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A Review of Nucl-EFTs NN with Dibaryon Resonances with Dimer Conclusion

My highlights in the history of Nucl-EFTs

Weinberg (68) [1]: Non-linear realization of chiral symmetry.

Weinberg (79) [2]: The first EFT for pion interactions. This was the beginning of
χPT with Weinberg power counting (WPC).

Manohar and Georgi (84) [3]: Introduced the naive dimensional analysis (NDA).

Weinberg (90-91) [4, 5]: The first EFT (χEFT) for pions and nucleons. The key
features were infrared enhancement and the introduction of contact interactions.

KSW (96-98) [6–8]: Inconsistency in WPC (divergence term with a factor of m2
π).

KSW introduced a PC with perturbative pions.

van Kolck (98) [9]: A general EFT approach to the short range forces. Later, the
idea from this paper and KSW papers developed to become what we know today
as the Standard Pionless EFT.
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What is an EFT?

In EFTs external (not internal loop) momenta are important!

Four main building blocks of any EFT:
Fields (particles) that appear in a scattering process
Symmetries of the scattering process.
Typical three momenta, p⃗ ∼Mlo, of the external particles in the scattering process.
The breakdown scale of EFT, Mhi, is the scale at which a new physics (particle)
appears in the process.

We build the most general Lagrangian (d ≥ 4) according to the symmetry
considerations and in terms of the given fields.

In an EFT, power counting (PC) exploits the ratio(s) of scales that appear in
scattering. The PC (if consistent) determines orders of operators in a
perturbation based on the ratio(s) of scales.
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Various PC in Nucl-EFTs
Scales in the NN system:

Λχ = 4πfπ ∼MQCD ∼ mN ∼ 1 GeV

ΛNN = 16π f2
π

g2
AmN

∼ k0 ∼ 300 MeV

fπ ∼ mπ ∼ 100 MeV

|κ| ≈ 1
|a

S
|
∼ O(10) MeV

List of popular PC in Nucl-EFTs (historically LO attempts)
WPC [4, 5] or NDA [3] with Non-perturbative pions
KSW PC [6–8] with perturbative pions
Standard Pionless PC [9]

+ . . . (for a recent review see van Kolck (20) [10])

Pionless
KSW

Weinberg
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The WPC and NDA

The WPC focuses on external momenta, and usage of fπ and Mhi ∼ 1 GeV are
implicit.
An operator consistent with NDA, with Λ = Λχ = 4πfπ, is given by [3, 10]

OA,B,C,D =
(
π

fπ

)A
(

ψ

fπ

√
Λ

)B (
g Gµ

Λ

)C (
k,mπ

Λ

)D

f2
π Λ2

χ

NDA also put tree and loop diagrams in different classes sorted by powers of
external momenta and fields.
Factors of 4π counting in loop diagrams are important for understanding how the
NDA or equivalently the WPC work.
For two-body contact interactions (A,B,C,D) = (0, 4, 0, 2n) the coefficients are

C2n k
2n ∝ 1

f4
π Λ2

k2n

Λ2n
f2

π Λ2
χ = k2n

f2
π Λ2n

= 4π
Λ

k2n

fπ Λ2n
∼ 4π
mN

1
MloM

2n
hi
M2n

lo
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NDA vs KSW vs Standard Pionless PC: Two-body
NDA (Non-perturbative)

PC for contact interactions: C2n k
2n ∼ 4π

mN

1
Mlo M2n

hi
M2n

lo

Pions are non-perturabtive.
Need consistency and regulator-dependency check.

KSW and Standard Pionless EFT (Perturbative except for C0)

For S waves: C2n k
2n ∼ 4π

mN

1
Mn+1

lo Mn
hi
M2n

lo (Promotion relative to NDA)

For S-D channel: C2n k
2n ∼ 4π

mN

1
Mlo M2n

hi
M2n

lo (No-change relative to NDA)

For all higher waves: C2n k
2n ∼ 4π

mN

1
M2n+1

hi
M2n

lo (Demotion relative to NDA)

In KSW PC pions are perturabtive due to mπ

ΛNN
∼ 1

2
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An Example: the shallow S-wave state

Bound or Virtual state (for simplicity, I focus only on contact parts)

The renormalized contact interaction is: CR
0 ∼

4π
mN

1
Mlo

.

