
Surrogate Model

Tareq Alghamdi            Seattle, Washington        June 28, 2024

QCD at the Femtoscale in the Era of Big Data

  INT Workshop

1

Application of GANs: Surrogate Modeling and Mitigating Smearing and Acceptance Detector Effects
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Introduction

● In this application, the PMDs for a simplified version of DIS on protons and neutrons are given by

Where σ1 and σ2 are cross sections (un-normalized probability distributions) and u(x) and d(x) are the universal 1D QCFs 
called up- and down-quark PDFs.

● QCFs for the proxy problem with two channels are defined by:

Where x∈(0,1) and the parameter vector {Nu, au, bu, Nd, ad, bd} is undetermined.
● We observe events {σp, σn} generated by model (2) and filtered through cross-sections defined in (1) for 

defined values of the shape parameters.
● From these QCFs, we create PMDs. Then, sampling the PMDs generates the observable physics events. 
● These events then serve as the proxy ”experimental events” within the workflow.
● In this study, we consider the parameters ptrue=[2.1875,−0.5,3,1.09375,−0.5,4] as the ground truth of a control 

test case, within the parameter bounds of 

The goal is infer the parameters based on the observed physics events.
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Motivation:
● Inverse Cumulative Density Function (CDF) can be used to perform 1-dimensional sampling that is 

differentiable. 
● Traditional sampling does not allow backpropagation and gradient flow through it for neural network. 
● Traditional samplers require sampling the physics-based QCF functions that are computationally costly 

to evaluate.

Why do we use a Generative Adversarial Network(GAN) as a surrogate?

● GAN possess super resolution power due to discrimination generation competition and backpropagation. 
● Backpropagation enables the GAN to learn to mimic realistic datasets
● Eventually, GAN will be able to learn the posterior of the parameters that produce a given distribution of 

the observables. 
● The purpose of the surrogate model is to replace the expensive QCF sampling with computationally 

efficient surrogate neural networks evaluations.
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Proposed Method
● We proposed an end-to-end machine learning framework 

that addresses the challenge of utilizing event-level data to 
make inferences on QCF parameters.

● The proposed method follows the structure of adversarial 
learning without relying on any specific underlying physics
theory. This approach allows the framework to learn solely 
from the data.

●  It consists of a conditional GAN-based surrogate event 
generator responsible for generating synthetic event samples 
from parameterized QCFs, and an outer-GAN that performs 
the inverse mapping from the observed events back to the 
parameter space.

●  The utilization of a discriminator helps guide the updates of 
the parameter generator based on event-level data.
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Surrogate Event Generator Architecture
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Surrogate Event Generator Results

● Surrogate event generator mapping 
parameters to the distribution of event 
samples for randomly generated 
parameters.

● The ratio of the Proxy surrogate event 
generator model to the truth yields is 
shown at the bottom of each panel.

[0.496, -0.462, 1.943, 0.719, 0.657, 4.042] [1.501, 0.235, 0.661, 0.698, -0.553, 4.608]
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  NN_ NormParams Norms

Simple Neural Network 

For example:
Parameter= [ -0.5, 3,2.1875, -0.5, 4,1.09375]

Norms= [3.336806 , 1.8599147]

Neural Network to estimate normalization constants

● While the physics-based model can generate 
events and calculate the normalization 
constants, the surrogate GAN, as an emulated 
sampler, can only generate synthetic events, 
but is not able to estimate the normalization 
constants.

● We  build a neural network to estimate the 
normalization constants. 

● The mapping between the parameters {Nu, 
au,bu, Nd, ad, bd}, and the normalization 
constants is a simple regression problem.
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GAN-based Event-level Inverse Mapper(GEIM) Architecture

● It is designed to address the inverse 
problem of femtoscale imaging in 
QCD.

● GEIM consists of two GANs: 
○ The conditional GAN-based 

surrogate event generator, 
which replaces the 
physics-based QCF model to 
generate synthetic events, 

○ And the outer-GAN, which 
performs the backward 
mapping to derive the 
parameter distributions.
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GEIM using a Physics-based model
On a control parameter set as true= 
[2.1875, -0.5, 3, 1.09375, -0.5, 4] as the test
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GEIM using a surrogate event generator 
On a control parameter set as true= [2.1875, -0.5, 3, 1.09375, -0.5, 4] as the test

● It leads to wider derived parameter distributions and this is due to the error generated by the surrogate event generator to approximate the 
real physics-based probability density function, which increases the uncertainty in the inverse inference. 12



How does the computational efficiency of the surrogate event generator’s neural networks compare to that of 
physics-based models?

● Comparing the computational times of generating 13 to 
107 events using the inverse CDF method to sample the 
physics-based QCFs and the surrogate event generator.

