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Neutrinos from 
core-collapse 
supernovae 1987A

•Mprog ≥  8 Msun Þ DE ≈ 1053 ergs ≈ 
1059 MeV

•99% of the energy is carried away 
by neutrinos and antineutrinos with          
10 ≤ En ≤ 30 MeV  Þ 1058 neutrinos
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Possible sites for the r-process

The origin of elements

Neutrinos not only 
play a crucial role 
in the dynamics of 
these sites, but 
they also control 
the value of the 

electron fraction, 
the parameter 

determining the 
yields of the r-

process 
nucleosynthesis. 



Balantekin and Fuller, Prog. Part. Nucl. Phys. 71 162 (2013)

Understanding a core-collapse supernova requires answers to a 
variety of questions some of which need to be answered, both 

theoretically and experimentally.

Neutron-to-proton ratio 
depends on relative intensities 

of electron neutrinos and 
electron antineutrinos, which in 

turn depend on neutrino 
oscillations



The second term makes the physics of a neutrino gas in a core-collapse supernova a 
very interesting many-body problem, driven by weak interactions.

Neutrino-neutrino interactions lead to novel collective and emergent effects, 
such as conserved quantities and interesting features in the neutrino energy 

spectra (spectral “swaps” or “splits”). 

Energy released in a core-collapse 
SN: DE ≈ 1053 ergs ≈ 1059 MeV

99% of this energy is carried away 
by neutrinos and antineutrinos!

~ 1058 Neutrinos!
This necessitates including the 

effects of nn interactions!
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Collective oscillations 
(high neutrino density)

Neutrinos forward scatter 
from each other

MSW oscillations 
(low neutrino density)

Neutrinos forward scatter from 
background particles

Proto-neutron 
star



𝜕𝜌
𝜕𝑡 = −𝑖 𝐻, 𝜌 + 𝐶(𝜌)

H = neutrino mixing 
    + forward scattering of neutrinos off other background particles (MSW)                

+ forward scattering of neutrinos off each other

C = collisions 
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Neutrino flavor isospin Ĵ+ = ae
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Interacting with background electrons



Note	that

𝐽! =
1
2
𝑎"
#𝑎" − 𝑎$

#𝑎$
𝑁 = 𝑎"

#𝑎" + 𝑎$
#𝑎$ = 	constant

Hence	𝑃% ≡ 	Tr 𝜌𝐽% 	is	an	observable	giving	numbers	of	neutrinos
	of	each	Alavor



Neutrino-Neutrino Interactions
Smirnov, Fuller, Qian, Pantaleone, Sawyer,  
McKellar, Friedland, Lunardini, Raffelt, 
Duan, Balantekin, Volpe, Kajino, Pehlivan …

Neutrino-neutrino interactions lead to novel collective and emergent 
effects, such as conserved quantities and interesting features in the 

neutrino energy spectra (spectral “swaps” or “splits”). 
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This term makes the physics of a neutrino gas in a core-collapse 
supernova a genuine many-body problem



This Many-Body Hamiltonian follows from the Standard Model and it 
was re-derived by multiple authors.

I will next discuss a few aspects of it.
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Concerns were raised recently about the terms proportional to N (p). However, 
these terms  do not contribute to the quantum evolution since

𝑁,𝐻& = 0 = [𝑁, 𝐽(𝑝) H 𝐽(q)]

V includes terms independent of N. Hence
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How do we get the mean-field from this many-body Hamiltonian? 
Procedure was already given by Balantekin and Pehlivan, J. Phys. G 34, 47 

(2007).  Introduce SU(2) coherent states (for two-flavors):

Then write the evolution operator in the basis of SU(2) coherent states
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Solving Euler-Lagrange eqs. gives us the mean-field eqs. with  𝑧 =
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We then follow the standard procedure to find the stationary 
points of this action to obtain the Euler-Lagrange equations:

Balantekin and Pehlivan, J. Phys. G 34, 47 (2007)
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How do you find many-body corrections to the mean-field? Expand the 
action around the stationary phase (mean-field) solution:

The Gaussian integral is then straightforward to calculate:

The “pre-exponential” determinant has not been calculated in the most 
general case. Its calculation in the general case would be the only rigorous 

way to assess how much many-body case deviates from the mean-field results.
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This problem is “exactly solvable” in the single-angle approximation 

Introductory Material
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Note	that	this	Hamiltonian	commutes	with 𝐵 -h
#

𝐽# .	

Hence	Tr 𝜌𝐵 -h
#

𝐽# 	is	a	constant	of	motion.	

In	the	mass	basis	this	is	equal	to	 Tr 𝜌𝐽* .	
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Bethe ansatz equations

µ =
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2V
1− cosΘ

BETHE ANSATZ
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Two of the adiabatic eigenstates of this equation are easy to find 
in the single-angle approximation:

To find the others will take a lot more work



Note that if you have N neutrinos, you do not only have total j=N/2, 
but you have total j = N/2, (N/2)-1, (N/2)-2, etc. You can not deduce 

the properties of an N neutrino system by studying j = N/2!

