappa^*] \text{ with } \begin{cases} \rho_{ij} = \langle \Phi | a_j^{\dagger} a_i | \Phi \rangle \\ \kappa_{ij} = \langle \Phi | a_j a_i | \Phi \rangle \\ \kappa_{ij}^* = \langle \Phi | a_i^{\dagger} a_j^{\dagger} | \Phi \rangle \end{cases}$$



• The energy is represented as a functional of one-body densities

$$\langle \Phi | H | \Phi \rangle \equiv E[\rho, \kappa, \kappa^*] \text{ with } \begin{cases} \rho_{ij} = \langle \Phi | a_j^{\dagger} a_i | \Phi \rangle \\ \kappa_{ij} = \langle \Phi | a_j a_i | \Phi \rangle \\ \kappa_{ij}^* = \langle \Phi | a_i^{\dagger} a_j^{\dagger} | \Phi \rangle \end{cases}$$

- Trivial consequence of Wick Theorem if  $|\Phi\rangle$  is a product state

# Energy Density Functional (EDF)

• The energy is represented as a functional of one-body densities

- Trivial consequence of Wick Theorem if  $|\Phi\rangle$  is a product state
- But EDF philosophy goes further
  - $\diamond \ \ \, \text{Form of } E[\rho,\kappa,\kappa^*] \text{ is general (e.g. } \rho^\alpha \text{ with } \alpha \notin \mathbb{N})$
  - $\diamond$  Parameters of  $E[
    ho,\kappa,\kappa^*]$  fitted to experimental data



cea

- Several popular families
  - Skyrme EDFs
  - Gogny EDFs
  - Fayans EDFs
  - Relativistic EDFs (with subfamilies)

- Several popular families
  - Skyrme EDFs
  - Gogny EDFs
  - Fayans EDFs
  - Relativistic EDFs (with subfamilies)

- Pros and cons
  - $\diamond~$  Computationally cheap  $\Rightarrow$  access entire\* nuclear chart
    - \* but the lighest nuclei



- Several popular families
  - Skyrme EDFs
  - Gogny EDFs
  - Fayans EDFs
  - Relativistic EDFs (with subfamilies)

- Pros and cons
  - $\diamond~$  Computationally cheap  $\Rightarrow$  access entire\* nuclear chart
    - \* but the lighest nuclei
  - Good global description of data



- Several popular families
  - Skyrme EDFs
  - Gogny EDFs
  - Fayans EDFs
  - Relativistic EDFs (with subfamilies)

- Pros and cons
  - $\diamond~$  Computationally cheap  $\Rightarrow$  access entire\* nuclear chart
    - \* but the lighest nuclei
  - Good global description of data
  - ♦ Phenomenological  $\Rightarrow$  no clear way to improve



- Several popular families
  - Skyrme EDFs
  - Gogny EDFs
  - Fayans EDFs
  - Relativistic EDFs (with subfamilies)

- Pros and cons
  - $\diamond$  Computationally cheap  $\Rightarrow$  access entire\* nuclear chart
    - \* but the lighest nuclei
  - Good global description of data
  - ♦ Phenomenological  $\Rightarrow$  no clear way to improve
  - Mathematical problems when going beyond the mean field (BMF)



- Several popular families
  - Skyrme EDFs
  - Gogny EDFs
  - Fayans EDFs
  - Relativistic EDFs (with subfamilies)

- Pros and cons
  - $\diamond$  Computationally cheap  $\Rightarrow$  access entire\* nuclear chart
    - \* but the lighest nuclei
  - Good global description of data
  - ♦ Phenomenological  $\Rightarrow$  no clear way to improve
  - Mathematical problems when going beyond the mean field (BMF)
  - Not much progress in recent years





• SLyMR1 parametrization

R. Jodon, PhD Thesis, tel-01158085, Sadoudi et al., PRC 88, 064326 (2013)

- $\diamond$  no density dependence → three-body with gradients ⇒ can be used safely in MR-EDF calculations
- $\diamond$  Works here but not the best (e.g. fails for <sup>238</sup>U)



• SLyMR1 parametrization

R. Jodon, PhD Thesis, tel-01158085, Sadoudi et al., PRC 88, 064326 (2013)

- $\diamond$  no density dependence → three-body with gradients ⇒ can be used safely in MR-EDF calculations
- Works here but not the best (e.g. fails for  $^{238}$ U)
- Representation on a 3d Cartesian mesh
  - $\diamond \ 32 \times 32 \times 32 \text{ points}$