● More cost-efficient than inverse CDF sampling of the 
physics-based model, which requires evaluating 
complex physics-based distribution functions.

● Resulting in approximately 20 times faster 
performance.

Computational time comparison 
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● The plots compare three sets of values for each parameter:
○ Truth (black dots): The actual values of the parameters.
○ Physics-based model (blue dashed lines): Values predicted by the 

physics-based inverse CDF sampling model.
○ GAN model (orange dashed lines): Values predicted by the inner 

GAN model.

● The inner GAN is trained with 100k, 1M, and 20M events.
● The pre-trained inner GAN is used within the outer model to predict the 

values of the six parameters.
● These predictions are compared to the truth values and those from the 

physics-based model.

● The GAN model's performance improves with more training data, showing a 
reduction in the mean and standard deviation error.

● Training the GAN model with a substantial amount of data allows it to 
closely approximate the true parameters.

   

Comparison using different sizes of events while training the inner GAN (Inner GAN vs. inverse CDF)
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Drawbacks of this approach:
● We need to know the range of the parameters to train the Surrogate event generator.

● Training the Surrogate event generator in our approach requires a substantial dataset, specifically 20 million samples. This 
high sample requirement results in significant computational cost and resource consumption, which can be a limiting 
factor in terms of both time and available computing resources.

If we scale the problem to higher dimensions, the data requirements would increase exponentially.

● While this approach works for a simple 1-D deep inelastic scattering problem, a key question remains: 

Will it work if we scale the problem to higher dimensions??
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Moving Forward:
  Event Generators
FOLDING & UNFOLDING THE DETECTOR

SMEARING EFFECTS
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Particle collision experiment: 

*CLAS detector at Jefferson Lab

Vertex-level

     e
lectron

     proton
Detector-level

Folding
well-posed problem

ill-posed problem

Real Detector*

Unfolding

● Data collected by NP/HEP  experiments are (always) affected by the detector’s effects
● Before starting physics analysis the detector’s effect unfolding is required 
● Traditional observables may not be adequate to extract physics in multidimensional space (multi-particles in the final state)
● At High-Intensity frontiers, data sets are large and difficult to manipulate/preserve
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Just as hunters can identify animals from tracks in mud or snow, physicists identify subatomic particles from the traces they leave in detectors1

1CERN Accelerating science

https://home.cern/


Main components:

● This work has two main components:
○ Simulating the smearing detector effects using ML tools.

■ Folding GAN        Detector-Simulation (DS-GAN)          MC-Phase Space pseudodata

○ Building  a ML-based event generator framework to reconstruct vertex-level events.
■ Unfolding GAN        UNF-GAN        MC-Realistic pseudodata

DS-GANVertex-level Detector-level

Vertex-level Detector-levelUNF-GAN
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2π photoproduction closure test

T. Alghamdi, M. Battaglieri, Y. Li, N.Sato, A.Szczepaniak, and et al. 
"Toward a generative modeling analysis of CLAS exclusive 2π photoproduction."
Phys. Rev. D 108, 094030 – Published 21 November 2023
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2π photoproduction closure test
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2π photoproduction closure test
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2π photoproduction closure test
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2π photoproduction closure test
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2π photoproduction closure test
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Momentum resolution

Angular resolution



DS-GAN Results

● Pull calculation for each bin: 
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DS-GAN

Truth



UNF-GAN results

4. Deploy the unfolding GAN (UNF-GAN) that includes the DS- 
GAN, and train it with RE-MC REC pseudodata
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2π photoproduction closure test
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A key point of this closure test is to demonstrate that synthetic data maintain 
the correlations of original pseudodata. 

Truth UNF-GAN



       Derived variables (not used in the training)

29

DS-GAN Results: UNF-GAN Results:

● The comparison is extended to other physics-relevant distributions not used in the training and derived from the four 
training variables.

●  The agreement, quantified by the pull distributions shown at the bottom of each plot, is remarkable, in both cases, with 
most of the points lying within ±1σ. This indicates that the DS-GAN is indeed able to learn the CLAS detector effects. 



2π photoproduction closure test
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● Comparison of GEN and GENSYN for p momentum components 
and θlab in the laboratory reference frame using RE-MC data.

● We compare 1D distributions in a given bin of the other variables.

● The success of this test shows that correlations underlying the 
multidifferential cross section are correctly reproduced in the 
synthetic datasets.



Moving forward: CLAS12 application

Credit: Derek Glazier, Marco Spreafico

● Working towards the application of the developed machinery to 
CLAS12 pseudata for the 

● If this procedure works well on CLAS and CLAS12 data, the 
robustness of the architecture is guaranteed.

● Then we can put together in a coherent way information from 
different kinematic regions

REC SYN vs REC pseudodata training variables

CLAS12 resolution
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Moving forward: Acceptance Effects

● Acceptance refers to the geometric and efficiency-related limitations of the detector system. Due to the detector’s limited area coverage, 
particles produced in certain directions may not be detected.

