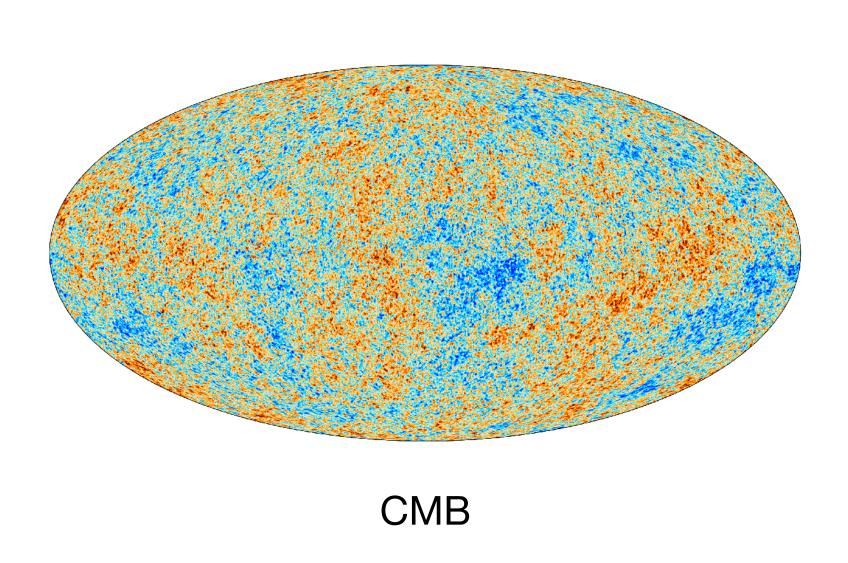
Non-Gaussian Fluctuations in Fluid

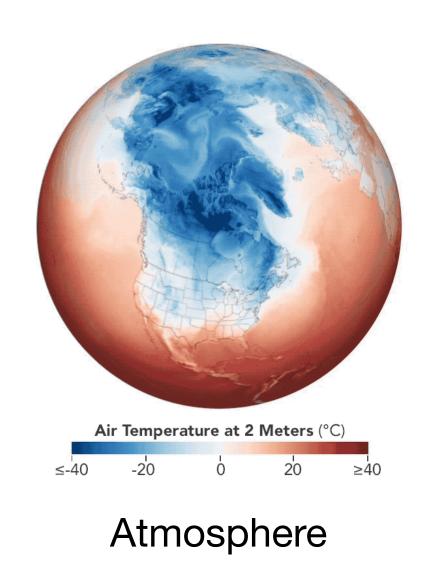
Xin An

Based on work with Basar, Stephanov and Yee
INT workshop on criticality and chirality
Aug 22 2023, Seattle

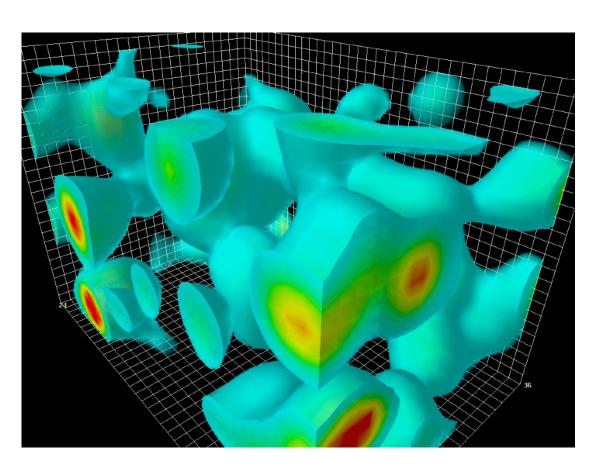
Fluctuations on all length scales

• Fluctuations are ubiquitous phenomena emerging on all length scales.



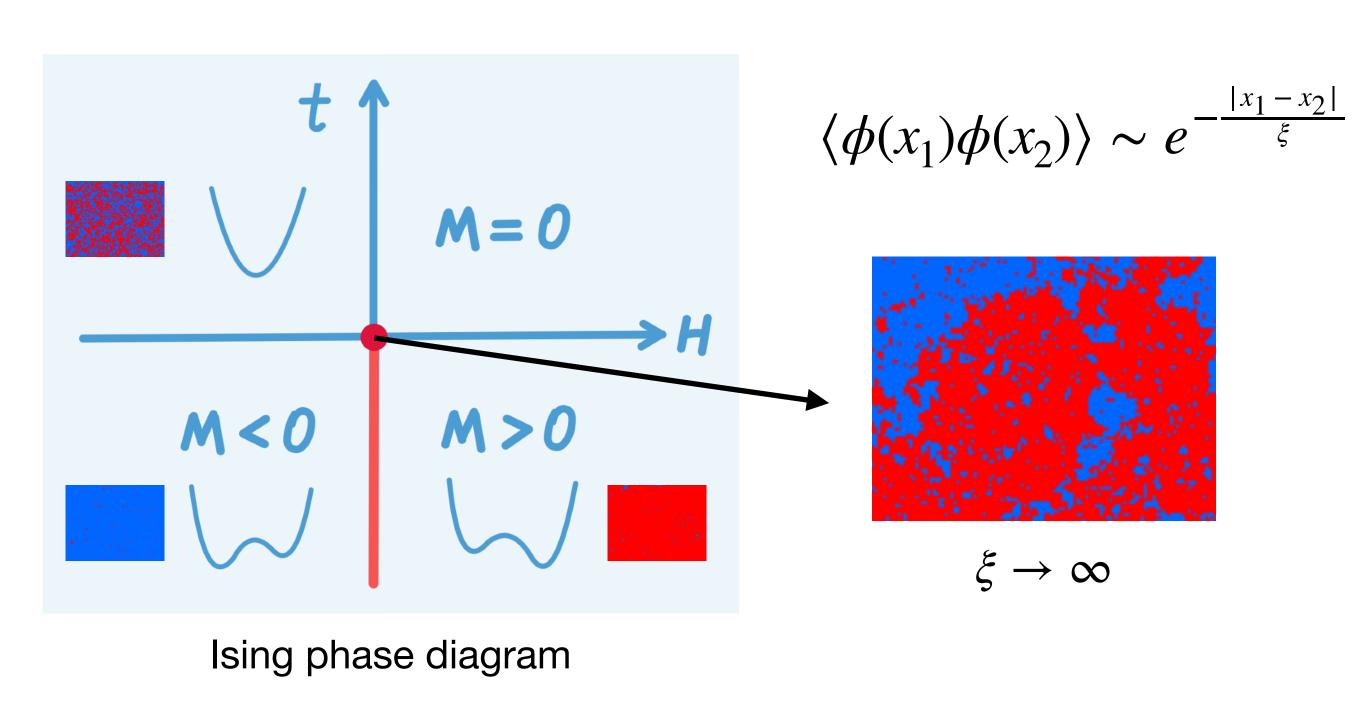


January 23



Thermal fluctuations and critical point

- Thermal fluctuations can be described by EOS dealing with *large* number of DOFs *in equilibrium*.
- Fluctuation correlation length ξ diverges at the critical point.



