

Testing whether collapsars synthesize *r*-process elements

Shreya Anand

California Institute of Technology

Advisor: Mansi Kasliwal INT 20R-1b on *r*-process nucleosynthesis

and nuclear EoS

Friday, May 27, 2022

Caltech

Global Relay of Observatories Watching Transients Happen

Can BNS mergers explain the *r*-process abundance in solar neighborhood?

Rates and *r*-process yield

Solar abundance pattern

See also: Talks by Gail Mclaughlin, Daniel Siegel, Kevin Schlaufman, John Ruan, Hsin-Yu Chen, Toshitaka Kajino, Charlie Kilpatrick

Clues from galactic archaeology

- Eu detections in metal-poor Galactic Halo stars
 - At high Z, matches solar abundance pattern
 - Scatter at low-Z: multiple sites/events?
- [Ba/Fe] and [Eu/Fe] enrichment in dwarf galaxy Reticulum II
 - Rare and prolific enrichment
 - Early enrichment disfavors long merger delay timescales
 - Low mass disfavors NS merger kicks
 - BUT, there may be a population of low-kick, fastmerging binaries (Beniamini+2016)

Cote+2018, Wallner+2015, 2021, Tissot+2016, Ji+2016

Sites of *r*-process nucleosynthesis

Siegel, Barnes, and Metzger 2019 (See Daniel Siegel's talk from earlier!)

Semi-analytic models for *r*-process production in collapsars

Depending on the level of mixing between *r*-process core and outer SN ejecta, emission could be affected by r-process production even before the nebular phase.

Barnes & Metzger+2022

Broadband lightcurve models

Zwicky Transient Facility

48 square degree FOV imager mounted on Palomar 48-in telescope Scans 1000s of sq. deg. in hours Depth: r~20.5 mag

Graham+2019, Bellm+2018, Masci+2019

ZTF Sample selection

- IcBL SNe: stripped of H, He, high velocity ejecta results in "broad lines"
- 18 SNe discovered via two surveys:
 - Bright Transient Survey: magnitude limited survey that classifies all SNe with m < 19 mag at peak
 - Census of the Local Universe: volume limited survey aimed at classifying all SNe associated with host galaxies within 150 Mpc
- Average discovery rate of ~1/month
- Data collection with the Wide Infrared Camera (WIRC) on Palomar 200 in telescope from 2019present
- Sample limited to low redshift (within z < 0.05)
- · Most of them have no coincident GRB

R-J color evolution

(Anand+2022, in prep.)

Model fits: little to no *r*-process

Anand+2022, in prep.

Model fits: mild to moderate *r*-process

Anand+2022, in prep.

IcBL SNe from the literature with late-time NIR coverage

- SN2007I: Prolific reddening in J,H,Ks
- Located in a small irregular galaxy PGC 1114807
- Lightcurve can't be explained by extinction alone (assuming Rv=3.1)
- In progress: analysis of the OIR lightcurves of SN1998bw, SN2002ap, SN2006aj, SN2010bh, etc

Photometry from Bianco+2014

Model fits: strong evidence for *r*-process?

Bianco+2016, Anand+2022, in prep.

