Quarkonium and open heavy flavor in the statistical hadronization model

A. Andronic - University of Münster

- The statistical model and the thermal fits
- The charm quarks
- The beauty quarks

Andronic, Braun-Munzinger, Redlich, Stachel, Nature 561 (2018) 321 ...+ Köhler, Mazeliauskas, Vislavicius, JHEP 07 (2021) 035

grand canonical partition function for specie (hadron) i:

$$\ln Z_{i} = \frac{Vg_{i}}{2\pi^{2}} \int_{0}^{\infty} \pm p^{2} \mathrm{d}p \ln[1 \pm \exp(-(E_{i} - \mu_{i})/T)]$$

 $g_i = (2J_i + 1)$ spin degeneracy factor; T temperature; $E_i = \sqrt{p^2 + m_i^2}$ total energy; (+) for fermions (-) for bosons $\mu_i = \mu_B B_i + \mu_{I_3} I_{3i} + \mu_S S_i + \mu_C C_i$ chemical potentials

 μ ensure conservation (on average) of quantum numbers, fixed by "initial conditions"

i) isospin: $\sum_{i} n_{i}I_{3i} / \sum_{i} n_{i}B_{i} = I_{3}^{tot} / N_{B}^{tot}$, $N_{B}^{tot} \sim \mu_{B}$ I_{3}^{tot} , N_{B}^{tot} isospin and baryon number of the system (=0 at high energies) ii) strangeness: $\sum_{i} n_{i}S_{i} = 0$ iii) charm: $\sum_{i} n_{i}C_{i} = 0$.

at LHC, remarkable "coincidence" with Lattice QCD results

4

at LHC ($\mu_B \simeq 0$): purely-produced (anti)matter ($m = E/c^2$), as in the Early Universe

 $\mu_B > 0$: more matter, from "remnants" of the colliding nuclei

 $\mu_B \gtrsim 400$ MeV: the critical point awaiting discovery (RHIC BES / FAIR)

see refs. in Nature 561 (2018) 321

points: independent analyses of same data \rightarrow "model/code uncert." are small

pQCD production, "throw in": $N_{c\bar{c}} = 9.6 \rightarrow g_c = 30.1 \ (I_1/I_0 = 0.974)$

LHC, central collisions

assume:

- full thermalization of c, \bar{c} ("mobility" in V \simeq 4000 fm³)
- full color screening (Matsui-Satz)

Braun-Munzinger, Stachel, PLB 490 (2000) 196

Model predicts all charm chemistry ($\psi(2S)$, X(3872))

Yield per spin d.o.f Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV 10³ central collisions 10^{2} 10 10⁻¹ J/ψ 10^{-2} Data (|y|<0.5), ALICE 10^{-3} particles 10^{-4} antiparticles 10^{-5} Statistical Hadronization (T=156.5 MeV) total (+decays; +initial charm) 10⁻⁶ primordial (thermal) 10^{-7} 1.5 0.5 2 2.5 3 3.5 Mass (GeV)

 π , K^{\pm} , K^0 from charm included in the thermal fit (0.7%, 2.9%, 3.1% for T=156.5 MeV)

PLB 797 (2019) 134836

Braun-Munzinger, Stachel, PLB 490 (2000) 196, NPA 690 (2001) 119

- Thermal model calculation (grand canonical) T, μ_B : $ightarrow n_X^{th}$
- $N_{c\bar{c}}^{dir} = \frac{1}{2}g_c V(\sum_i n_{D_i}^{th} + n_{\Lambda_i}^{th}) + g_c^2 V(\sum_i n_{\psi_i}^{th} + n_{\chi_i}^{th})$
- $N_{c\bar{c}} << 1 \rightarrow \underline{\text{Canonical}}$ (Cleymans, Redlich, Suhonen, Z. Phys. C51 (1991) 137):

