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Possible sites for the r-process

Neutrinos not only
play a crucial role
in the dynamics of
these sites, but
they also control
the value of the
electron fraction,
the parameter
determining the
yields of the r-
process
nucleosynthesis.



Understanding a core-collapse supernova requires answers to a
variety of questions some of which need to be answered, both
theoretically and experimentally.

Balantekin and Fuller, Prog. Part. Nucl. Phys. 71 162 (2013)

neutrino-nucleus interactions

neutron star

neutrino
SN burst

neutrino
heating,

nucleo-

synthesis

neutrino flavor oscillations )
detection

at earth

high density EOS,
neutrino interactions

Ve+n=p+e ve + 20Ar — OK* 4+ e
Ve+p=n+et Ve + 2%Ar — AT 4 1,

Neutron-to-proton ratio
depends on relative intensities

of electron neutrinos and
electron antineutrinos, which in
turn depend on neutrino
oscillations




Energy released in a core-collapse
SN: AE % 103 ergs = 10°° MeV
99% of this energy is carried away
Proto neutron by neutrinos and antineutrinos!

star ~ 10°8 Neutrinos!
This necessitates including the
effects of vv interactions!

H = Z ata + Z(l —cos@)ataTaa

¥
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v oscillations neutrino-neutrino interactions
MSW effect

The second term makes the physics of a neutrino gas in a core-collapse supernova a
very interesting many-body problem, driven by weak interactions.

Neutrino-neutrino interactions lead to novel collective and emergent effects,
such as conserved quantities and interesting features in the neutrino energy
spectra (spectral "swaps” or "splits”).



Many neutrino system

This is the only many-body system driven by the weak interactions:

Table: Many-body systems

Nuclei Strong | at most ~250 particles
Condensed matter | E&M at most N, particles
v’'s in SN Weak ~ 10°®particles

Astrophysical extremes allow us to test physics that cannot be
tested elsewhere!




MSW oscillations
(low neutrino density)

Collective oscillations
(high neutrino density)

Proto-neutron
star

Neutrinos forward scatter
from each other

Neutrinos forward scatter from
background particles




dp

Pl —i|H, p] + C(p)

H = neutrino mixing
+ forward scattering of neutrinos off other background particles (MSW)
+ forward scattering of neutrinos off each other

C = collisions
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Neutrino flavor isospin J,=a,a, J_=aa,

é ? :
These operators can be written
in either mass or flavor basis

Free neutrinos (only mixing)
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Interacting with background electrons
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Note that

1
_ T T
Jo = > (aga. — a,a,)
N = (a;rae + a;iau) = constant
Hence Py, = Tr (pJ,) is an observable giving numbers of neutrinos
of each flavor



Smirnov, Fuller, Qian, Pantaleone, Sawyer,

Neutrino-Neutrino Interactions McKellar, Friedland, Lunardini, Raffelt,
Duan, Balantekin, Volpe, Kajino, Pehlivan ...
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This term makes the physics of a neutrino gas in a core-collapse
supernova a genuine many-body problem

om’ = = \/7G
=fdp EB.JP_\/EGFNeJ(Il

—_

(1 cosH )jp-Jq

B = (sin26, 0, - cos26)

Neutrino-neutrino interactions lead to novel collective and emergent
effects, such as conserved quantities and interesting features in the
neutrino energy spectra (spectral "swaps” or “splits”).



This Many-Body Hamiltonian follows from the Standard Model and it
was re-derived by multiple authors.

I will next discuss a few aspects of ift.
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Hy = ()[N2 = (J &2 N®)- (fd?pL Nw))| +32% [ d2p d3q(1 - cos 65.4)] () - T(a)
Dl 1Dl

Concerns were raised recently about the terms proportional to N (p). However,
these terms do not contribute to the quantum evolution since

[N,H,] =0 =[N,J({p)-J(@]

0 = e—i( )tN—iN? [ dt u %

Vincludes terms independent of N. Hence



V26
H,, = v

f d*p d3q(1—cos0;.3)/(0) - J(q)

How do we get the mean-field from this many-body Hamiltonian?
Procedure was already given by Balantekin and Pehlivan, J. Phys. G 34, 47
(2007). Introduce SU(2) coherent states (for two-flavors):

2(0) = exp (=3 J &P log(1 + 12, 012) ) exp(f d°p 2(p, O/ ()) T a}10)

