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Tensor network & Lattice field theory

¢ A method to investigate quantum many-body system expressing an objective
function as a tensor contraction (= tensor network).  orus, APS Physics 1(2019)538-550

¢/ The natural application is QFT on a lattice, which gives us a finite-dimensional

description of the original QFT. Bafiuls-Cichy, Rep. Prog. Phys. 83(2020)024401
Meurice-Sakai-Unmuth—Yockey, Rev. Mod. Phys. 94(2022)025005
Okunishi-Nishino-Ueda, J. Phys. Soc. Jap. 91(2022)062001

v TN method provides us with various ways to investigate lattice QFT.
- w/ the Hamiltonian formalism

Describe a state vector as a TN, which is variationally optimized.

Cf. DMRG, TEBD White, PRL69(1992)2863-2866, White, PRB48(1993)10345-10356
Vidal, PRL91(2003)147902, Vidal, PRL98(2007)070201

Cf. Talks in 4/3~4/6
- w/ the Lagrangian formalism 2l inaf3mal

Describe a path integral as a TN, which is approximately contracted.

Cf. TRG, TNR, Loop-TNR, GILT Levin-Nave, PRL99(2007
Evenbly-Vidal, PRL115(2015)180405, Evenbly, PRB95(2017

Yang-Gu-Wen, PRL118(2017
Hauru-Delcamp-Mizera, PRB97(2018
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Advantages of the TRG approach

v/ Tensor renormalization group (TRG) approximately contract a given TN based on
the idea of real-space renormalization group.

* No sign problem
- The computational cost scales logarithmically w. r. t. system size

* Direct evaluation of the Grassmann integrals
* Direct evaluation of the path integral

v/ Applicability to the higher-dimensional systems

* If the system is translationally invariant on a lattice, ... S G G S
we can easily apply the TRG to contract the TN. A

* TRG would give us valuable information for the future development of higher-
dimensional TN algorithms.

* PEPS, Fermionic PEPS, Tree TN, isoTNS, Fermionic iSsoTNS

* Improvement of the TRG based on the removement of short-range correlations
Cf. Next talk by Ryo Sakai
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Current status of (3+1)D TN calculations

Hamiltonian formalism Lagrangian formalism

* Ising model sa+

- Staggered fermion w/ strongly coupled U(N) milde+
- Complex ¢* theory at finite density sa+

* Nambu—Jona-Lasinio model at finite density sa+

* Real ¢p* theory sa+

- Z, gauge-Higgs at finite density SA-Kuramashi

* QED at finite density magnifico+

v/ So far, the (3+1)D TN calculations have been driven by the Lagrangian formalism
w/ the TRG approach.

v/ Development of parallel computing method specialized for individual algorithms

to reduce their execution time per process.
SA+, PoS(LATTICE2019)138

Yamashita-Sakurai, CPC278(2022)108423
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Current status of higher-dimensional TRGs

Algorithm

HOTRG
Xie+,
PRB86(2012)045139

Anisotropic TRG

(ATRG)
Adachi-Okubo-Todo,
PRB102(2020)054432

Triad RG
Kadoh-Nakayama,
arXiv:1912.02414

Cost d=3 d=4
Ising Xie+,
Potts model wang+, ,
: . , Ising model sA+,
free Wilson fermion sakai+, .
4d—1 Staggered fermion
D**~*InL 7., gauge theory
o T w/strongly coupled U(N)
Dittirich+, Kuramashi-Yoshimura, Milde+
U(1) gauge theory
Judah Unmuth-Yockey
Ising model Adachi+, Complex ¢* theory sa+,
SU(2) gauge Kuwahara-Tsuchiya, NJL model sa+,
D?4+1n[, Real ¢* theory sa+, Real ¢b* theory sa+,
Hubbard model sA-kuramashi, 7., gauge-Higgs
Z., gauge-Higgs SA-Kuramashi SA-Kuramashi
Ising model Kadoh-Nakayama,
Da+3n ] O(2) model Bloch+, )

Z5 (extended) clock model Bloch+,
Potts models Raghav G. Jha

D: bond dimension, L: linear system size, d: spacetime dimension



TRG & Matrix product decomposition
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Procedure of TRG approach

1) Represent the path integral as a tensor network.

* Some approximation is necessary for continuous degrees of freedom.

Cf. Meurice-Sakai-Unmuth—Yockey, Rev. Mod. Phys. 94(2022)025005
Meurice, “Quantum Field Theory, A quantm computation approach”

2) Take contractions approximately.

* Various algorithms are proposed.