Gorenstein, Kostyuk, Stöcker, Greiner, PLB 509 (2001) 277

6

$$N_{c\bar{c}}^{dir} = \frac{1}{2}g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})} + g_c^2 N_{c\bar{c}}^{th} \longrightarrow g_c(N_{part}) \text{ (charm fugacity)}$$

Outcome:
$$N_D = g_c V n_D^{th} I_1 / I_0$$
 $N_{J/\psi} = g_c^2 V n_{J/\psi}^{th}$

Inputs: *T*, μ_B , $V_{\Delta y=1} (= (dN_{ch}^{exp}/dy)/n_{ch}^{th})$, $N_{c\bar{c}}^{dir}$ (exp. or pQCD)

Assumed minimal volume for QGP: V_{QGP}^{min} =200 fm³

full thermalization of c quarks in QGP, hadronization at chemical freeze-out

 $d\sigma_{c\bar{c}}/dy$ via normalization to D^0 in Pb–Pb 0-10%, ALICE, arXiv:2110.09420 $dN/dy = 6.82\pm1.03$ (|y| < 0.5; FONLL for y=2.5-4; assuming hadronization fractions in data as in SHMc)

SHMc: the full charm zoo

A. Andronic

The power of the model: predicting the full suite of charmed hadrons

Full charm predictions for the LHC

A. Andronic

Charm-hadron spectrum as in PDG: 55 c-mesons, 74 c-baryons (part.+antipart.) ...large, but may not be complete

...ad-hoc: tripled the excited charm-baryon states, enhanced $d\sigma_{c\bar{c}}/dy$ by 19% RQM: He,Rapp, PLB 795 (2019) 117; LQCD, Bazavov et al., PLB 737 (2014) 210

leaves the mesonic sector unaffected, for the commensurately larger $\sigma_{c\bar{c}}$

SHMc: system dependence (central, 0-10%)

A. Andronic

11

Strong canonical suppression for light systems (for multi-charm hadrons)

SHMc: system dependence (central, 0-10%)

A. Andronic

full hydrodynamic flow (MUSIC(3+1)D, IP-Glasma; parametrized via blast-wave

$$\frac{\mathrm{d}^2 N}{2\pi p_{\mathrm{T}} dp_{\mathrm{T}} dy} = \frac{2J+1}{(2\pi)^3} \int \mathrm{d}\sigma_{\mu} p^{\mu} f(p) = \frac{2J+1}{(2\pi)^3} \int_0^{r_{\mathrm{m}}} \mathrm{d}r \ \tau(r) r \left[K_1^{\mathrm{eq}} - \frac{\partial\tau}{\partial r} K_2^{\mathrm{eq}} \right]$$
$$K_1^{\mathrm{eq}}(p_{\mathrm{T}}, u^r) = 4\pi m_{\mathrm{T}} I_0 \left(\frac{p_{\mathrm{T}} u^r}{T} \right) K_1 \left(\frac{m_{\mathrm{T}} u^\tau}{T} \right), \ K_2^{\mathrm{eq}}(p_{\mathrm{T}}, u^r) = 4\pi p_{\mathrm{T}} I_1 \left(\frac{p_{\mathrm{T}} u^r}{T} \right) K_0 \left(\frac{m_{\mathrm{T}} u^\tau}{T} \right)$$

SHMc: p_T dependence

A. Andronic

SHMc: low p_T ; high p_T : only nuclear-corona contribution (incl. uncert.)