Finite value of each loop (with the unitary term i k) scales as I [fin]
0 ∼ mN

4π Mlo.

Higher-derivative interactions: for example, the renormalized vertex with two
derivatives, appears at NNLO in NDA CR

2 ∼
4π
mN

1
Mlo M2

hi
and at NLO in KSW and

Pionless CR
2 ∼

4π
mN

1
M2

lo Mhi
.

Diagrams and T matrix

T (0) = C0 +C0 I0 C0 +C0 I0 C0 I0 C0 + . . . = 1
1/C0 − I0

= − 4π
mN

1
−1/a0 − i k + . . .

−i T (0) :

−iC0

+ iI0

−iC0 −iC0

+ iI0 iI0

−iC0 −iC0 −iC0

+ · · ·
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Problems in early Nucl-EFTs

Regulator dependent
The given LECs are not enough to make amplitudes or phase shifts regulator
independent (KSW (96), Nogga et al. (05) [11]).
Remedy: these regulator-dependent behaviors can be removed by promoting LECs.

Convergence issues
In WPC, the 1S0 channel EFT has a strong deviation from data (Nogga et al. (05)).
In KSW PC there are also slow channels (Fleming et al. (99) [12]).
Remedy: again promoting LECs may help!

The PC for many-body systems is not clear yet (Yang et al. (19) [13]).
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Motivation

For both perturbative and non-perturbative pions, modifications are needed in the
lower partial wave channels where the tensor part of OPE is attractive, such as
the 3P0 channel (Fleming et al. (99), Nogga et al. (05), Kaplan (19) [14]).

In order to have a better convergence with perturbative pions the physics of
energies above pion mass should be included (Kaplan & Steele (99) [15]).

PC of contact LECs have been changed in order to solve regulator dependency
and convergence problems (Nogga et al. (05), Peng et al. (20) [16]).

Adding dibaryon field can account for most of the physics of energies above the
pion mass (Kaplan (96) [17], Sanchez et al. (18) [18]).

8 / 30



A Review of Nucl-EFTs NN with Dibaryon Resonances with Dimer Conclusion

Adding Dibaryons to NN scattering

Symmetries
- Baryon Number conservation,
- Lorentz invariant (= Galilean + reparametrization )
- Parity and time-reversal invariant
- Chiral symmetry

Degrees of freedom: N (Nucleon), π⃗ (Pion) and ϕ (Dibaryon).
The most general Lagrangian

L =LN
0 + Lπ

0 + η(s)ϕ
(s)†
i,a

[
i∂0 + ∇⃗2

4mN
−
(
∆(s) + ω(s)m2

π

)]
ϕ

(s)
i,a

− gA

2fπ
N † τa

(
σ⃗ · ∇⃗πa

)
N − 4π

mN

(
C(s) +D(s)m2

π

) (
NTP

(s)
i,a N

)† (
NTP

(s)
i,a N

)
+
√

4π
mN

(
g(s) + h(s)m2

π

) (
ϕ

(s)†
i,a NTP

(s)
i,a N + H.c.

)
+ . . . ,
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S-Waves: Convergence in KSW PC

Figure 1: LO (long dashed), NLO (short dashed), and N2LO (dotted) phase shifts for the KSW
PC. Figures from Fleming et al. (99).
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S-Waves: Convergence in KSW PC

Figure 1: LO (long dashed), NLO (short dashed), and N2LO (dotted) phase shifts for the KSW
PC. Figures from Fleming et al. (99).
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S-Waves: Including the amplitude zero

Figure 2: Phase shift (solid line with green band) for the 1S0 channel with Pionless (left) and
Chiral (right) EFTs. The chiral EFT results were first given by Kaplan (96). Figures from
Sanchez et al. (18).
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S-Waves: Power Counting

PC Mhi Mlo LO NLO

KSW ΛNN mπ, |κ0| C0 OPE, C2, D2

W’ MQCD ΛNN , mπ OPE, C0, D2 C2

Here MQCD ΛNN , k0, (m2
πMQCD)1/3 C0, ∆, g0 OPE, C2, D2, ω, h0

Power counting of LO and NLO LECs:

g
(0)
0 ∼

√
Mlo
mN

, C
(0)
0 ∼ 1

Mlo
, ∆(0) ∼ M2

lo
mN

, C
(1)
2 ∼ 1

M2
loMhi

g
(1)
0 , h

(1)
0 m2

π ∼
Mlo
Mhi

√
Mlo
mN

, C
(1)
0 , D

(1)
2 m2

π ∼
1
Mhi

, ∆(1), ω(1)m2
π ∼

M3
lo

mNMhi
.
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S-Waves: LO with resummed contact+Dibyaron

