Quantum Monte Carlo calculations of lepton-nucleus scattering in the Short-Time Approximation

New physics searches at the precision frontier

INT-23-1B Workshop

May 9, 2023

Lorenzo Andreoli January 30, 2023 Quantum Monte Carlo Group @ WashU

Jason Bub (GS) Garrett King (GS)

Lorenzo Andreoli (PD)

Maria Piarulli and Saori Pastore

Washington University in St.Louis

Outline

- Quasielastic lepton-nucleus scattering
- Ab initio description of nuclei:
 - Nuclear interaction
 - Electroweak interaction of leptons with nucleons and clusters of correlated nucleons
 - Variational Monte Carlo
- Short-time approximation
- Conclusions and outlook

Electron-nucleus scattering

Theoretical understanding of nuclear effects is extremely important for neutrino experimental programs:

Electron scattering can be used to test our nuclear model (same nuclear effects, no need to reconstruct energies, abundant experimental data)

Lepton-nucleus cross sections $~\omega \sim 10^2~{
m MeV}$

Many-body nuclear interaction

Many-body Nuclear Hamiltonian: Argonne v₁₈ + Urbana IX

Spectra of light nuclei

Piarulli et al. PRL120(2018)052503

Many-body nuclear interaction

Many-body Nuclear Hamiltonian: Argonne v₁₈ + Urbana IX

$$H = \sum_i T_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} v_{ijk}$$

Quantum Monte Carlo methods:

Use nuclear wave functions that minimize the expectation value of E

$$E_V = rac{\langle \psi | H | \psi
angle}{\langle \psi | \psi
angle} \geq E_0$$

The evaluation is performed using Metropolis sampling

Nuclear Wave Functions

Variational wave function for nucleus in J state

$$\ket{\psi} = \mathcal{S} \prod_{i < j}^A \Biggl[1 + oldsymbol{U}_{ij} + \sum_{k
eq i, j}^A oldsymbol{U}_{ijk} \Biggr] \Biggl[\prod_{i < j} f_c(r_{ij}) \Biggr] \ket{\Phi(JMTT_3)}$$

Two-body spin- and isospin-dependent correlations

$$U_{ij} = \sum_p f^p(r_{ij}) \, O^p_{ij}$$

$$O_{ij}^p = [1, oldsymbol{\sigma}_i \cdot oldsymbol{\sigma}_j, S_{ij}] \otimes [1, oldsymbol{\tau}_i \cdot oldsymbol{ au}_j]$$

$$U_{ijk} = \epsilon v_{ijk}(ar{r}_{ij},ar{r}_{jk},ar{r}_{ki})$$

Electromagnetic interactions

Phenomenological Hamiltonian for NN and NNN

The interaction with external probes is described in terms on one- and two-body charge and current operators

Charge operators

$$ho = \sum_{i=1}^A
ho_i + \sum_{i < j}
ho_{ij} + \dots$$

Current operators

$$\mathbf{j} = \sum_{i=1}^{A} \mathbf{j}_i + \sum_{i < j} \mathbf{j}_{ij} + \dots$$

Electromagnetic interactions

- Two-body currents: modeled on MEC currents constrained by commutation relation with the nuclear Hamiltonian (Pastore et al. PRC84(2011)024001, PRC87(2013)014006)
- Argonne v18 two-nucleon and Urbana IX potentials, together with these currents, provide a quantitatively successful description of many nuclear electroweak observables, including charge radii, electromagnetic moments and transition rates, charge and magnetic form factors of nuclei with up to A = 12 nucleons

Short-time approximation

Pastore et al. PRC101(2020)044612

Quasielastic scattering cross sections are expressed in terms of response functions

The sum over all final states is replaced by a two nucleon propagator **Response functions**

$$egin{split} R_lpha(q,\omega) &= \sum_f \delta(\omega+E_0-E_f) ig|\langle f ig| O_lpha(\mathbf{q}) ig| 0
ight|^2 \ R_lpha(q,\omega) &= \int_{-\infty}^\infty rac{dt}{2\pi} e^{i(\omega+E_i)t} ig\langle \Psi_i ig| O_lpha^\dagger(\mathbf{q}) e^{-iHt} O_lpha(\mathbf{q}) ig| \Psi_i ig
angle \end{split}$$

$$O^{\dagger}e^{-iHt}O = \left(\sum_{i} O_{i}^{\dagger} + \sum_{i < j} O_{ij}^{\dagger}\right)e^{-iHt}\left(\sum_{i'} O_{i'} + \sum_{i' < j'} O_{i'j'}\right)$$
$$= \sum_{i} O_{i}^{\dagger}e^{-iHt}O_{i} + \sum_{i \neq j} O_{i}^{\dagger}e^{-iHt}O_{j}$$
$$+ \sum_{i \neq j} \left(O_{i}^{\dagger}e^{-iHt}O_{ij} + O_{ij}^{\dagger}e^{-iHt}O_{i} + O_{ij}^{\dagger}e^{-iHt}O_{i} + O_{ij}^{\dagger}e^{-iHt}O_{i}\right)$$

Short-time approximation

Pastore et al. PRC101(2020)044612

Quasielastic scattering cross sections are expressed in terms of response function

Response functions

$$R_lpha(q,\omega) = \sum_f \delta(\omega + E_0 - E_f) |\langle f|O_lpha({f q})|0
angle|^2$$

Response densities

$$R^{ ext{STA}}(q,\omega) \sim \int \delta(\omega + E_0 - E_f) de \; dE_{cm} \mathcal{D}(e,E_{cm};q)$$