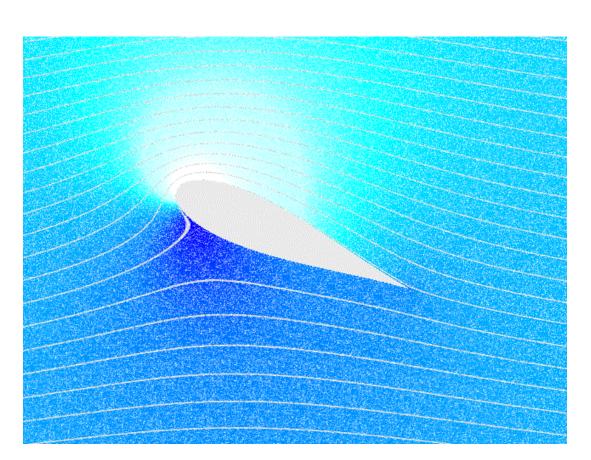
Critical opalescence: $\xi \leftrightarrow \lambda_{\text{light}}$

See also Skokov's talk

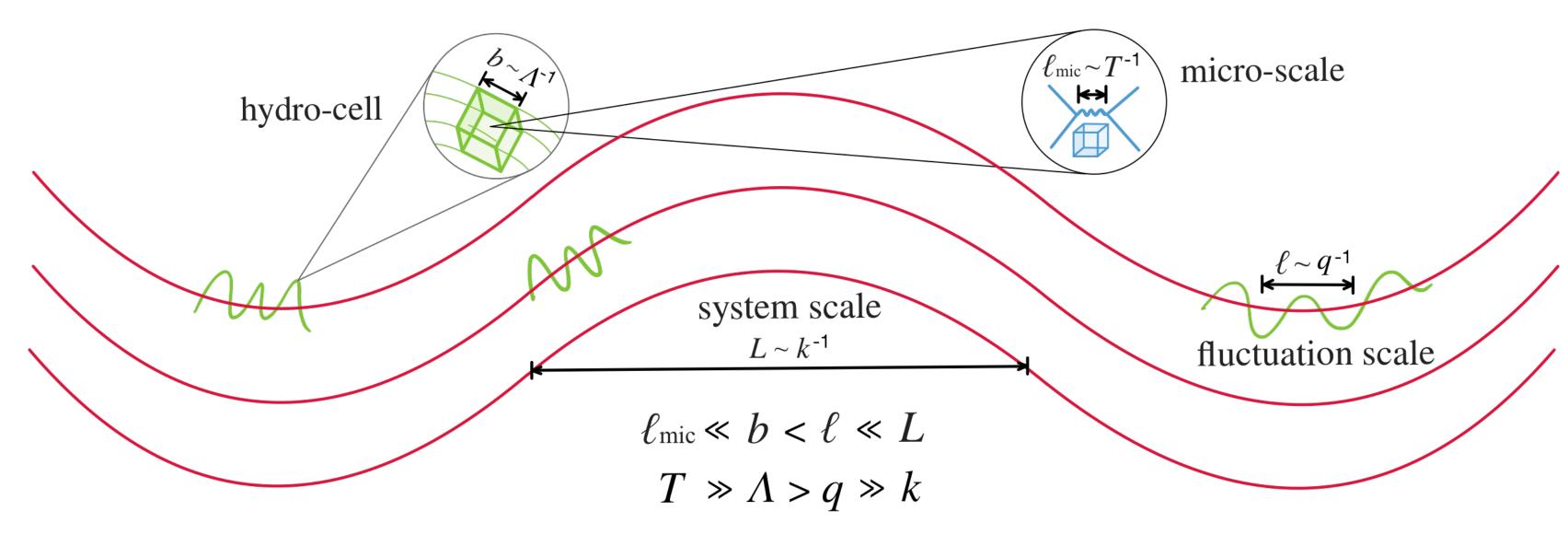
Fluctuations in hydrodynamics

 Hydrodynamic fluctuations: locally thermalized thermal fluctuations comoving with fluid, may not equilibrate at large scales, described by a set of conservation equations

$$\begin{aligned} \partial_t \psi &= \nabla \cdot (J[\psi]) \\ \swarrow &= (n, \epsilon, \pi_i) \end{aligned} \quad \text{conserved current}$$

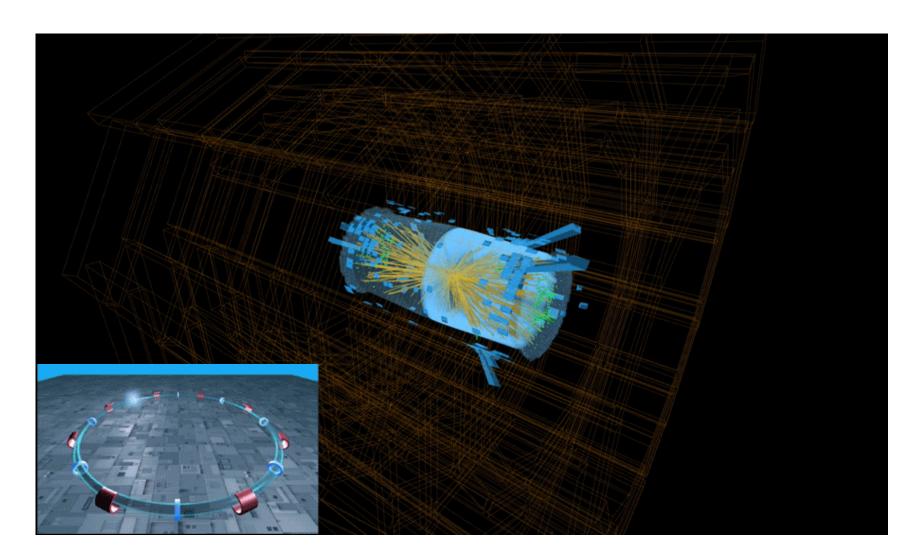


Flow around a wing (Wikipedia)



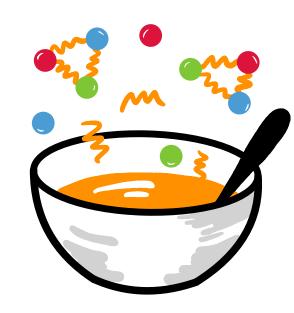
Hydrodynamic description of QGP

• Quark-Gluon Plasma in heavy-ion collisions: *small* enough for fluctuations to be important; and *large* enough for hydrodynamics to be applicable.



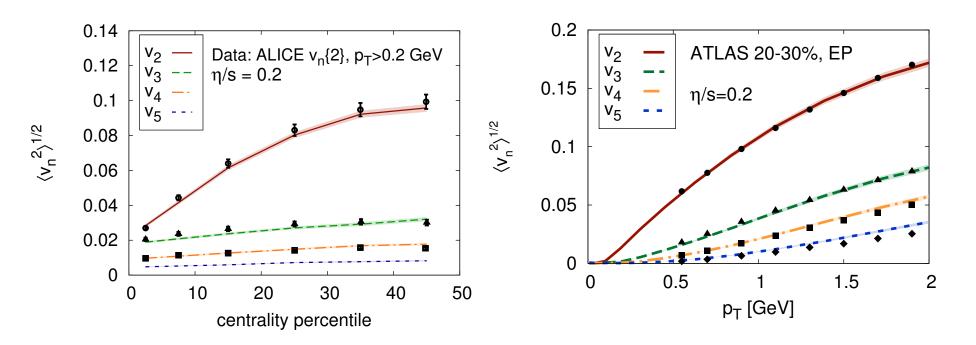
Collision event simulation at LHC (CERN)