* In 2D, we can also use other schemes to take contractions approximately.
Cf. iTEBD for 2D classical Ising model: Orus-Vidal, PRB78(2008)155117
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TN rep. for 2d Ising model w/ PBC

Decompose nearest-neighbor interactions

Z = Z{g=i1}nn,ueXp[,B]0'n0'n+ﬁ] ::> Z = Tr[HnTxnynx‘;lyrll]

Ty v, x,y specifies the details of the model

exp[8)0u0s] —Z (Ut [1,0(0nn1,) = ZW(an LOW (03 1n)
W (a,b) = /1,U(a,b)

Txnynx{lyn = Z W oy, Xxn )W (0n, Yn)W(O-n X)W (0, Yn)

=1 Xn = Xn_% Yn = Yn— -y
Real Space R TN rep. for Z
n+79y 4 &
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Basic concept of TRG algorithm

Idea of real-space renormalization group
lterate a simple transformation w/ approximation
and we can investigate thermodynamic properties

We cannot perform the contractions

in TN rep. exactly ( too many d. o. f.)

_|_

Information compression
w/ the Singular Value Decomposition (SVD)

"""" O——0—0- Ay = LU0y Vi = ZR-1 Uy o Vi

( A: mXn matrix, U: mXm unitary, V: nXn unitary )

2

TRG employs the SVD to reduce d. o. f. :
and perform the tensor contraction approximately
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Higher-order TRG (HOTRG)

Xie+, PRB86(2012)045139

v Applicable to any d-dimensional lattice

HOSVD
—_

DD N

; _ .
|— b% N\ © / D

Iteration | | 1

Contraction

Sequential coarse-graining along with each direction D: bond dimension

v # of tensors are reduced to half.
Iterating this CG n times, we can approximately contract 2™ tensors.
Cf. Talk by James Osborn
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Example: 3d Ising model w/ HOTRG

D =14 //«('M o000
-1.0F
aul o HOTRG |
Fitting curve (0=0.1023, T>T )

Oooo Fitting curve (a=0.1137, T<T) 1

O
-2.0 ' ' '

4.0 4.5 5.0

Temperature

5.5

Xie+, PRB86(2012)045139

Critical point

|

Method T.
HOTRG (D = 16, from U) 4.51 1544]
HOTRG (D = 16, from M) 4.511546
Monte Carlo"’ 4511523
Monte Carlo™® 4511525
Monte Carlo™ 4511516
Monte Carlo™ 4.511528
Series expansion™ 4511536
CTMRG'" 4.5788
TPVA" 4.5704
CTMRG"™ 4.5393
TPVA'® 4.554
Algebraic variation*' 4.547

Good agreement with
the Monte Carlo results
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Anisotropic TRG (ATRG)

v Applicable to any d-dimensional lattice

Adachi-Okubo-Todo, PRB102(2020)054432

v/ Accuracy with the fixed computational time is improved compared with the HOTRG.

-

o

~

()
N

Q

<<
(L

X
~ D
Txyx’y’ ~ i=1Axyin’y’i

ATRG considers the block-spin transformation within

lower-rank tensors. ( Memory: O(DZd) - 0(Dd+1) )

J

(A)

Iteration Contraction

# of tensors are reduced to half



11/26
ATRG for 2d Ising model

Comparison of three types of TRG Relative error vs execution time
w/ D = 24
107 E 107
G LevinNave TRG| 54 ATRG
G@ﬁOTgG | 10°F SO HOIRG

Relative error of free energy
Relative error of free energy

10'9 Il 1 ‘ 1 ‘ 1 ’9 I Il Il Il 1111l X Il Il Il 1111l X Il Il Il L1 11 X Il Il Il 1111
2.1 22 T 23 24 2.5 10° 10" 10° 10 10
emperature Execution time [sec]

v HOTRG & ATRG improve the accuracy of the original (LN-)TRG at the same D.
The exact solution is well reproduced.

v/ ATRG shows better performance than the HOTRG at the same execution time.
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Canonical form in ATRG 1/2

v/ Canonical form is an MPS constructed by tensors w/ orthogonality conditions.

Schollwock, Annals of Physics 326(2011)96-192
Cf. Talk by Pooja Siwach

v/ ATRG converts two adjacent tensors into a canonical form.

- -
O ﬁ{c ; Truncated SVD 0
—> L —> Q
0 T —9
1 9 —0
X
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Canonical form in ATRG 2/2

¢ Reduced density matrix (RDM) is simplified by the canonical form.
EVD/SVD for RDM gives us projectors that accomplish spacetime coarse-graining.

v/ Adjacent tensors are compressed as a canonical MPS before we carry out
spacetime coarse-graining.