13 / 30

The Renormalized LO T matrix

T (0)(k) = − 4π
mN

1
k cot δ(0)(k)− ik

k cot δ(0)(k) = b0 + b2 k
2

1− k2/k2
0

The LO LECs C(0)
0 , ∆(0) and g(0)

0
are given by b0, b2, k0 and the
cutoff Λ.

Out[137]=

δ0 (deg)

Nijm-PWA

LO-Fit

100 200 300 400

-20

20

40

60

k (MeV)

Figure 3: LO EFT phase shift (blue dashed line) for the 1S0
channel.
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S-Waves: NLO with perturbative pions

Nijm-PWA

LO-Fit
NLO-Fit

100 200 300 400
k (MeV)

-20

20

40

60

δ0 (deg)

Figure 4: LO (blue dashed) and NLO (green dotted) EFT phase shifts for the 1S0 channel. In
collaboration with S. Fleming, M. Sanchez Sanchez, and U. van Kolck.
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P-waves: LECs and PC

PC for LECs with n,m ≥ 1 (JBH (22) [19])

C2n ∼
1

MloM
2n
hi
, D2n+2mm2m

π ∼
M2m−2

lo
M2n+2m−1

hi
, (NDA)

g1 ∼
1
Mhi

, h1+2mm2m
π ∼

M2m−1
lo
M2m

hi
,

∆ ∼ M2
lo

Mhi
, ω2mm2m

π ∼
M2m+1

lo
M2m

hi
.

A typical LEC: g = g(0) + g(1) + g(2) + . . . ,

The relation between phase shift and T matrix is

δ(1) = −k T (1)
, δ(2) = −k T (2) − i k2 T

(1)2
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P-waves: T matrix

LECs at each order
LO : −−−

NLO : ∆(0), g
(1)
1

NNLO : ∆̃(1) ≡ ∆(1) + ω
(1)
2 m2

π, g̃
(2)
1 ≡ g(2)

1 + h
(2)
3 m2

π, C
(2)
2

NLO T matrix

−i T (1) : + ⇒ T
(1) (

k,m2
π

)
= T

(1)
π

(
k,m2

π

)
+ ηmN g

(1)
1

2
k2

k2 −mN ∆(0) .

16 / 30



A Review of Nucl-EFTs NN with Dibaryon Resonances with Dimer Conclusion

P-waves: T matrix

NNLO T matrix (see JBH (22) for more details)

−i T (2) : + + +

+ + + +

T
(2) (

k,m2
π

)
= −i k

[
T

(1) (
k,m2

π

)]2
+R(2)

(
k, g

(1)
1 ,∆(0),m2

π

)
+ 2 ηmN g

(1)
1

2
k2

k2 −mN ∆(0)

[
I

[div]
πd − ηmN g

(1)
1

2L1
2 + g̃

(2)
1

g
(1)
1

]

+ C
(2)
2 k2 − m2

N g
(1)
1

2
k2(

k2 −mN ∆(0))2
[
g

(1)
1

2(
L3 +mN ∆(0) L1

)
− η ∆̃(1)

]
.
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P-waves: Renormalization and phase shift

Two conditions for NNLO using data-point renormalization method

Re
[
T

(2) (
k1,2,m

2
π

)]
=
ηmN γ(2)m2

π k
2
1,2

k2
1,2 −mN ∆(0) +

ηm2
N g

(1)
1

2
θ(1)m2

π k
2
1,2(

k2
1,2 −mN ∆(0)

)2

Total phase shift

−δ
(t)

k
=T (1)