STA: scattering of external probes from pairs of correlated nucleons

Transverse response density

Electron scattering from ${}^{4}He$:

- Response density as a function of (E,e)
- Give access to particular kinematics for the struck nucleon pair

Pastore et al. PRC101(2020)044612

Back-to-back kinematic

We can select a particular kinematic, and assess the contributions from different particle identities

Pastore et al. PRC101(2020)044612

Longitudinal response density: elastic peak removal

³H Longitudinal response at 300 MeV

L.A., S. Pastore, N. Rocco, et al. PRC105(2022)014002

Benchmark

L.A., S. Pastore, N. Rocco, et al. PRC105(2022)014002

- We benchmarked three different methods based on the same description of nuclear dynamics of the initial target state
- Compared to the experimental data for the longitudinal and transverse electromagnetic response functions of ³He, and the inclusive cross sections of both ³He and ³H
- Comparing the results allows for a precise quantification of the uncertainties inherent to factorization schemes

Benchmark

Longitudinal and transverse response function in ³He

Cross sections

зНе

L.A., S. Pastore, N. Rocco, et al. PRC105(2022)014002

Cross sections

3Н

Relativistic corrections

Necessary to include relativistic correction at higher momentum q.

We are currently working on including relativistic corrections within the STA formalism:

R. Weiss (LANL)

Lorenzo Andreoli

200

150

100

 $e \, [\text{MeV}]$

50

0

Heavier nuclei

Computational complexity of response functions and densities:

Wave-function		^{4}He	^{12}C
Spin	2^A	16	4096
Isospin	$\frac{A!}{Z!(A-Z)!}$	6	924
Pairs	A(A - 1)/2	6	66

Response densities: E, e grid

$$R_{\alpha}(q,\omega) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{i(\omega+E_i)t} \langle \Psi_i \big| O_{\alpha}^{\dagger}(\mathbf{q}) e^{-iHt} O_{\alpha}(\mathbf{q}) \big| \Psi_i \rangle$$
19

Transverse Density q = 500 MeV/c

 $D(e, E_{\rm cm}) \; [{\rm MeV^{-2}}]$

2,000

1,000

200

 $E_{\rm cm}$ [MeV]

⁴He

100

Heavier nuclei

Optimization was necessary to tackle heavier nuclei

$$R_lpha(q,\omega) = \int_{-\infty}^\infty rac{dt}{2\pi} e^{i(\omega+E_i)t} ig\langle \Psi_i ig| O^\dagger_lpha({f q}) e^{-iHt} O_lpha({f q}) ig| \Psi_i ig
angle$$

- Parallelization MPI and OpenMP:
- Variational Monte Carlo is almost perfectly parallelizable, but with increased system size memory becomes a constrain
- Refactoring of the code
- Computational algorithms and approximations: variation of integration ranges (*r*, *R*) for struck nucleon pair

Heavier nuclei: ${}^{12}C$

Optimization specific to ${}^{12}C$ was needed in oder to perform full response densities calculations:

- parallelization
- refactoring of the code
- reduction of memory usage
- computational algorithms and approximations

$$R_lpha(q,\omega) = \int_{-\infty}^\infty rac{dt}{2\pi} e^{i(\omega+E_i)t} ig\langle \Psi_i ig| O^\dagger_lpha({f q}) e^{-iHt} O_lpha({f q}) ig| \Psi_i ig
angle$$

21

Responses for ${}^{12}C$

Longitudinal and transverse response for **300 < q < 850 MeV**:

Cross sections: Interpolation schemes

- Cross sections weakly dependent on interpolation scheme in 4He , but relevant in ^{12}C
- We tested various interpolation schemes on ${}^{4}He$, where we can evaluate responses for an arbitrary fine grid of values of q: grid with 10 MeV spacing

Cross sections: Interpolation schemes

- We **interpolate** in between cumulative integrals of responses, using information from the sum rules
- Outside the range (q < 300 MeV and q > 850 MeV), we use scaling functions

$$\psi_{\rm nr}' = \frac{m_N}{|\mathbf{q}|k_F} \left(\omega - \frac{|\mathbf{q}|^2}{2m_N} - \varepsilon \right)$$

0.035 1.0 q = 200 MeV 0.030 0.8 0.025 0.6 0.020 $R_L(\omega)$ $f_{L}(\omega)$ 0.015 0.4 0.010 0.2 0.005 0.0 0.000 100 200 300 100 200 300 400 400 0 ω [MeV] ω [MeV]

4He, longitudinal response

Cross sections results

25

Conclusion:

- The STA responses for ${}^{12}C$ are in good agreement with the data.
- Given the computational complexity of evaluating cross sections, a novel interpolation scheme was adopted for the calculation of cross sections

EW interactions:

- The current work on EM interactions allows for a thorough evaluation of the method, and a comparison with the abundant experimental data for electron-nucleus scattering
- G. King's talk: neutral weak currents quasi-elastic responses evaluated for ²H

- The STA is exportable to other QMC methods to address larger nuclei, AFDMC
 (S. Gandolfi)
- Use of information from response densities in event generators

Collaborators:

G. King, S. Pastore, M. Piarulli

R. Weiss, J. Carlson

Thank you!

Quantum Monte Carlo Group @ WashU

Jason Bub (GS) Garrett King (GS)

Lorenzo Andreoli (PD)

Maria Piarulli and Saori Pastore

Washington University in St.Louis

Fermilab