Cf. Fermionic PEPS: Talks by Patrick Emonts and by Johann Ostmeyer on 4/4 14/26

Grassmann TRG approach

Gu-Verstraete-Wen, arXiv:1004.2563

v Any TRG algorithm can be applied for fermions.
Fermionic path integral can be expressed as a tensor network generated by

Grassmann tensors. Gu, PRB88(2013)115139

Shimizu-Kuramashi, PRD90(2014)014508

igigigee i1 iz, 03 Takeda-Yoshimura, PTEP2015(2015)043B01
Tnangng- = r /PRI Meurice, PoS LATTICE2018(2018)231
i1,i2,i3, Bao’s thesis, PhD, Uwaterloo

SA-Kadoh, JHEP10(2021)188

v/ A clear correspondence btw tensors and Grassmann tensors.

_ Tensor Grassmann tensor

index integer Grassmann number

contraction IR [ [ didne™1 ...

eAPutbniun = ([ [ dif,dn,e ) exp[—VAPuin + VAT W]

v A sample code of a novel GTRG is available on GitHub. SA, JHEP11(2022)030

https://github.com/akiyvama-es/Grassmann-BTRG



https://github.com/akiyama-es/Grassmann-BTRG
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Bond-weighting method for the Grassmann TRG

v Bond-weighting method is a novel way to improve the accuracy of LN-TRG

algorithms without increasing their computational costs.
Adachi-Okubo-Todo, PRB105(2022)L060402

v Bond-weighting method works well also for lattice fermions. SA, JHEP11(2022)030

2d massless free Wilson fermion

v The sample code is available on GitHub.

-2
10 E T T T T T T T L

O: w/ bond-weighting | ]
[1: w/o bond-weighting E

https://github.com/akivama-es/Grassmann-BTRG
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https://github.com/akiyama-es/Grassmann-BTRG

16/26
MPD for two- and three-flavor GNW model in 2D

SA, arXiv:2304.01473
v 2D TN w/ D = 4"f is equivalent to N¢-layer TNw/ D = 4.

v Approximately contracting N¢-layer TN, one obtain the path integral.

v Is this kind of exact MPD available for 4D Wilson fermion w/ finite Ng?

MPD Number density
(A) (B) # © 301 |25 This work (0220, -6) ;
// Jé Jéé /é // | |o— This work (D =20, % = 8) 1
e é”é’é/ '%2,0; Nf =3 i
/// = )%»éé“%; a Sl g2=10 ”
1 // A Saf m=1 g
/ o ﬂ%/ i V=2 j
e ]

1
: 0.0 04 0.8 1.2 1.6 2.0 2.4 2.8
Virtual direction

u
Chemical potential



TRG study of (3+1)D Z, gauge-Higgs model on a lattice
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7., gauge-Higgs model in the unitary gauge
v Action of the (d + 1)-dimensional Z, gauge-Higgs model

§=—BYn2vsp Uy(MU,(n +V)U,(n + p)U,(n)

—N X Zv[e“&"dﬂa(n) U,(n)a(n + V) + e #va+tig(n)U,(n — v)o(n — 1?)]

n+p] Uv(n+p) oo

7

U,(n)(€ Z5): link variable (gauge field)
o(n)(€ Zy) : matter field

>
AN

Up(n) 4 \ U,(n+7)

n? > 40

U, (n)
v Choosing the unitary gauge, all the matter fields are eliminated

o(m)U,(n)a(n +79) = U,(n)

S = =B ¥nZvsp UyMU,(n + DU, (n + p)U,(n) — 2n ¥, By cosh(udy,a11) Uy (1)
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Phase diagram of the (3+1)D modelat u = 0

We investigate the phase diagram along the

iti : irst- i rd the critical endpoint.
Critical endpoint first-order line toward the critical endpoint

We evaluate the average link (L), whose gap
vanishes at the critical endpoint.

[R Ly=— " O Inz
W =arovaen™

1t order
Higgs
_ L
Confinement Triple point 2" order
1st order

Free Charge
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Motivation of studying Z, gauge-Higgs model

v The simplest lattice gauge theory coupling to a matter field

A good target to see whether the TRG is efficient for the (3+1)D lattice gauge
theory or not.

v The model possesses the critical endpoint (CEP)

QCD at finite temperature and density also has the CEP.
Can we use the TRG to specify the precise location of CEP?

v We can consider the model at finite density

We can investigate how the CEP moves by introducing the chemical potential.
Note that the model is free from the sign problem even at finite density.