Static fluid & static fluctuations

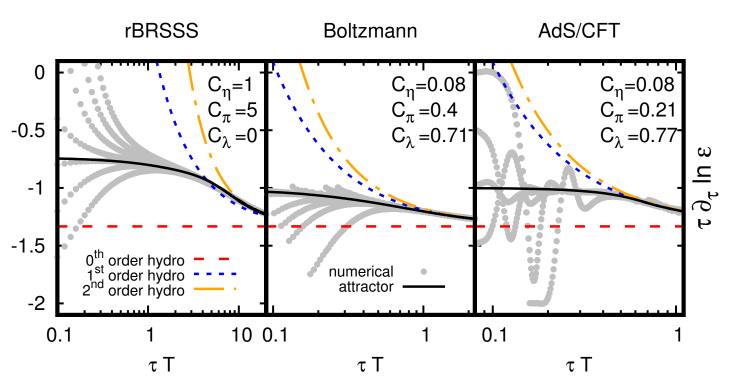


Size of created fire balls $\sim 10 \, \mathrm{fm}$ Number of particles $\sim 10^2 - 10^4$

Early Universe is more like a soup



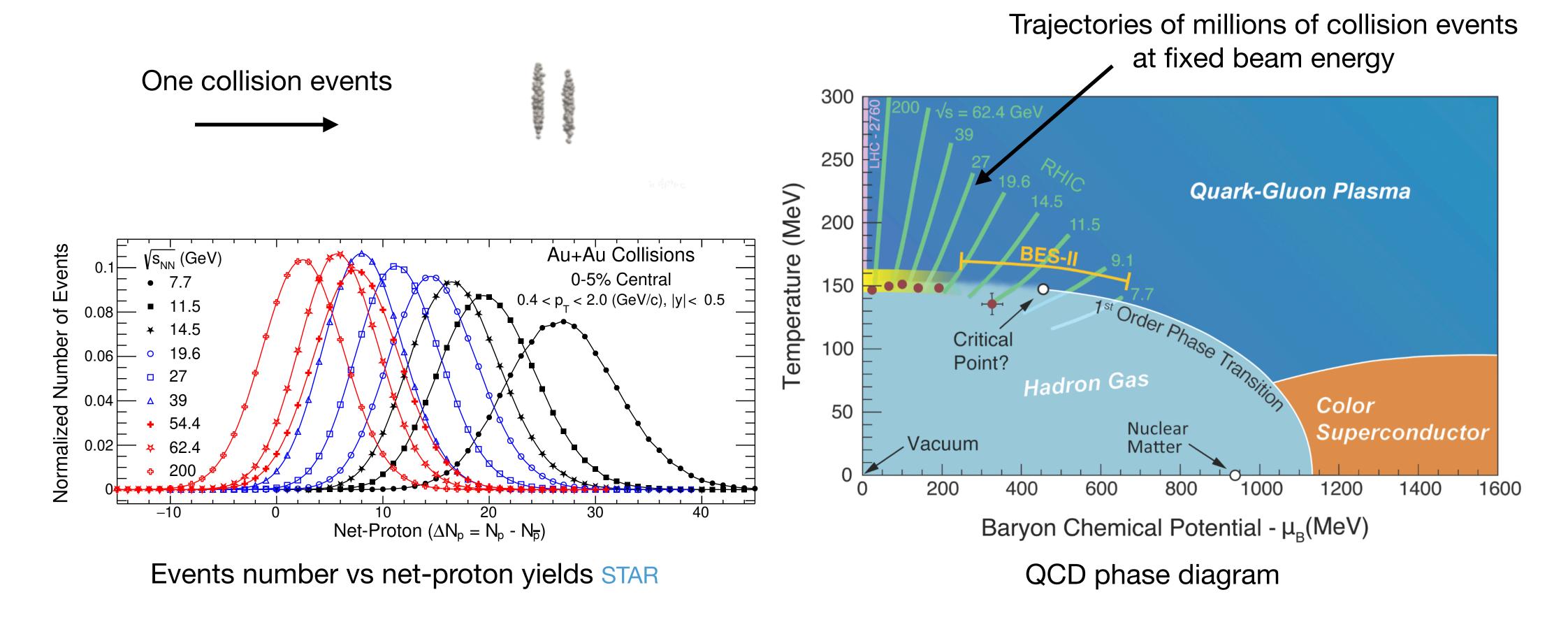
Analysis for flow collectivity manifests QGP as a *perfect fluid* C. Gale et al, 1301.5893



Hydrodynamic *attractor* W. Florkowski et al, 1707.02282, P. Romatschke et al, 1712.05815

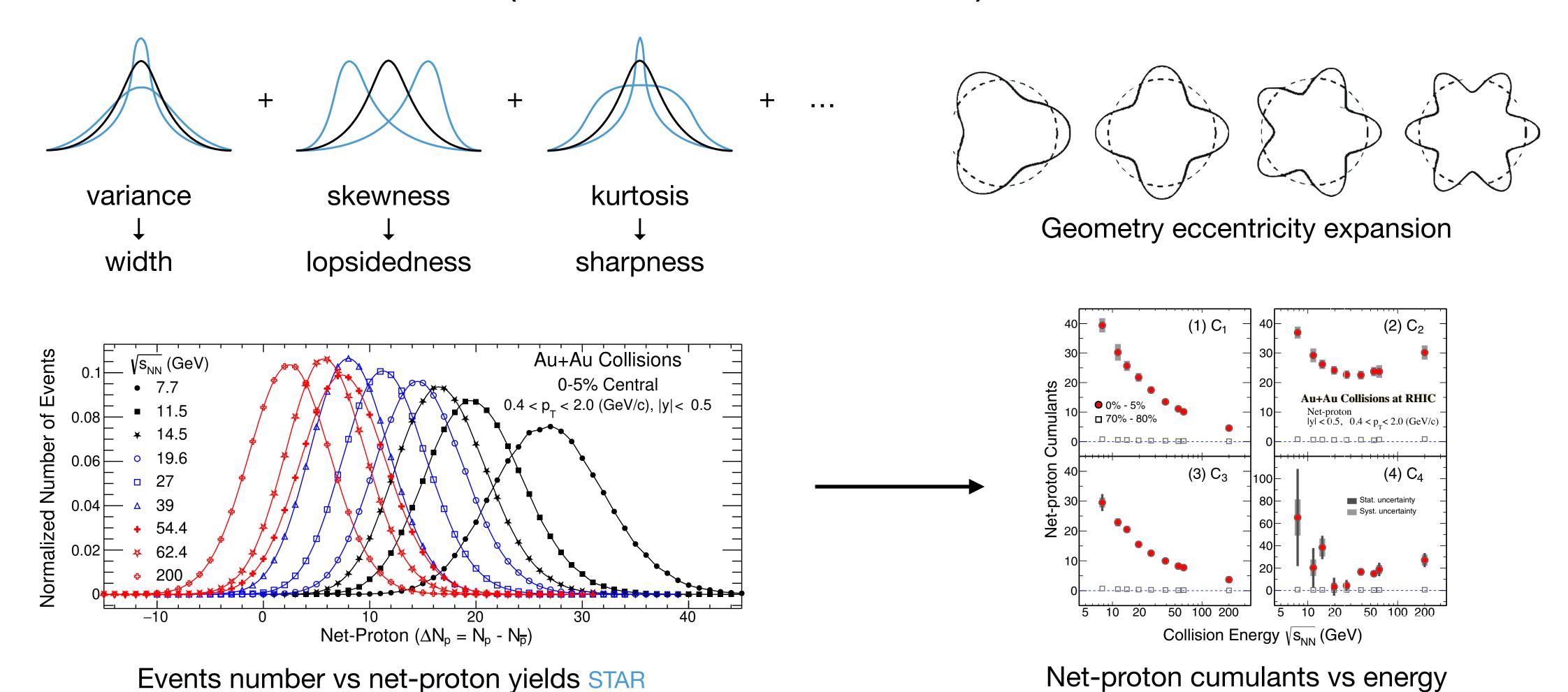
Stochastic process in HIC

- Observables fluctuate event-by-event.
- Beam Energy Scan: 7.7-200 GeV (phase I), and 3.3-19.6 GeV (phase II).