π

(
k,m2

π

)
+ ηmN ḡ

(1)
1

2
k2

k2 −mN ∆̄(0) +R(2)
(
k, g

(1)
1 ,∆(0),m2

π

)
+
(
k2 − k2

1
) (
k2 − k2

2
)(

k2 −mN ∆(0))2 C
(2)
2 k2

−
(
k2 − k2

2
)(

k2
1 − k2

2
)
(
k2

1 −mN ∆(0)
)2

(
k2 −mN ∆(0))2 k2

k2
1
R(2)

k1
+
(
k2 − k2

1
)(

k2
1 − k2

2
)
(
k2

2 −mN ∆(0)
)2

(
k2 −mN ∆(0))2 k2

k2
2
R(2)

k2

where ∆̄(0) and ḡ(1) 2
1 are

∆̄(0) ≡ ∆(0) + θ(1)m2
π = ∆(0)

fit

ḡ
(1) 2
1 ≡ g

(1) 2
1 + γ(2)m2

π = g
(1) 2
1fit
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Results for 1P1

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● Nijm PWA-1P1

NLO-Pion
NNLO-Pion
NLO-Fit 1
NNLO-Fit 1

100 200 300 400
k (MeV)

-30

-20

-10

δ (Deg)

1P1 {k1, k2, k3}(MeV) g
(1)
1fit

(MeV−1) ∆(0)
fit (MeV) C

(2)
2 (MeV−3)

√
mN |∆(0)| (MeV) η

Fit 1 350, 400, 300 0.00112 -97.8 -3.8×10−9 303.0 +1
Fit 2 310, 370, 280 0.00123 -149.2 -7.7×10−9 374.3 +1
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Results for 3P1

● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● Nijm PWA-3P1

NLO-Pion
NNLO-Pion
NLO-Fit 1
NNLO-Fit 1

100 200 300 400
k (MeV)

-40

-30

-20

-10

δ (Deg)

3P1 {k1, k2, k3}(MeV) g
(1)
1fit

(MeV−1) ∆(0)
fit (MeV) C

(2)
2 (MeV−3)

√
mN |∆(0)| (MeV) η

Fit 1 60, 200, 300 0.00071 -13.8 7.9×10−9 114.0 -1
Fit 2 100, 250, 390 0.00065 -8.7 5.9×10−9 90.4 -1
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Results for 3P0

● ● ●
●

●
●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

● Nijm PWA-3P0

NLO-Pion
NNLO-Pion
NLO-Fit 1
NNLO-Fit 1

100 200 300 400
k (MeV)

-30

-20

-10

10

20

δ (Deg)

3P0 {k1, k2, k3}(MeV) g
(1)
1fit

(MeV−1) ∆(0)
fit (MeV) C

(2)
2 (MeV−3)

√
mN |∆(0)| (MeV) η

Fit 1 300, 400, 200 0.00250 -99.7 1.2×10−8 305.9 +1
Fit 2 180, 320, 380 0.00286 -168.0 2.6×10−8 397.2 +1
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Other approaches for 3P0

Figure 5: Phase shift for the 3P0 channel. Perturbative (Red) and non-perturbative (black)
EFTs. Red dashed, doted-dashed and solid lines are respectively NLO, NNLO, and N3LO
results for the perturbative case. Figures from Peng et al. (20).
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Resonances in two body scattering

Symmetries
- Particle Number conservation,
- Lorentz invariant (= Galilean + reparametrization )
- Parity and time-reversal invariant

Degrees of freedom: ψ (particles with mass m) and d (Dimeron).
The most general S-wave Lagrangian (JBH et al. (21) [20])

L =ψ†
[
i ∂0 + ∇⃗

2

2m

]
ψ + d†

[
i ∂0 + ∇⃗

2

4m −∆
]
d+

√
4π
m

g0
4
(
d†ψψ + ψ†ψ†d

)
− 4π
m
C0 (ψ ψ)† (ψ ψ) +

√
4π
m

g2
4

[
d†
(
ψ
←→
∇ 2ψ

)
+
(
ψ
←→
∇ 2ψ

)†
d

]
+ 4π
m

C2
8

[
(ψψ)†

(
ψ
←→
∇ 2ψ

)
+
(
ψ
←→
∇ 2ψ

)†
(ψψ)

]
+ . . . ,
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Power counting

In order to have resonant poles with Dimeron m∆(0) = O
(
M2

lo
)

Broad resonances
Loops are non-perturbative because kI ∼ kR ∼Mlo

Resummaiton needs g(0)
0 = O

(√
Mlo/m

)
Contact interactions can be natural C2n = O

(
1/M2n+1

hi
)

Narrow resonances
Loops are perturbative because kI ≪ kR ∼Mlo

Full perturbation needs g(0)
0 = O

(√
M2

lo/mMhi

)
Broad resonances with amplitude zero

Loops are non-perturbative.
Contact interactions are promoted C2n = O

(
1/Mn+1

lo Mn
hi
)
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Broad Resonances

LO and NLO diagrams

−i T (0) : = + + + · · ·

−i T (1) : + + +

LO and NLO T matrices with r0 < 0 [20]

T (0)(k) = 4π
m
g

(0)2
0 D̄(0)(k) = −4π

m

[
− 1
a0

+ r0
2 k2 − ik

]−1
+ . . .