Cf. TRG studies of gauge-Higgs models in 2D
Unmuth—Yockey+, PRD98(2018)094511
Bazavov+, PRD99(2019)114507

Butt+, PRD101(2020)094509



TN representation of LGT

SA-Kuramashi, JHEP05(2022)102
v We employ the HOSVD for the plaquette weight

eﬁ Uy(m)Up(n+v)Uy(n+p)Up(n)

20/26

= Za,b,c,d VUV(n)aVUp (n+v)b VUV(n+ﬁ)cVUp (n)dBabcd

v We follow the so-called asymmetric formulation, which allows us to have a
uniform TN. Some contractions are necessary before the TRG is carried out.

Basic unitin (2+1)D

Basic unitin (3+1)D

Liu+, PRD88(2013)056005

Cf. Today’s talk by Judah Unmuth-Yockey

v The resulting TN is approximately contracted by the parallelized ATRG.

SA+, PoS(LATTICE2019)138



First-order transition point

0.128
0.127

0.126
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Study of the (2+1)D modelat u =0

0.125F

0.124f

[0 p=0705,u=00]1
First-order points seem
robust against D

0.123; ]
O'1227‘1‘2‘ ‘ ‘1‘6‘ ‘ ‘2‘0‘ ‘ ‘2‘4‘ ‘ 28D32 ‘ ‘3‘6‘ ‘ ‘4‘0‘ ‘ ‘4‘4‘ ‘ ‘4‘8‘7
Bond dimension
MC
Somoza+, ,BC ~ 0.701
PRX11(2021)041008
TRG _
this work ﬂc a 070051(7)

SA-Kuramashi, JHEP05(2022)102
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Comparison with the self-dual line

SA-Kuramashi, JHEP05(2022)102

0.1265 L. T T T | T | T | T | T
0.1260 = O First-order transition point (TRG)| _|
i - O Critical endpoint (Fit) |

o, ] )
0.1255 . Self-dual line |
i S 1 _
0.1250 - S n=- Zln tanhf |
i S _
M 0.1245 S a
0.1240 |- _
0.1235 - _
] D = 48 S
0.1230 - R
0.1225 | | | | | | | | | | | | | T
0.698 0.700 0.702 0.704 0.706 0.708 0.710 0.712
B

v All transition points are well located on the self-dual line.
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(3+1)D model at vanishing density

SA-Kuramashi, JHEP05(2022)102

oasof- "7 T T T ] 10 —
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Current status of the phase diagram near the CEP

SA-Kuramashi, JHEP05(2022)102

0,30 T T T T | T | T |
i A Mean-field theory i
025 B Monte Carlo _
| E | ¢ TRG
i ¢ TRG(u=1) .
020 A ¢ TRG (u=2) _
B 299 . ]
MN0.15- S o
Triple point
_ e ple p
by the MC
0.10
% Creutz, PRD21(1980)1006
005+ Pure-gauge
i transition
0.0 ! | ! I . | | | | | L Balian-Drouffe-ltzykson,
' 8.15 0.20 0.25 0.30 0.35 0.40 0.45 PRD11(1975)2098
B

v It seems that TRG and MC share a similar first-order line at u = 0.
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Summary

v TRG is a typical TN algorithm, which enables us to perform TN contraction
approximately using the idea of RSRG.

v TRG w/ parallel computation has been a good way to investigate higher-
dimensional QFT on a thermodynamic lattice.

v Although TRG is based on the Lagrangian formalism, several techniques
are shared with TN methods based on the Hamiltonian approach.

v A sample code of BTRG for fermion is available on GitHub.
https://github.com/akiyvama-es/Grassmann-BTRG SA, JHEP11(2022)030

v The first application of TRG for (3+1)D LGT has been made.
We have obtained the TRG estimate of CEP in Z, gauge-Higgs model
at finite density.


https://github.com/akiyama-es/Grassmann-BTRG
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Future Perspective

v A next interesting (challenging?) target can be the (3+1)D QED.

- Variational approach based on the tree TN for the (3+1)D lattice QED (L < 8).
Magnifico+, Nature Commun. 12(2021)1

v Is an exact MPD available for 4D interacting Wilson fermions?

- Analytical considerations are necessary. Discussion welcome!

v How can we approach D — o ? Cf. Finite-entanglement scaling:
Tagliacozzo+, PRB78(2008)024410
* This problem may be shared with PEPS or TTN. Pollmann+, PRL102(2009)255701

v Although TRG is based on Lagrangian formalism, some problems are
shared with guantum computations based on Hamiltonian formalism.

* How can we deal with higher-dimensional non-abelian gauge theories with TN?
Cf. TRG approach for 3D pure SU(2) gauge theory Kuwahara-Tsuchiya, PTEP2022(2022)093B02

* TRG may give us insights from the viewpoint of classical computation (and vice versa).

* Which regimes seem to be difficult to study w/o quantum computation?