● We generate Monte Carlo (MC) pseudo-data based on the photoproduction reaction                    in a kinematic range where 
● Two independent variables (at fixed energy): 𝜃_𝑐𝑚 and 𝜙_𝑐𝑚, along with their associated topologies.
● Each event is represented as a three-dimensional vector, where the first two elements denote the angles and the third element represents the

topological state (0 as unmeasured or 1 as measured).
● The two different classes of events, which can be seen in this plot, have been produced passing the reaction output through a simple proxy 

of the CLAS detector, which is able to tell if a given event has been measured or not.
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● To address the challenge of acceptance effects in detector systems
● The architecture is designed to learn the underlying physics distribution and generate events in 

both measured and not measured regions.
● A pre-trained classifier is used to categorize these events according to their topologies.
●  A key aspect of our framework is the classifier and the inclusion of a penalty in the loss function, 

which penalizes the generator to avoid a surplus of events in the undetected region (unseen).
● This approach allows the framework to learn collectively from the detected data (training data) 

and the penalization term.

33

Unfold Acceptance Effects in Particle Detectors with Generative AI



Classifier:
● We trained a binary classifier that can distinguish 

between different topological states.
● The training dataset consists of two sets:

○ "unseen" data representing events that have not 
been measured 

○ "seen" data representing events that have been 
measured.

○ The pre-trained classifier will be integrated 
into our GAN architecture.

NN 
Classifier

Unseen & Seen
labels 0 or 1

Training phase

Testing phase
NN 

Pre_trained 
Classifier

Unseen/SeenΘ and φ

● The GAN will produce Θ and φ angles and utilize the 
classifier to classify the events into the appropriate 
topological states.

● A custom generator loss function is employed to penalize 
the generator based on the difference between the 
generated and true unmeasured topology event 
distributions.
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Results

● MC-data at the entire phase space Θ and φ distributions 
are compared to the synthetic data produced by the 
GAN.

● The histograms above and to the right of each scatter 
plot provide distributions of θcm and φcm, respectively.

35
We can see from the 2D pull distributions, most of the values lie 
within ±2.5σ



Results:
The comparison between θGAN, φGAN and θMC and φMC 
distributions.

A further comparison has been made between the variables after 
classifying them into the two topologies.

Unmeasured topology Measured topology 

          We can see from the pull distributions, most of the values lie within ±2.5σ 36



Results:

● We show here all topologies, both measured and unmeasured 
regions after taking the θcmand φcm variables generated by 
GAN and classify them to measured and unmeasured regions.

● Evaluated using the calculated pull values shown here. In the 
left column, the 2D distributions display the pull values for 
measured and unmeasured topologies.

● Our approach effectively replicates the overall patterns and 
features of the true data, including the distinction between 
measured and unmeasured parts
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Results:  
Derived variables (not used in the training)
● The comparison is extended to other physics-relevant 

distributions not used in the training and derived from 
the two variables θ and φ, namely (E, px, py, pz) for the 
outgoing π0 in the laboratory frame.

● We applied the transformation on both unclassified and 
classified data to obtain the four-momentum 
components for all topologies.

● Comparing these transformed variables will help us 
assess how well the GAN preserves the underlying 
physics and correlations present in the MC data, 
beyond the initial θcm and φcm variables used during 
training.

● The good agreement and preservation of correlations 
remain valid for derived kinematic variables that were 
not used for training.

Unclassified

Classified
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Moving forward: Acceptance(Multiple Topologies)

Build a single GAN that 
is able to generate in 
the full phase space 

according to the correct 
distribution

Work in progress

Credit: Tommaso Vittorini 
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Conclusion
• Surrogate Event Generator: Replaces the inverse CDF sampler for physics-based components.
• Surrogate event generator produces events matching the target distribution.
• Outer-GAN: accurately infers the correct parameters from the given events. 
• It is more computationally efficient than physics-based samplers.

•  We performed a positive closure test on 2pion photoproduction
•  We demonstrated that GANs are a viable tool to unfold detector effects (smearing) to generate a synthetic copy of data
•  We demonstrated that the original correlations are preserved
•  Preserve data in alternative compact and efficient form

•  We demonstrated that our approach is an effective tool for correcting detector effects (acceptance).
•  We have shown the GAN’s ability to recover the distribution of unmeasured topologies, despite being trained solely on 
measured data.
• The derived variables, such as four-momentum components, has highlighted the GAN’s proficiency in preserving 
underlying physics beyond the variables explicitly used during training.

• We are aiming to develop a single GAN capable of generating events across multiple topologies while also associating each 
event with the probability of belonging to a specific topology. 40



Thank you!
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