Probability distribution for fluctuating variables

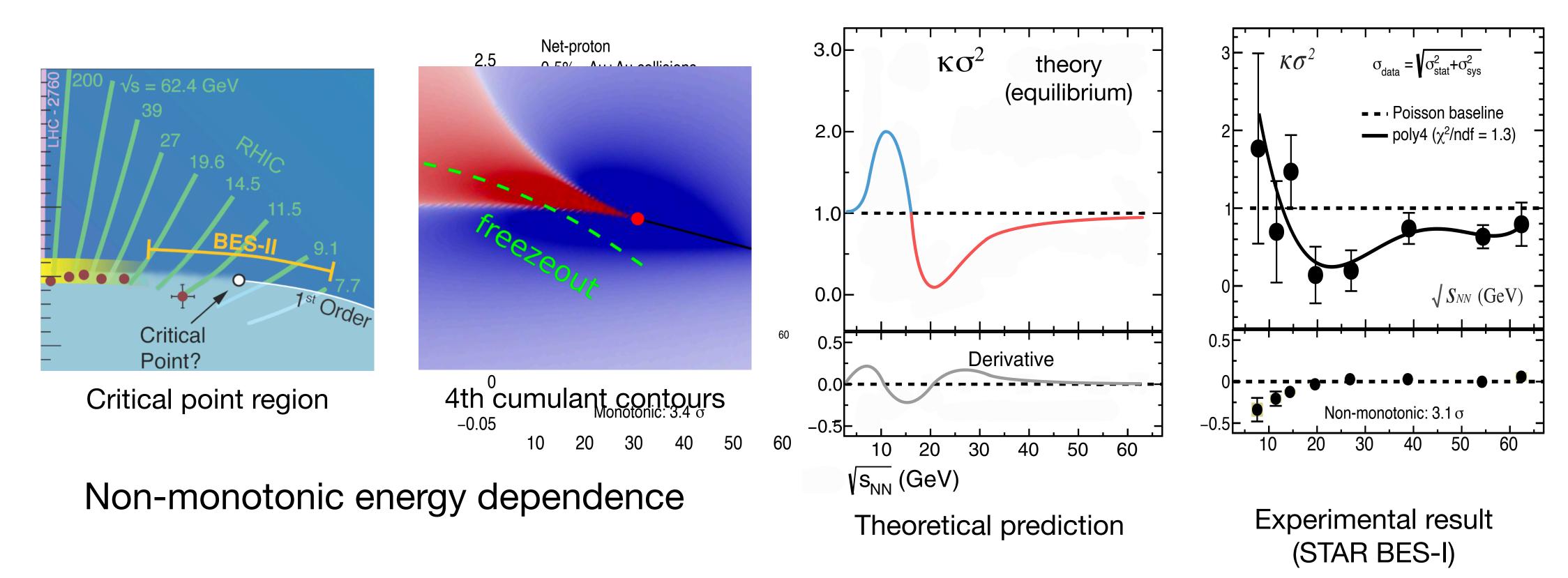
• Fluctuations can be described by probability distribution $P[\psi]$ and its associated *cumulants* (or correlation functions).



Cumulants and critical point

• In thermodynamics, higher-order cumulants are more sensitive to the correlation length ξ which diverges at critical point. Stephanov 0809.3450, 1104.1627

n-th cumulants
$$\sim \xi^{\frac{5n-6}{2}}$$



Various theoretical approaches

PDEs (bottom-up like)

Starting from phenomenological equations with required properties

e.g., Langevin equations in stochastic description, Fokker-Planck (FP) equations in deterministic description.

Akamatsu et al, 1606.07742

Nahrgang et al, 1804.05728

Singh et al, 1807.05451

Chattopadhyay et al, 2304.07279

...

• EFTs (top-down like)

Starting from effective action with first principles

e.g., Martin-Siggia-Rose (MSR), Schwinger-Keldysh (SK), Hohenberg-Halperin (HH), nparticle irreducible (nPI), etc.

Glorioso et al, 1805.09331

Jain et al, 2009.01356

Sogabe et al, 2111.14667

Chao et al, 2302.00720

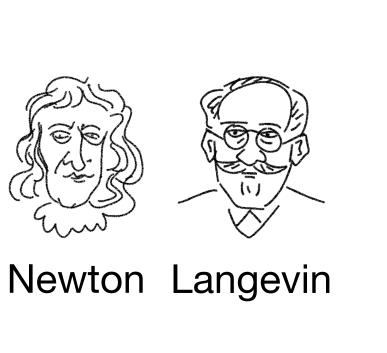
. .

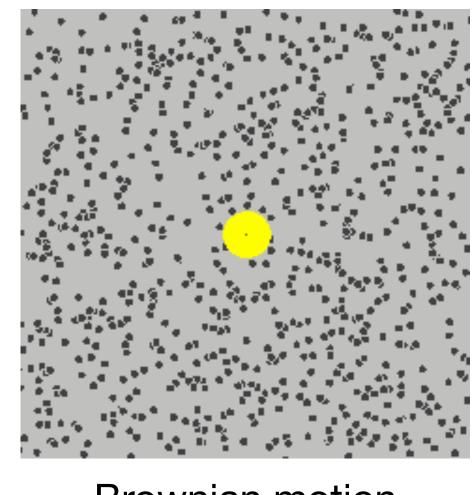
Stochastic and deterministic description

Langevin equation
 (Newton's equation + noise):

$$\partial_t \breve{\psi}_i = F_i [\breve{\psi}] + \eta_i$$

$$\langle \eta_i(x_1) \eta_j(x_2) \rangle = 2Q_{ij} \delta^{(3)}(x_1 - x_2)$$



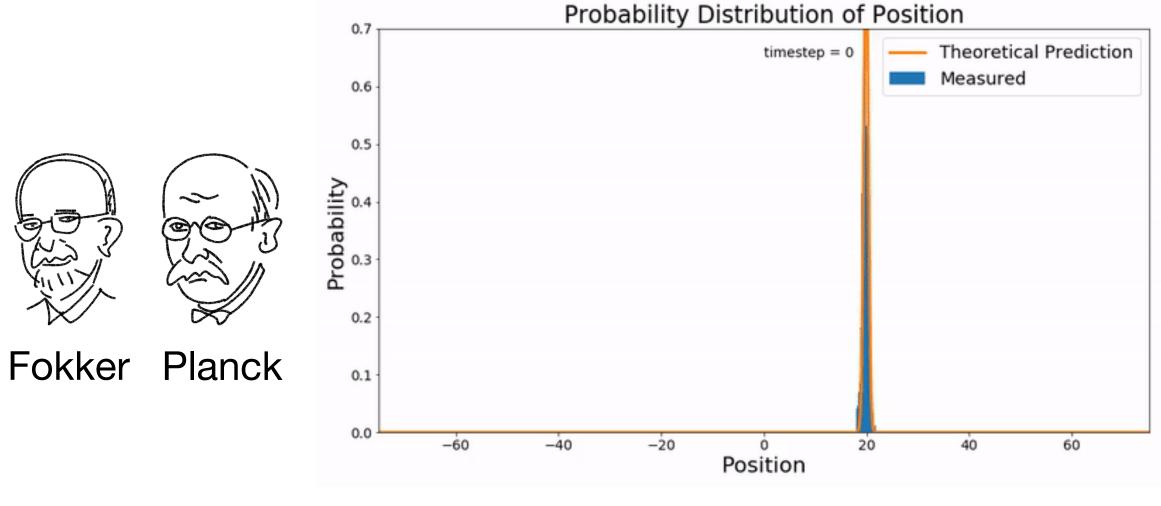


Brownian motion

 Fokker-Planck equation (probability evolution equation):

$$\partial_t P[\psi] = \frac{\partial}{\partial \psi} \left(\mathbf{flux}[\psi] \right)$$

$$\mathbf{flux}[\psi] = -FP + \frac{\partial}{\partial \psi}(QP)$$



(Wikipedia)