T (0+1)(k) = − 4π
m

[
− 1
a0

+ r0
2 k2 − P0

(
r0
2

)3
k4 − ik

]−1

+ . . .
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Broad Resonances

● ●●

■ ■■◆◆◆

● LO-EFT

■ NLO-EFT

◆ Toy Model

-0.10 -0.05 0.05 0.10
Re(kR)

-0.14

-0.12

-0.10

Im(kR)

Figure 6: Comparing poles from EFT at LO and NLO with a toy model (as an underlying
theory). In EFT, we have broad resonance when r0 < 0 and −2|r0| < a0 < 0. For more details
see JBH et al. (20) [21].
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Narrow Resonances

LO and NLO diagrams

−i T (0) : = +

−i T (1) : +

LO and NLO T matrices [20]

T (0)(k) = 4π
m

[
C

(0)
0 + g

(0)2
0 D

(0)
0 (k)

]
= 4π
m
a0
k2/k2

0 − 1
k2/k2

r − 1

T (0+1)(k) = 4π
m

[
1
a0

k2/k2
r − 1

k2/k2
0 − 1

+ ik

]−1

+ . . .
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Narrow Resonances

●●●

■■■ ◆◆◆

● LO-EFT

■ NLO-EFT

◆ Toy Model

-0.4 -0.2 0.2 0.4
Re(kR)

-0.04

-0.02

0.02

0.04

Im(kR)

Figure 7: Comparing poles from EFT at LO and NLO with the same toy model now for narrow
resonances (kI ≪ kR). For more details see JBH et al. (21).
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Braod Resonances with amplitude zero

LO and NLO diagrams
−i v(0) : = +

−i T (0) : = + + + · · ·

−i T (1) : + + +

LO and NLO T matrices [20]

T (0)(k) = − 4π
m

[
− 1
a0

+ r0k
2

2
1

1− k2/k2
0
− ik

]−1

+ . . .

T (0+1)(k) = − 4π
m

[
− 1
a0

+ r0
2 k2 −

(
r0
2

)3 P0k
4

1− k2/k2
0
− ik

]−1

+ . . .
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Conclusion and Future Directions

There is still a search for finding a correct PC that can explain hadronic physics
below 1 GeV.

One can use Dibaryon fields to address the convergence (and maybe the
regulator-dependent) issues of the PC in the market.

Dibaryon fields have been used in 1S0 and uncoupled P-wave channels and (good)
convergence to data has been observed.

Dibaryon fields bring energy dependency into the potential. This makes it difficult
for their applications in the many-body calculations. However, in few-body
systems, Dibaryon fields make calculations a lot easier as long as one properly
includes normalization factors.

For pionless EFTs, a Dimer field is useful to study few-body systems (nucleons,
atoms, ...) that show resonant behavior.
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The End

Thank You
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The toy model for resonances

A potential with range R [20]

V (r) = α

mR
δ(r −R)− β2

mR2 θ(R− r)

S-wave phase shift

cot δ0(k) = −(
√
k2R2 + β2 cot

√
k2R2 + β2 + α) cot(kR) + kR√

k2R2 + β2 cot
√
k2R2 + β2 + α− kR cot(kR)

Zeros are given by√
k2

0R
2 + β2 cot

√
k2

0R
2 + β2 = −α+ k0R cot(k0R)

Poles are given with√
k2

±R
2 + β2 cot

√
k2

±R
2 + β2 = −α+ ik±R
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Narrow resonances from the toy model

Toy Model

0.2 0.4 0.6 0.8
kR0.0

0.2

0.4

0.6

0.8

1.0

Sin2(δ0)

Figure 8: S-wave phase shift for the toy potential with α = 2π2 and β = π2 − 1. Note that
cross section is σ ∝ sin2 δ0.
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