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Outline
• Quasielastic lepton-nucleus scattering 

• Ab initio description of nuclei: 

• Nuclear interaction 

• Electroweak interaction of leptons with nucleons and clusters of correlated nucleons 

• Variational Monte Carlo 

• Short-time approximation 

• Conclusions and outlook
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Electron-nucleus scattering
Theoretical understanding of nuclear effects is extremely important 
for neutrino experimental programs: 

Electron scattering can be used to test our nuclear model (same nuclear effects, no need to 
reconstruct energies, abundant experimental data)

Lepton-nucleus cross sections 
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Many-body nuclear interaction

Many-body Nuclear Hamiltonian: Argonne v18 + Urbana IX

Spectra of light nuclei 

Piarulli et al. PRL120(2018)052503
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Many-body nuclear interaction

Many-body Nuclear Hamiltonian: Argonne v18 + Urbana IX

Quantum Monte Carlo methods: 
Use nuclear wave functions that minimize the expectation value of E

The evaluation is performed using Metropolis sampling
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Nuclear Wave Functions

Variational wave function for nucleus in J state

Two-body spin- and isospin-dependent correlations
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Electromagnetic interactions
Phenomenological Hamiltonian for NN and NNN 

The interaction with external probes is described in terms on one- and two-body 
charge and current operators

one-body two-body

Charge operators

Current operators
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Electromagnetic interactions

• One body-currents: non-relativistic reduction of 
covariant nucleons’ isoscalar and isovector currents 

• Two-body currents: modeled on MEC currents 
constrained by commutation relation with the nuclear 
Hamiltonian (Pastore et al. PRC84(2011)024001, 
PRC87(2013)014006) 

• Argonne v18 two-nucleon and Urbana IX potentials, 
together with these currents, provide a quantitatively 
successful description of many nuclear electroweak 
observables, including charge radii, electromagnetic 
moments and transition rates, charge and magnetic 
form factors of nuclei with up to A = 12 nucleons 

Carlson, Schiavilla 1992. Marcucci et al. 2005
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Short-time approximation
Quasielastic scattering cross sections are expressed in terms of response functions

Response functions

The sum over all final 
states is replaced by a 
two nucleon propagator

Pastore et al. PRC101(2020)044612
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Short-time approximation

Response densities

Response functions

STA: scattering of external probes from pairs of correlated nucleons

Quasielastic scattering cross sections are expressed in terms of response function
Pastore et al. PRC101(2020)044612
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Transverse response density

Pastore et al. PRC101(2020)044612

Electron scattering from         :: 

• Response density as a function of (E,e) 

• Give access to particular kinematics for 
the struck nucleon pair 
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Back-to-back kinematic

Pastore et al. PRC101(2020)044612

We can select a particular kinematic, and 
assess the contributions from different 
particle identities
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Longitudinal response density:   
elastic peak removal
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3H Longitudinal response at 300 MeV

L.A., S. Pastore, N. Rocco,  et al. PRC105(2022)014002 
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Benchmark
L.A., S. Pastore, N. Rocco,  et al. PRC105(2022)014002 

• We benchmarked three different methods  based on the same 
description of nuclear dynamics of the initial target state 

• Compared to the experimental data for the longitudinal and 
transverse electromagnetic response functions of 3He, and the 
inclusive cross sections of both 3He and 3H 

• Comparing the results allows for a precise quantification of the 
uncertainties inherent to factorization schemes
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Benchmark
Longitudinal and transverse response function in 3He

L.A., S. Pastore, N. Rocco,  et al. PRC105(2022)014002 
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3He

Cross sections

L.A., S. Pastore, N. Rocco,  et al. PRC105(2022)014002 
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3H

Cross sections

L.A., S. Pastore, N. Rocco,  et al. PRC105(2022)014002 
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Relativistic corrections

Necessary to include relativistic correction at higher momentum q. 

We are currently working on including relativistic corrections within the STA formalism: 

R. Weiss (LANL)

• Relativistic kinematic: allowed by 
STA factorization scheme 

• Relativistic currents: expansion 
for a large value of the 
momentum transfer q 
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Heavier nuclei

Wave-function 

Spin                          

Isospin           

Pairs                

Response densities: E, e grid
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Computational complexity of response functions and densities:
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Heavier nuclei

• Parallelization - MPI and OpenMP: 
Variational Monte Carlo is almost perfectly parallelizable, but with increased system size 
memory becomes a constrain 

• Refactoring of the code 
• Computational algorithms and approximations: 

   variation of integration ranges (r, R) for struck nucleon pair

Optimization was necessary to tackle heavier nuclei
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Optimization specific to  
was needed in oder to perform 
full response densities 
calculations: 

• parallelization 
• refactoring of the code 
• reduction of memory 

usage 
• computational algorithms and 

approximations

12C
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Responses for 12C
Longitudinal and transverse response for 300 < q < 850 MeV:
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Cross sections: Interpolation schemes

• Cross sections weakly dependent on interpolation scheme in , but 
relevant in  

• We tested various interpolation schemes on , where we can evaluate 
responses for an arbitrary fine grid of values of q: grid with 10 MeV 
spacing

4He
12C

4He
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Cross sections: Interpolation schemes

• We interpolate in between 
cumulative integrals of 
responses, using information 
from the sum rules 

• Outside the range (q < 300 
MeV and q > 850 MeV), we use 
scaling functions
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Cross sections results
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Conclusion:
• The STA responses for  are in good agreement with the data. 
• Given the computational complexity of evaluating cross sections, a novel interpolation 

scheme was adopted for the calculation of cross sections 

EW interactions: 
• The current work on EM interactions allows for a thorough evaluation of the method, 

and a comparison with the abundant experimental data for electron-nucleus 
scattering 

• The STA is exportable to other QMC methods to address larger nuclei, AFDMC 
(S. Gandolfi) 

• Use of information from response densities in event generators

12C

• G. King’s talk: neutral weak currents 
quasi-elastic responses evaluated for 
2H
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