Correlator evolution equations

• Evolution equations for n-pt correlators $G_n \equiv \langle \underbrace{\phi ... \phi}_{n} \rangle \equiv \int d\psi P[\psi] \underbrace{\phi ... \phi}_{n}$ where $\phi \equiv \psi - \langle \psi \rangle$: XA et al, 2009.10742, 2212.14029

$$\partial_t G_n = \mathcal{F} [\psi, G_2, G_3, ..., G_n, G_{n+1}, ..., G_{\infty}]$$

Stochastic: One equation Millions of samples

Deterministic: One sample Millions of equations

Truncated evolution equations

• Power counting in loop expansion parameters $\varepsilon \sim (q\xi)^3$ (inverse number of uncorrelated cells in fluctuation scales): XA et al, 2009.10742

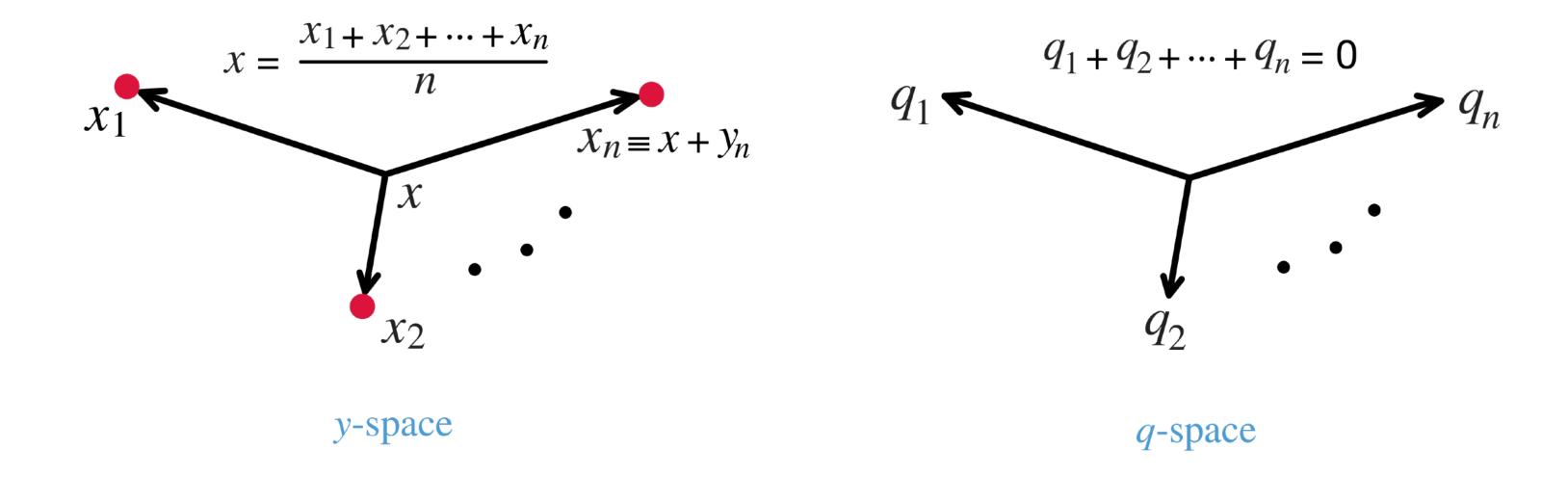
$$G_n \sim \varepsilon^{n-1}, \qquad F \sim 1, \qquad Q \sim \varepsilon.$$

Correlator evolution equations can be truncated and iteratively solved:

Multi-point Wigner function

• For fluctuation fields, we introduced n-pt Wigner function XA et al, 2009.10742

$$W_n(x; q_1, ..., q_n) = \int d^3y_1 ... d^3y_n e^{-(iq_1y_1 + ... + iq_ny_n)} \delta^{(3)} \left(\frac{y_1 + ... + y_n}{n} \right) G_n(x; y_1, ..., y_n)$$



App

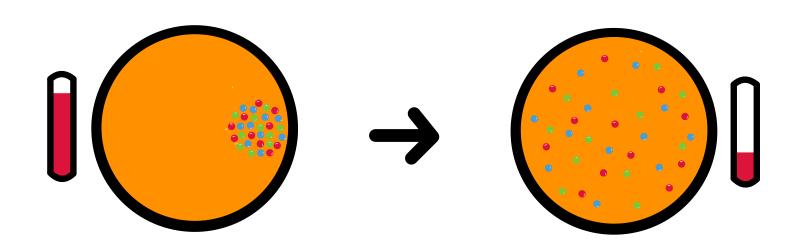
• Sim

$$\partial_t n = \nabla \lambda \nabla \alpha + \eta, \qquad \langle \eta(x) \eta(y) \rangle = 2 \nabla^{(x)} \lambda \nabla^{\text{Static-fluid & static fluctuations}}_{\text{Stephanov, 2011}} \mathcal{Y}$$

Mroczek, Acuna, Noronha-Hostler, Parotto, Ratti & Stephanov, 202 see also talk by Karthein (Tue)

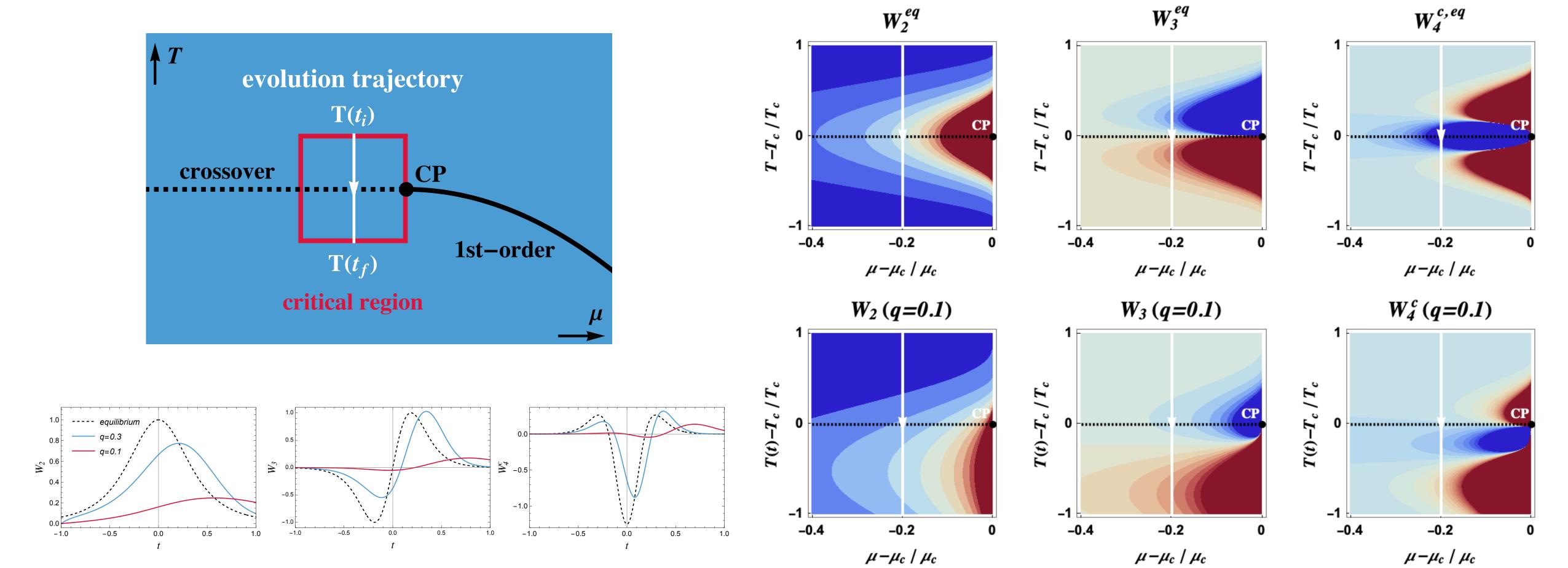
quantities	general	diffusive charge
variable	ψ_i	$n(\boldsymbol{x})$
variable index	i, j, k, etc.	$oldsymbol{x},oldsymbol{y},oldsymbol{z}, ext{ etc.}$
Onsager matrix	Q_{ij}	$oldsymbol{ abla}_{oldsymbol{x}} \lambda oldsymbol{ abla}_{oldsymbol{y}} \delta_{oldsymbol{x}}^{(3)}$
drift force	F_i	Stativer or white or mly varying f