Then write the evolution operator in the basis of SU(2) coherent states

(2(t0)|0)2(t)) = j Dlz, 2*|e-iS1z2)

tf 0
Slz, z*] = f dt <la —H, — HW> — ilog(z(tf)|z(tf))
L



t
Slz,z*] = f ! dt <l£ — H, — HW> — ilog(z(tf)|z(tf))
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We then follow the standard procedure to find the stationary
points of this action to obtain the Euler-Lagrange equations:

(da d

(da d
dtdz 0z

)L(Z'Z)ZO' dtoz* 0z

) L(z,z")=0

Solving Euler-Lagrange egs. gives us the mean-field egs. with z = —

Ve
subject to [e|% + |[Yyl? =1

Balantekin and Pehlivan, J. Phys. G 34, 47 (2007)



How do you find many-body corrections to the mean-field? Expand the
action around the stationary phase (mean-field) solution:

2 2
Slz,z"] = S|zsp, 2 | +% (z - Zsp)T (;z;z)sp (2= 2zp) + (2 - ZSp)T (6i6i*)sp )

+%(Z = Z5) (62*62*)Sp (2" = z5p) + 0(2*)

The Gaussian integral is then straightforward to calculate:

- . _ * —iS[Z,Z*]
(z(t0)|U]2(t) jD[Z'Z B i Jdet (KM — LTK-1L)
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The "pre-exponential” determinant has not been calculated in the most
general case. Its calculation in the general case would be the only rigorous
way to assess how much many-body case deviates from the mean-field results.

Balantekin and Pehlivan, J. Phys. G 34, 47 (2007)



Including antineutrinos

H:HV+H17‘|'HVV+H1717+HV17

Requires introduction of a second set of SU(2) algebras!

Including three flavors

Requires introduction of SU(3) algebras.

Both extensions are straightforward, but tedious!
Balantekin and Pehlivan, J. Phys. G 34, 1783 (2007).



This problem is "exactly solvable” in the single-angle approximation

5 2 A — 2G — —
p P.q

H=Y wpB Jp+u(r)J-J
p

Note that this Hamiltonian commutes with B - z Ip-
p

Hence Tr (p§ . 2]p> is a constant of motion.

p
In the mass basis this is equal to Tr(p/3).




BETHE ANSATZ

Single-angle approximation Hamiltonian:

Eigenstates:

JT
|X,->=l_[le - ‘ |0>

_L_E Ji =E;

J=i i J

2u < (5m2/2k) - X,

Bethe ansatz equations

G

SNY7

(1-cos®)

Invariants:

J,°J
hp=J2+2M2 L1

P-4 Sm’ .1
p=q P q

Pehlivan, ABB, Kajino, & Yoshida
Phys. Rev. D 84, 065008 (2011)



Two of the adiabatic eigenstates of this equation are easy to find
in the single-angle approximation:

—

H = pré : J_;, +u(r)J-J
p

Uy +i) = INJ2,N/2) = |va,. .o 1)
U, =) = IN/2,=N/2) = |va,...,12)

To find the others will take a lot more work



Note that if you have N neutrinos, you do not only have total j=N/2,
but you have total j = N/2, (N/2)-1, (N/2)-2, etc. You can not deduce
the properties of an N neutrino system by studying j = N/2!

Example:
N neutrinos: true size of the Hilbert Space = 2N

J=N/2: size of the Hilbert Space = 2j+1 = N+1
A severe truncation!



Two of the adiabatic eigenstates of this equation are easy to find
in the single-angle approximation:

—

H = pré : J_;, +u(r)J-J
p

Uy +i) = INJ2,N/2) = |va,. .o 1)
U, =) = IN/2,=N/2) = |va,...,12)

To find the others will take a lot more work



Away from the mean-field:
Adiabatic solution of the exact
many-body Hamiltonian for
extremal states

Adiabatic evolution of an
initial thermal distribution
(T =10 MeV) of electron
heutrinos. 108 neutrinos
distributed over 1200
energy bins with solar
heutrino parameters and
normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino
arXiv:1805.11767
PRD98 (2018) 083002

Neutrino number distributions
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A system of N particles each of which can occupy k
states (k = number of flavors)

Exact Solution =g Mean-field approximation

Entangled and _> Only unentangled states
unentangled states i 9

Dimension of Hilbert

space: kN Dimension of the

diagonalizing space: kN

von Neumann entropy S=-Tr(plogp)

_ Pure State Mixed State

Density matrix p’=p p* #p
Entropy 5=0 Sz20



Pick one of the neutrinos and introduce the reduced density
matrix for this neutrino (with label "b")

~

P = Pp = z <Va; Ve, Vg, - |p|Va, Ve vd'".>

acd,..