• SLyMR1 parametrization

R. Jodon, PhD Thesis, tel-01158085, Sadoudi et al., PRC 88, 064326 (2013)

- $\diamond$  no density dependence → three-body with gradients ⇒ can be used safely in MR-EDF calculations
- Works here but not the best (e.g. fails for  $^{238}$ U)
- Representation on a 3d Cartesian mesh
  - $\diamond \ 32 \times 32 \times 32 \text{ points}$
- MR-EDF calculations with
  - Projection on  $Z, N, J, M_J$  (*P* conserved)
  - ♦ Exporing explicitly:  $\beta, \gamma, 1qp$

#### Low-energy spectrum



• Correct  $J^{\pi}$  for the g.s.

• Ordering reasonable

Too spread in energy



# Spectroscopic quantities



| Quantity               | Experiment Theory |           |  |
|------------------------|-------------------|-----------|--|
| $E(3/2_{1}^{+})$       | -1559.384         | -1556.044 |  |
| $r_{\rm rms}(3/2_1^+)$ | 5.4371(38)        | 5.389     |  |
| $\mu(1/2^+_1)$         | +0.416(3)         | +0.01     |  |
| $\mu(3/2^+_1)$         | +0.1452(2)        | (2) -0.38 |  |
| $\mu(5/2^+_1)$         | +0.74(6)          | +0.15     |  |
| $\mu(5/2^+_2)$         | +3.0(5)           | +0.14     |  |
| $\mu(7/2^+_1)$         | +0.84(7)          | +0.51     |  |
| $\mu(9/2^+_1)$         | +1.5(5)           | +0.81     |  |
| $\mu(11/2^1)$          | (+)5.96(9)        | +6.87     |  |
| $Q_s(3/2_1^+)$         | +0.547(16)        | +0.65     |  |
| $Q_s(11/2_1^-)$        | +1.68(5)          | +2.05     |  |

Table: Total energy E (MeV), root-mean-square charge radius  $r_{\rm rms}$  (fm), magnetic dipole moments  $\mu$  ( $\mu_N$ ), and spectroscopic quadrupole moments  $Q_s$  (*eb*).

## Electromagnetic transitions



| Transition                    | Туре | Experiment | Theory  |
|-------------------------------|------|------------|---------|
| $1/2^+_1 \rightarrow 3/2^+_1$ | E2   | 35(3)      | 45      |
|                               | M1   | 0.004      | 0.019   |
| $3/2^+_2 \rightarrow 1/2^+_1$ | E2   | 18(3)      | 6       |
|                               | M1   | 0.089(9)   | 0.048   |
| $3/2^+_3 \rightarrow 1/2^+_1$ | E2   |            | 9       |
| $3/2^+_2 \rightarrow 3/2^+_1$ | E2   | 18.5(19)   | 0.4     |
| $5/2^+_1 \rightarrow 1/2^+_1$ | E2   | 14.4(17)   | 12      |
| $5/2^+_1 \rightarrow 3/2^+_1$ | E2   | 26(6)      | 30      |
|                               | M1   | 0.034(4)   | 0.065   |
| $5/2^+_2 \rightarrow 1/2^+_1$ | E2   | 7.6(23)    | 8       |
| $5/2^+_2 \rightarrow 3/2^+_1$ | E2   | 7(6)       | 0.4     |
|                               | M1   | 0.083(10)  | < 0.001 |
| $7/2^+_1 \rightarrow 5/2^+_1$ | E2   | 0.18(7)    | 1       |
|                               | M1   | 0.012(1)   | 0.106   |
| $7/2^+_1 \rightarrow 3/2^+_1$ | E2   | 33(3)      | 38      |
| $7/2^+_1 \rightarrow 3/2^+_2$ | E2   | 6.8(20)    | 0.3     |
| $7/2^+_2 \rightarrow 3/2^+_2$ | E2   | 6(4)       | 22      |
| $7/2^+_2 \rightarrow 5/2^+_1$ | E2   | 21(6)      | 13      |
|                               | M1   | 0.175(23)  | 0.010   |
| $9/2^+_1 \rightarrow 7/2^+_1$ | E2   | 10(7)      | 10      |
| $9/2^+_1 \rightarrow 5/2^+_1$ | E2   | 41(5)      | 43      |

Table: Reduced transition probabilities in Weisskopf units.