 $n \equiv \text{charge density}; \ \lambda \equiv \text{conductivity}; \ \alpha \equiv \text{chemical potential}$



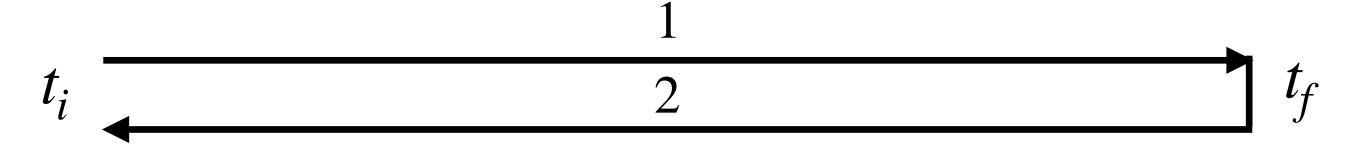
Application: charge diffusion near critical point

• Charge diffusion near QCD critical point: memory effect xA, 2209.15005



Schwinger-Keldysh approach

SK formalism



$$Z = \int \mathcal{D}\psi_1 \mathcal{D}\psi_2 \mathcal{D}\chi_1 \mathcal{D}\chi_2 e^{iI_0(\psi_1,\chi_1) - iI_0(\psi_2,\chi_2)} = \int \mathcal{D}\psi_1 \mathcal{D}\psi_2 e^{i\int_{\tau} \mathcal{L}_{EFT}}$$

• The effective Lagrangian is constructed following fundamental symmetries:

Glorioso et al, 1805.09331; Jain et al, 2009.01356

$$\mathcal{L}_{\text{EFT}}(\psi_r, \psi_a) = \psi_a Q^{-1}(F - \dot{\psi}_r) + i\psi_a Q^{-1}\psi_a \quad \text{where} \quad \psi_r = \frac{1}{2} (\psi_1 + \psi_2), \quad \psi_a = \psi_1 - \psi_2$$

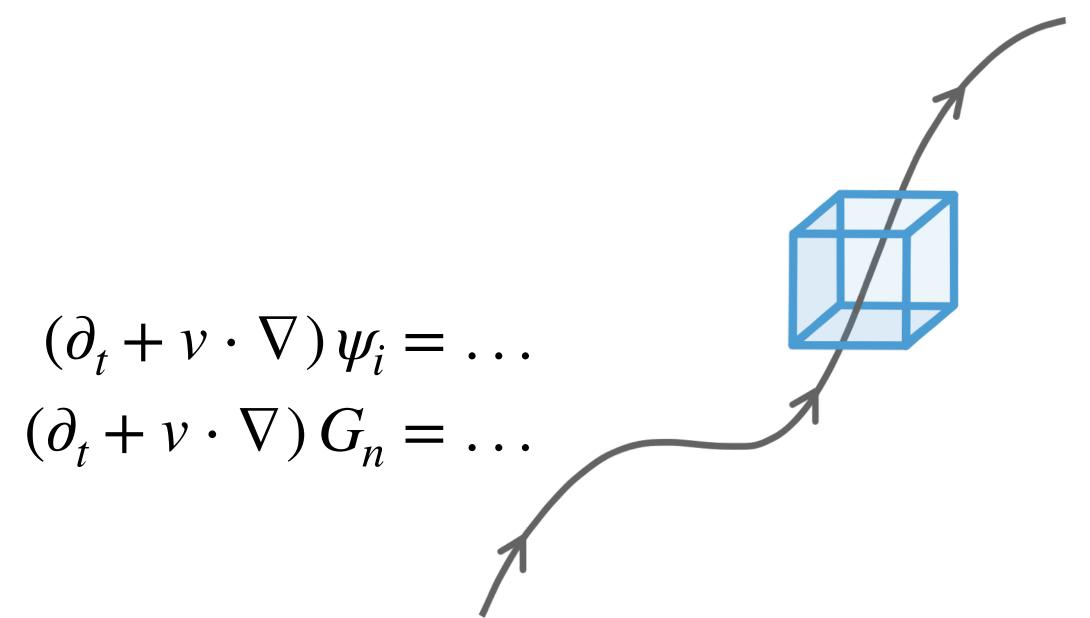
$$P[\psi] = \int_{\psi_r = \psi(t)} \mathcal{D}\psi_r \mathcal{D}\psi_a J(\psi_r) \, e^{i\int_{-\infty}^t d\tau \mathcal{L}_{EFT}} \qquad \longrightarrow \qquad \partial_t P[\psi] = \frac{\partial}{\partial \psi} \left(\mathbf{flux}[\psi] \right)$$

XA et al, in progress

Relativistic dynamics

Eulerian specification

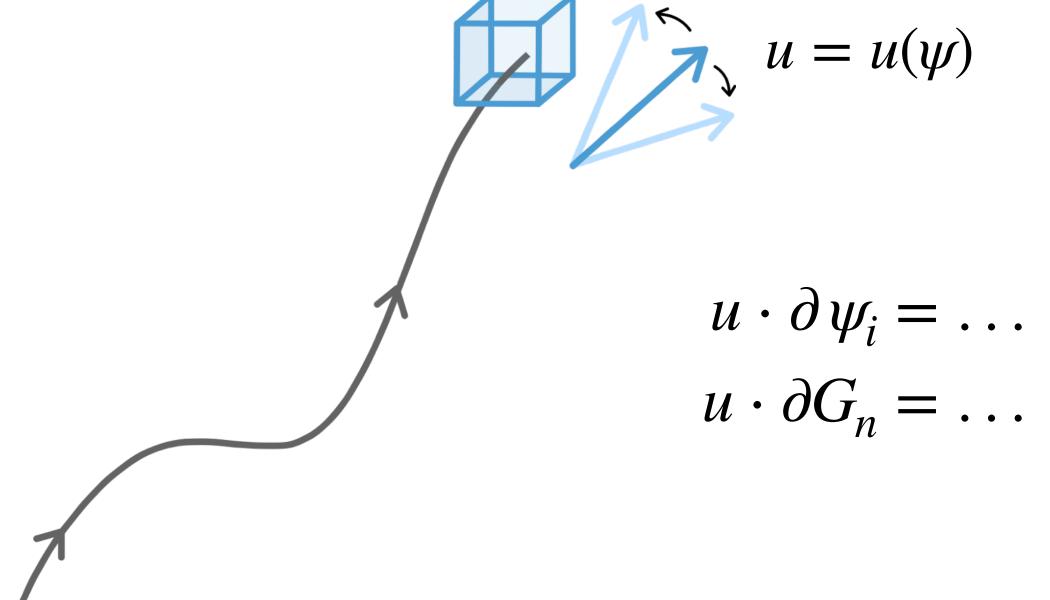
more often used in non-relativistic theory



There is a global time for every observer. All n-pt correlators G_n can be measured at the same time of the same lab frame.