Inferred *r*-process ejecta mass and mixing fraction for all SNe

No correlations with x-ray/radio observations

IAU name	ZTF name	type	RA	Dec	\mathbf{Z}	m_{rp}	\mathbf{x}_{mix}	Radio^a	X-ray ^b
SN2018gep	ZTF18abukavn	Ic-BL/FBOT*	16:43:48.21	+41:02:43.29	0.032	0.00	0.00	$X{=}34\pm4$	< 9.9
SN2019gwc	ZTF19aaxfcpq	Ic-BL	16:03:26.88	+38:11:02.6	0.038	0.00	0.01	-	-
SN2020bvc	ZTF20aalxlis	Ic-BL**	14:33:57.01	+40:14:37.5	0.025	0.00	0.01	$X{=}63\pm6$	$9.3\substack{+10.6 \\ -6.1}$
SN2020lao	$\mathbf{ZTF20abbplei}$	Ic-BL	17:06:54.61	+30:16:17.3	0.031	0.01	0.01	$\mathrm{C}{\lesssim}~33$	< 2.9
${ m SN2021bmf}$	${ m ZTF21} aagtpro$	Ic-BL	16:33:29.41	-06:22:49.53	0.017	0.01	0.01	-	-
SN2021ywf	ZTF21 a cbn fos	Ic-BL	05:14:11.00	+01:52:52.28	0.028	-	-	$B{=}83\pm10$	$5.3\substack{+4.9 \\ -3.3}$
SN2021xv	${ m ZTF21} a a datfg$	Ic-BL	16:07:32.82	$+36{:}46{:}46{.}07$	0.041	0.01	0.04	$ m A \lesssim 23$	-
SN2019xcc	ZTF19adaiomg	Ic-BL	11:01:12.39	+16:43:29.30	0.029	0.00	0.84	$\mathrm{D}{=62.7\pm8.7}$	-
SN2019hsx	ZTF19aawqcgy	Ic-BL	18:12:56.22	+68:21:45.2	0.021	0.01	0.24	${ m BnA}{\lesssim}19$	$6.2^{+2.3}_{-1.8}$
$\mathrm{SN2019qfi}$	ZTF19abzwaen	Ic-BL	21:51:07.90	+12:25:38.5	0.029	0.02	0.04	-	-
SN2018kva	${ m ZTF18aczqzrj}$	Ic/Ic-BL	08:35:16.21	+48:19:03.4	0.043	0.03	0.04	-	-
$\mathrm{SN2019moc}$	ZTF19ablesob	Ic-BL	23:55:45.95	+21:57:19.67	0.056	0.03	0.05	-	-
$\mathrm{SN2020rph}$	${ m ZTF20abswdbg}$	Ic-BL	03:15:17.82	$+37{:}00{:}50.57$	0.042	0.03	0.04	$\mathrm{B}{=}~42.7\pm7.4$	< 3.6
SN2018 jaw	ZTF18acqphpd	Ic-BL	12:54:04.10	+13:32:47.9	0.047	0.04	0.06	-	-
${ m SN2020tkx}$	ZTF20abzoeiw	Ic-BL	18:40:09.01	+34:06:59.5	0.027	0.04	0.06	$\rm B{=}286\pm15$	< 3.3
GRB190829A	-	LLGRB	$2:\!58:\!10.580$	-8:57:29.82	0.077	0.08	0.36	-	-
$\mathrm{SN}2020\mathrm{dgd}$	${ m ZTF20aapcbmc}$	Ic-BL	15:45:35.57	+29:18:38.4	0.03	0.05	0.71	-	-
SN2021too	$\rm ZTF21 a bmjgwf^{***}$	Ic-BL	21:40:54.28	+10:19:30.33	0.035	0.07	0.88	-	ND

Table 1. Sample summary table of Ic-BL supernovae. a) Flux density in μ Jy with the VLA. We list only the first VLA observation at ≤ 50 days from the first ZTF detection as reported in Corsi in prep. b) Swift XRT flux in units of 10^{-14} erg cm⁻² s⁻¹, taken from Corsi in prep. *This Ic-BL SN is also categorized as a fast blue optical transient, and was published in Ho et al. 2019. **This Ic-BL had a double-peaked lightcurve from shock-cooling; x-ray and radio measurements taken from Ho et al. 2020. ***No VLA coverage, but a non-detection with NOEMA.

Summary and open questions

- Summary: 18 ZTF-discovered IcBL with optical/NIR coverage, and 3 more from literature to test for late-time NIR excess + a few more from literature
- Result: Wide diversity in the inferred *r*-process yield from collapsars
 - 1) for 7 SNe, we observe little to no rprocess (xmix < 0.1, mrp < 0.02 Msun)
 - 2) for 8 SNe we observe moderate r-process (xmix < 0.2, mrp < 0.06)
 - 3) for 6 SNe, we see compelling evidence for strong r-process!
- Open questions:
 - What else can cause reddening in LC? (i.e. extinction, dust formation...)
 - What are the characteristics of collapsars that synthesize *r*-process elements? So far, no correlation with jet properties.

Thanks for listening!

Backup Slides

Modjaz+2014

Classification and velocity estimation

ZTF SN showing evidence for strong *r*-process from optical bands

Anand+2022, in prep.

Elemental "fingerprints" of cosmic alchemy

- ²⁴⁴Pu and ⁶⁰Fe measured in the deep sea
 - Concurrent ²⁴⁴Pu and ⁶⁰Fe suggest a SN site
 - Low relative ²⁴⁴Pu abundance: CCSN rates incompatible
- ²⁴⁷Cm inferred in a Calcium-Aluminum Inclusion meteorite
 - Different decay timescales suggest multiple rprocess events

Plutonium

Uranium

Cote+2018, Wallner+2015, 2021, Tissot+2016, Ji+2016

Some supernovae appear redder than the non *r*-process models, while others are bluer.

Alternative scenarios to *r*-process

- Host extinction Na I D line in optical spectrum
- Dust formation g+r monitoring at late-times can help rule out dust formation
- Molecular features check NIR spectrum for any such features

Nebular phase kilonova spectra

Fitting an extincted blackbody to SN2007I