### Average deformation





• Average deformations

$$\bar{\beta} = \sum_{q} g^{2}(q) \beta(q)$$
$$\bar{\gamma} = \sum_{q} g^{2}(q) \gamma(q)$$

• For <sup>197</sup>Au  $\overline{\beta} = 0.13$ 

$$\bar{\gamma} = 40^{\circ}$$

# Effects of triaxiality





• Nuclear structure input:  $\langle \Phi(\bar{\beta}, \bar{\gamma}) | a_r^{\dagger} a_r | \Phi(\bar{\beta}, \bar{\gamma}) \rangle \rightarrow WS$  fit

Bally et al., PRL 128, 082301 (2022)



• Definition:  $\Delta r_{np} = \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2}$ 

• Good agreement between calculations and high-energy data STAR Collaboration, Sci. Adv. 9, eabq3903 (2023)

$$\begin{split} &\Delta r_{np} [\text{MREDF}] = 0.17 \text{ fm} \\ &\Delta r_{np} [\text{STAR}] = 0.17 \pm 0.03 \text{ (stat.)} \pm 0.08 \text{ (syst.) fm} \end{split}$$

## Other similar calculations



• <sup>129</sup>Xe and <sup>208</sup>Pb

Bally et al., PRL 128, 082301 (2022) Bally et al., EPJA 58, 187 (2022)



## Other similar calculations



• <sup>129</sup>Xe and <sup>208</sup>Pb

Bally et al., PRL 128, 082301 (2022) Bally et al., EPJA 58, 187 (2022)



<sup>238</sup>U → too deformed with SLyMR1



#### Introduction

#### Ab initio methods and matrix elements

#### Mean-field and Projected Generator Coodinate Method

#### MR-EDF calculations of heavy nuclei

#### **5** Conclusion
- Ab initio is getting there
  - Some calculations already exist (mostly spherical nuclei)



cea

- Ab initio is getting there
  - Some calculations already exist (mostly spherical nuclei)
  - Breakthrough for storage of three-body matrix elements Miyagi et al., PRC 105, 014302 (2022)

- Ab initio is getting there
  - Some calculations already exist (mostly spherical nuclei)
  - Breakthrough for storage of three-body matrix elements Miyagi et al., PRC 105, 014302 (2022)
  - Development of existing methods and design of new ones
  - Computational power is increasing



- Ab initio is getting there
  - Some calculations already exist (mostly spherical nuclei)
  - Breakthrough for storage of three-body matrix elements Miyagi et al., PRC 105, 014302 (2022)
  - Development of existing methods and design of new ones
  - Computational power is increasing
- EDF calculations possible
  - Global calculations, mostly SREDF level but some MREDF (with approx.) Bender et al., PRC 73, 034322 (2006); Rodríguez et al., PRC 91, 044315 (2015)



- Ab initio is getting there
  - Some calculations already exist (mostly spherical nuclei)
  - Breakthrough for storage of three-body matrix elements Miyagi et al., PRC 105, 014302 (2022)
  - Development of existing methods and design of new ones
  - Computational power is increasing
- EDF calculations possible
  - Global calculations, mostly SREDF level but some MREDF (with approx.) Bender et al., PRC 73, 034322 (2006); Rodríguez et al., PRC 91, 044315 (2015)
  - $\diamond$  Detailed structure at MREDF level (10<sup>5</sup>-10<sup>6</sup> CPUh/nucleus)



- Ab initio is getting there
  - Some calculations already exist (mostly spherical nuclei)
  - Breakthrough for storage of three-body matrix elements Miyagi et al., PRC 105, 014302 (2022)
  - Development of existing methods and design of new ones
  - Computational power is increasing
- EDF calculations possible
  - Global calculations, mostly SREDF level but some MREDF (with approx.) Bender et al., PRC 73, 034322 (2006); Rodríguez et al., PRC 91, 044315 (2015)
  - ◊ Detailed structure at MREDF level (10<sup>5</sup>-10<sup>6</sup> CPUh/nucleus)
  - Biggest problem: quality of the functionals But there people are still working!

Ph. da Costa, PhD Thesis, Univ. Lyon (2022)