Entanglement
entropy
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Initial state:
all electron neutrinos

Note: S = O for mean-
field approximation

Cervia, Patwardhan, Balantekin,
Coppersmith, Johnson,
arXiv:1908.03511
PRD, 100, 083001 (2019)



* Bethe ansatz method has numerical instabilities for larger
values of N. However, it is very valuable since it leads to the
identification of conserved quantities.

* For this reason, we also explored the use of Runge Kutta and
tensor network techniques. This was both to check Bethe

ansatz results for N less than 10 and to explore the case with N

larger than 10.
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Mean Field: p = p; & p; Q- py

B om?
~ 2E,

Mean-field evolution

0

1 n
Wy P=Tr(pJ) pA:E(l-I_ 5'-P(A))

B - P is a constant of motion.




0

Z plA) = (waB + pP) x p(A) Adiabatic Solution: Each P®) lie mostly on the
ot plane defined by Band P with a small
P — Z p(A) component perpendicular to that plane.
A

p(A) — aaB + AP + ’)/A(B X P),
ZO(A:O, ZBA:]w ZVA:O
A A A

If initially all N neutrinos have the same flavor, then in the mass
basis would be ag = 0,59 = 1/N, and 9 = 0.

Op= (; ﬁAwA> (B x P)+ (; WA> (B P)B ~ P

Adopt for the mass basis and define ' = (D> , yawa) . Unless I is
positive the solutions for P, and P, exponentially grow.

Py, = My, exp (— / r(t)dt)

0 0
Enx = (ZﬁAwA> My, any = — <§A:5AWA> M.



0 0
anx = (%: BAwA> My, any = — (ZﬁAwA> M.

In the mean-field approximation 1, and [1, precess around B with
a time-dependent frequency (through the time-dependence of
Bas). Then P, and P, also precess similarly while decaying due to
the exponential terms. Hence asymptotically P, and P, tend to be
very small. Then x and y components of each P(A) are
asymptotically very small. Since |P()|2 =1 for uncorrelated
neutrinos, it then follows that

(PEA))Q ~1
(A)

asymptotically. Consequently allowed asymptotic values of P, 7 are

~ £1. Since the constant of motion ) _ , pA (in the mass basis)
is fixed by the initial conditions, some of the final PEA) values will &}
be +1 and some of them will be —1. This is the "spectral split”

phenomenon. Depending on the initial conditions, there may exist

one or more spectral splits.




We find that the presence of spectral splits is a good proxy
for deviations from the mean-field results

mean field

Probability of Entanglement

observing the first entropy
mass eigenstate

many body

NYellls
frequency




Probability of observing
the first mass eigenstate
starting with all v, (N=16)
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Patwardhan, Cervia, Balantekin, arXiv:2109.08995
Phys. Rev. D 104, 123035 (2021)



Probability of observing the

first mass eigenstate
starting with 8 v, and 8 v,

(N=16)
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What are the next steps?

« Explore the efficacy of tensor methods utilizing invariants obtained in
the Bethe ansatz approach.
Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, Phys. Rev. D 105,
123025 (2022), arXiv: 2202.01865
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What are the next steps?

« Explore the efficacy of tensor methods utilizing invariants obtained in

the Bethe ansatz approach.
Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, Phys. Rev. D 105,
123025 (2022), arXiv: 2202.01865

« Explore the impact of using many-body solution instead of the mean-
field solution in calculating element synthesis (especially r- and rp-

process).
X. Wang, Patwardhan, Cervia, Surman, Balantekin, in preparation.

« There are three flavors of neutrinos, not two: qubits - qutrits
Siwach, Suliga, Balantekin, Phys. Rev. D 107, 023019 (2023).
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Entanglement in three-flavor collective oscillations

R Ty—

H = Zﬁ -Q(p) + Zupk d(p) - G(k) O
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Pooja Siwach, Anna Suliga, A.B. Balantekin
Physical Review D 107 (2023) 2, 023019






CONCLUSIONS

Calculations performed using the mean-field approximation have
revealed a lot of interesting physics about collective behavior of
neutrinos in astrophysical environments. Here we have explored
possible scenarios where further interesting features can arise
by going beyond this approximation.

We found that the deviation of the adiabatic many-body results
from the mean field results is largest for neutrinos with energies
around the spectral split energies. In our single-angle calculations
we observe a broadening of the spectral split region. This
broadening does not appear in single-angle mean-field calculations
and seems to be larger than that was observed in multi-angle
mean-field calculations (or with BSM physics).

This suggests hybrid calculations may be efficient: many-body
calculations near the spectral split and mean-field elsewhere.
There is a strong dependence on the initial conditions.



Thank you very much!