Lagrangian specification

more convenient for relativistic theory



Each fluid cell has its own clock (proper time). How to define the analogous equal-time correlator G_n in relativistic theory?

Confluent formulation: correlator and derivative

• Confluent formulation: covariant description for the comoving fluctuations. XA et al, 2212.14029

Confluent correlator \bar{G} Confluent derivative ∇ $u(x_n)$ $\Lambda(x_n-x)$ $u(x_1)$ $\Lambda(x_1-x)$ $= u(x+\Delta x)$ $u(x+\Delta x)$ u(x)u(x) $\Lambda(x_2-x)$ $\phi(x+\Delta x)$ $\Lambda(\Delta x)^{-1}$ $u(x_2)$ $\Lambda(\Delta x)$ $\Lambda(\Delta x)\phi(x+\Delta x)$ (a) (b)

boost all fields (measured at their own local rest frame) to one common frame (chosen at their midpoint)

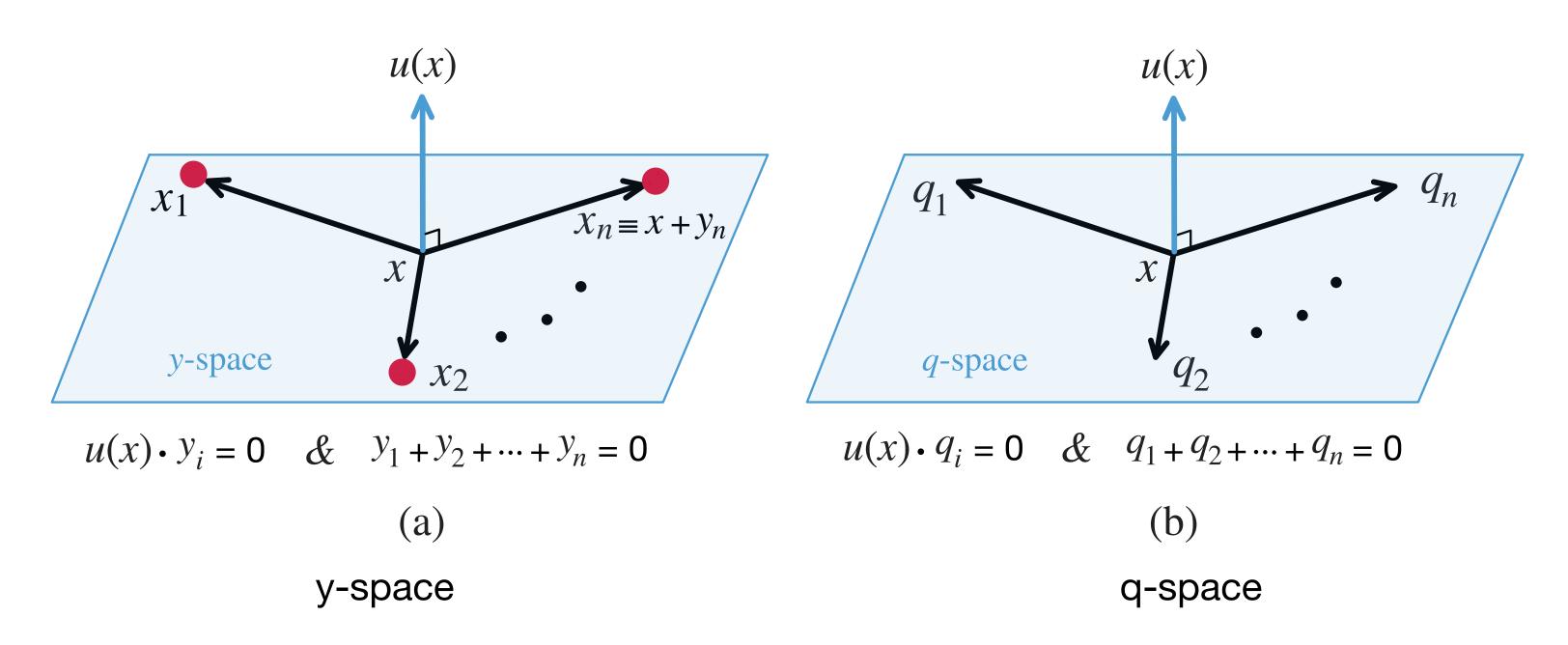
as the n points move, the frame at midpoint moves accordingly, the difference of a given field before and after the movement is calculated in one same frame, with the equal-time constraint preserved by introducing the local triad e_a^μ with a=1,2,3

Confluent formulation: Wigner function

• The confluent n-pt Wigner transform is performed from $y^a=e^a_\mu y^\mu$ to q^a

XA et al, 2212.14029

$$W_n(x; q_1^a, ..., q_n^a) = \int \prod_{i=1}^n \left(d^3 y_i^a e^{-iq_{ia} y_i^a} \right) \delta^{(3)} \left(\frac{1}{n} \sum_{i=1}^n y_i^a \right) \bar{G}_n(x + e_a y_1^a, ..., x + e_a y_n^a)$$

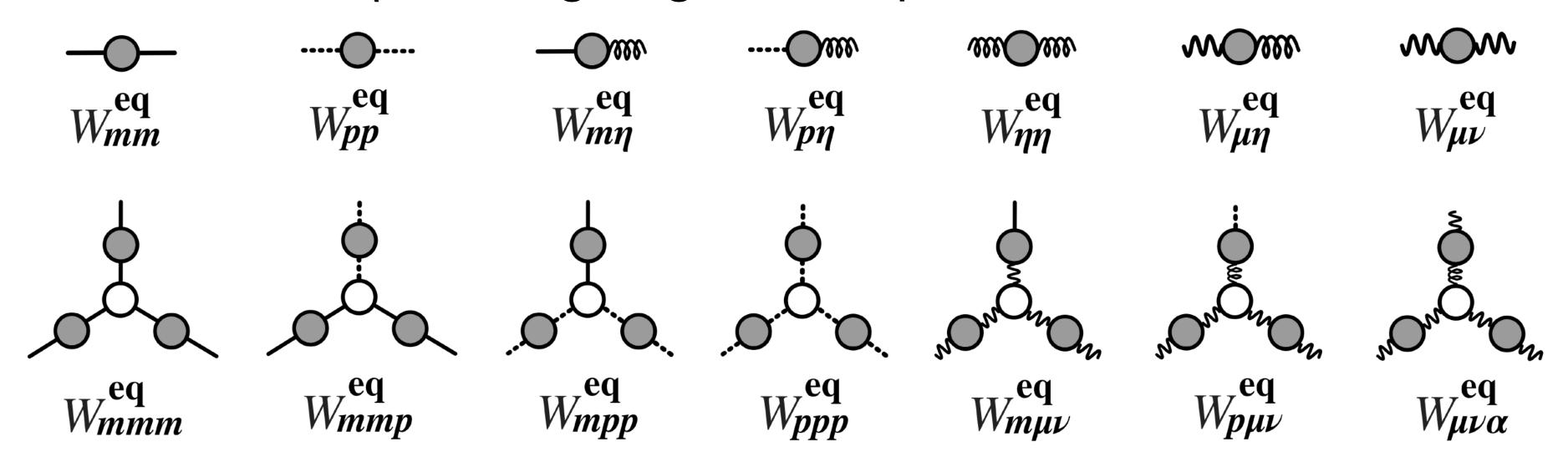


Fluctuation evolution equations

• Fluctuation evolution equations in the *impressionistic* form: XA et al, in progress

$$\mathscr{L}W_n = ic_s q(W_n - \dots) + \gamma q^2(W_n - \dots) + kW_n + \dots$$
 where $\mathscr{L} = u \cdot \bar{\nabla}_x + f \cdot \nabla_q$

for which the solutions match thermodynamics with entropy $S(m, p, u_{\mu}, \eta)$, where m = s/n and η is a Lagrangian multiplier for $u^2 = -1$.