Example: 
N neutrinos: true size of the Hilbert Space = 2N 

J=N/2: size of the Hilbert Space = 2j+1 = N+1
A severe truncation!
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Two of the adiabatic eigenstates of this equation are easy to find 
in the single-angle approximation:

To find the others will take a lot more work



Adiabatic evolution of an 
initial thermal distribution 
(T = 10 MeV) of electron 
neutrinos. 108 neutrinos 
distributed over 1200 
energy bins with solar 

neutrino parameters and 
normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino
arXiv:1805.11767

PRD98 (2018) 083002

initial

final

Away from the mean-field: 
Adiabatic solution of the exact 

many-body Hamiltonian for 
extremal states



A system of N particles each of which can occupy k 
states (k = number of flavors)

Exact Solution Mean-field approximation

Entangled and 
unentangled states

Only unentangled states

Dimension of Hilbert 
space: kN Dimension of the 

diagonalizing space: kN

S = - Tr (r log r)von Neumann entropy

Pure State Mixed State

Density matrix r2 = r r2 ≠ r

Entropy S = 0 S ≠ 0



Pick one of the neutrinos and introduce the reduced density 
matrix for this neutrino (with label “b”)

J𝜌 = 𝜌6 = L
7,9,:,…

𝜈7, 𝜈9 , 𝜈: ,NNN 𝜌 𝜈7, 𝜈9 , 𝜈: ,NNN
Introductory Material
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• Bethe ansatz method has numerical instabilities for larger 

values of N. However, it is very valuable since it leads to the 

identification of conserved quantities. 

• For this reason, we also explored the use of Runge Kutta and 

tensor network techniques. This was both to check Bethe 

ansatz results for N less than 10 and to explore the case with N 

larger than 10.
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Mean-field evolution

Mean-field evolution
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Mean-field evolution

Mean-field evolution
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Adiabatic Solution: Each P(A) lie mostly on the 
plane defined by B and P with a small 

component perpendicular to that plane. 



In the mean-field approximation ⇧x and ⇧y precess around B with

a time-dependent frequency (through the time-dependence of

�As). Then Px and Py also precess similarly while decaying due to

the exponential terms. Hence asymptotically Px and Py tend to be

very small. Then x and y components of each P
(A)

are

asymptotically very small. Since |P(A)|2 = 1 for uncorrelated

neutrinos, it then follows that
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⇠ ±1. Since the constant of motion
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is fixed by the initial conditions, some of the final P
(A)
z values will

be +1 and some of them will be �1. This is the ”spectral split”

phenomenon. Depending on the initial conditions, there may exist

one or more spectral splits.
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We find that the presence of spectral splits is a good proxy 
for deviations from the mean-field results

mean field many body
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Value of total 
Jz (conserved

q = 0.584
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What are the next steps?

• Explore the efficacy of tensor methods utilizing invariants obtained in 
the Bethe ansatz approach.   ✅                                                          
Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, Phys. Rev. D 105, 
123025 (2022), arXiv: 2202.01865 



Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, arXiv:2202.01865

Computation times:



What are the next steps?

• Explore the efficacy of tensor methods utilizing invariants obtained in 
the Bethe ansatz approach.   ✅                                                          
Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, Phys. Rev. D 105, 
123025 (2022), arXiv: 2202.01865 

• Explore the impact of using many-body solution instead of the mean-
field solution in calculating element synthesis (especially r- and rp-
process).                                                                                                
X. Wang, Patwardhan, Cervia, Surman, Balantekin, in preparation. 

• There are three flavors of neutrinos, not two: qubits à qutrits ✅
     Siwach, Suliga, Balantekin, Phys. Rev. D 107, 023019 (2023).



Time evolution for 12 neutrinos (initially six ne and six nx). D is the bond dimension. The 
largest possible value of D is 26=64.
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• Calculations performed using the mean-field approximation have 
revealed a lot of interesting physics about collective behavior of 
neutrinos in astrophysical environments. Here we have explored 
possible scenarios where further interesting features can arise 
by going beyond this approximation.

• We found that the deviation of the adiabatic many-body results 
from the mean field results is largest for neutrinos with energies 
around the spectral split energies. In our single-angle calculations 
we observe a broadening of the spectral split region. This 
broadening does not appear in single-angle mean-field calculations 
and seems to be larger than that was observed in multi-angle 
mean-field calculations (or with BSM physics).  

• This suggests hybrid calculations may be efficient: many-body 
calculations near the spectral split and mean-field elsewhere. 

• There is a strong dependence on the initial conditions.

CONCLUSIONS



Thank you very much!