ALICE, JHEP 01 (2022) 174

Ratios to D^0

A. Andronic

Charm-hadron spectrum: PDG

Ratios to D^0

A. Andronic

Charm-hadron spectrum: enhanced c-baryons (tripled excited states)

IF charm thermalizes (fully) also at lower energies

A. Andronic

The measurement in Pb–Pb at LHC is a central goal for Run 3,4 (YR, WG5 HL-LHC)

 $\psi(2S)/J/\psi$ at the LHC

ALI-PREL-523330

In SHMc uncertainty only due to nuclear-corona ($\sigma_{c\bar{c}}$ cancels out completely)

...an observable with similar features as R_{AA}

NPA 789 (2007) 334

(see also: Satz, Adv.HEP 2013 (2013) 242918)

- similar values at RHIC and SPS
 ...with differences in fine details
 ...determined by canonical suppression of open charm
 same features in RHIC BES data
- enhancement-like at LHC can. suppr. lifted, quadratic term dominant

Beauty is expected (R_{AA} , v_2 data) to be less thermalized compared to charm The beauty-hadron spectrum is less well known (PDG: 48 b-mes, 46 b-bar total)

Uncertainty band determined by nuclear-corona

The limiting case: full beauty thermalization

A. Andronic

Blue: Υ data (CMS, ALICE): calc. based on R_{AA} and pp (would be nice to include in publications dN/dy)

R_{AA} , 50% bb thermalized

A. Andronic

CMS, PRL 120 (2018) 142301

ALICE, PLB 822 (2021) 136579

What does non-thermalized beauty produce? (no room for it in SHMb)

R_{AA} , 30% bb thermalized

A. Andronic

CMS, PRL 120 (2018) 142301

ALICE, PLB 822 (2021) 136579

What does non-thermalized beauty produce? (no room for it in SHMb)

$\Upsilon(2S)/\Upsilon(1S)$ ratio (100% b thermalization)

A. Andronic

ALICE pp: $\Upsilon(2S)/\Upsilon(1S) = 0.5 \pm 0.1$, arXiv:2109.15240

SHMb uncert.: nuclear-corona (fraction)

 $\Upsilon(3S)/\Upsilon(2S) R_{AA}$ ratio

25

The $\Upsilon(3S)/\Upsilon(2S) R_{AA}$ ratio is quite sensitive to the degree of b thermalization

Rapidity dependence $\Upsilon(1S)$, 30% bb thermalized

A. Andronic

Data available only centrality-integrated ... is 0-10% (or 0-20%) doable?

CMS, PRL 120 (2018) 142301; ALICE, F

ALICE, PLB 822 (2021) 136579

Rapidity dependence $\Upsilon(1S)$, 30% bb thermalized

NB: none is a free parameter, except the 30% b thermalization fraction

In the (our) statistical hadronization model:

- The hadronization is a rapid process in which all quark flavors take part concurrently
- All charmonium and open charm states are generated exclusively at hadronization (chemical freeze-out) ...full color screening The model is very successful in reproducting the J/ ψ and open charm data A handle for hadronization T with a mass scale well above T

"The competition":

the kinetic model, continuous J/ψ destruction and (re)generation in QGP (only up to 2/3 of the J/ ψ yield (LHC, central collisions) originates from deconfined c and \bar{c} quarks) Discriminating the two pictures implies providing an answer to fundamental questions related to the fate of hadrons in a hot deconfined medium.

A precision (±10%) measurement of $d\sigma_{c\bar{c}}/dy$ in Pb-Pb (Au-Au) collisions needed for a stringent test (within reach with the upgraded detectors at the LHC and RHIC)

• Full beauty thermalization seems not realized in nature ...with 30-50% of beauty quarks fully thermalized we can explain the Υ data ...but this fraction is (significantly) dependent on the b-hadron spectrum

30

- What does non/partially-thermalized beauty produce? no Υ because strong coupling with the medium destroys the b- \overline{b} correlation? ...related: is there non-screened bottomonium at all? (...or maybe just $\Upsilon(1S)$?)
- Another difficulty: $R_{AA}^{Y(1S)}(p_T)$ is flat (we would predict a bump), v_2 is small similar to Reygers et al., PRC 101 (2020) 064905

forthcoming LHC data will (hopefully) clarify these questions (...in a while)

inspite (because:) of its simplicity SHM provides for all more sophisticated models a meaningful (powerful) limit to check (worth even if not fully realized in nature:)