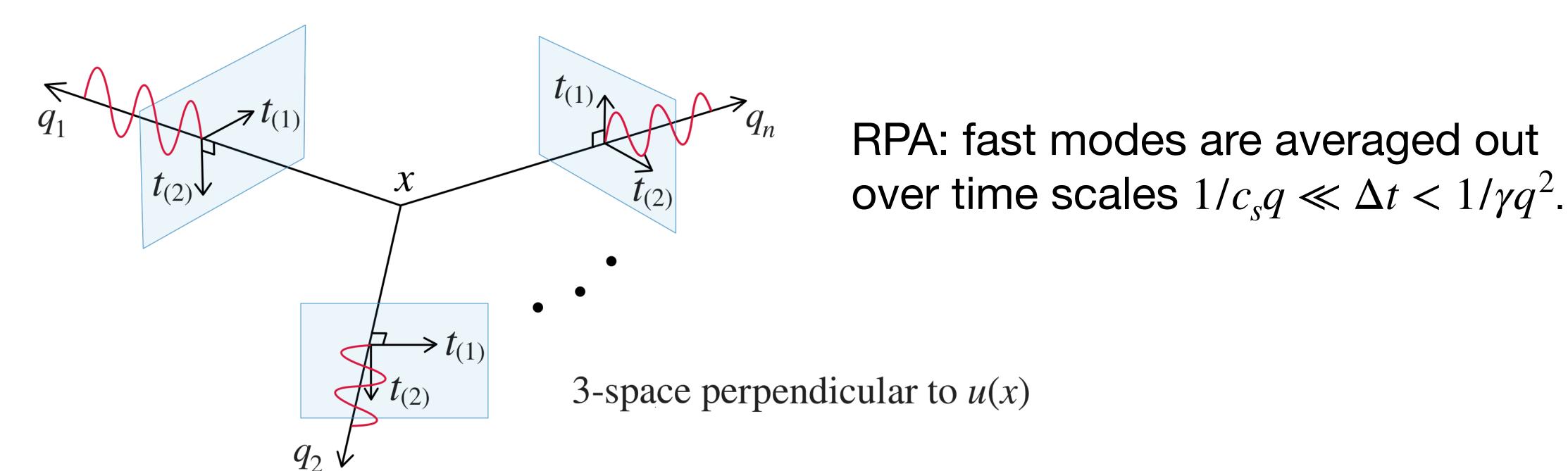


NB: given $\phi = (\delta m, \delta p, \delta u_{\mu})$, one can derive 21+56+126=203 equations for the 2-pt, 3-pt and 4-pt functions—bite off more than one can chew!

Rotating phase approximation

• *n*-pt functions are analogous to *n*-particle states lying in the Fock space. One can choose a set of new bases s.t. the ideal hydro equations are diagonalized:

$$\phi = \begin{pmatrix} \phi_m \\ \phi_p \\ \phi_\mu \end{pmatrix} = \begin{pmatrix} \delta m \\ \delta p \\ \delta u_\mu \end{pmatrix} \longrightarrow \Phi = \begin{pmatrix} \Phi_m \\ \Phi_{\pm} \\ \Phi_{(i)} \end{pmatrix} \sim \begin{pmatrix} \delta m \\ \delta p \pm c_s \hat{q} \cdot (w \delta u) \\ t_{(i)} \cdot \delta u \end{pmatrix} \quad i = 1,2$$



Slow modes

$$\sum_{i=1}^{n} \lambda(q_i) = 0 \quad \text{where} \quad \lambda_{\pm}(q) = \pm c_s |q|, \quad \lambda_m(q) = \lambda_i(q) \neq 0.$$

E.g., $W_{+-}(q_1, q_2)$ is a slow mode since $\lambda_{+}(q_1) + \lambda_{-}(q_2) = c_s(|q_1| - |q_2|) = 0$.

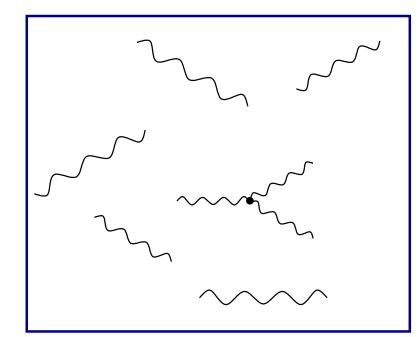
As a result, there are only 7+10+15=32 equations.

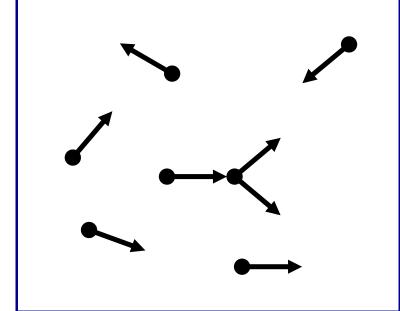
E.g., for 2-pt functions the slow modes are W_{mm} , $W_{m(i)}$, $W_{(i)(j)}$, W_{+-} .

Phonon interpretation: XA et al, 1902.09517

$$\mathscr{Z}W_{+-} = -\gamma_L q^2 \left(W_{+-} - \frac{T}{E} \right)$$

Bose-Einstein distribution at high T : $f = \frac{1}{e^{E/T} - 1} \approx \frac{T}{E}$





Kinetic picture (from Schaefer)

NB: there is no analogous phonon interpretation for non-Gaussian fluctuations.

Fluctuation feedback

• Hydrodynamic fluctuations renormalize bare quantities order by order in gradient expansion.

$$\begin{split} T_{\mu\nu}^{\text{physical}} &= T_{\mu\nu}^{(0)} + T_{\mu\nu}^{(1)} + T_{\mu\nu}^{(2)} + \ldots + \delta T_{\mu\nu}(\{G_n\}) \\ &= T_{\mu\nu}^{R(0)} + T_{\mu\nu}^{R(1)} + T_{\mu\nu}^{R(2)} \\ &+ \tilde{T}_{\mu\nu}^{(3/2)} + \tilde{T}_{\mu\nu}^{(3)} + \tilde{T}_{\mu\nu}^{(9/2)} + \ldots \end{split}$$

where
$$G_n(x) = \int d^3q_1...d^3q_n\delta^{(3)}(q_1 + ... + q_n)W_n(x, q_1, ..., q_n)$$

Long-time tail due to n-pt functions is of order $\varepsilon^{n-1} \sim q^{3(n-1)} \sim k^{3(n-1)/2}$, the leading $k^{3/2}$ behavior results from 2-pt functions (via —).

Recap

- Various approaches for fluctuating hydrodynamics are developed, with their own advantages and disadvantages. See also Schaefer's talk
- Our framework for fluctuations dynamics now incorporates non-Gaussian fluctuations of fluid velocity.

Outlook

- Need efforts to simulate the fluctuation equations with background.
- Need freeze-out prescription for the connection to observables. See Pradeep's talk
- More...