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Tensor network & Lattice field theory
1/26

✔ A method to inves-gate quantum many-body system expressing an objec-ve 
func-on as a tensor contrac-on (= tensor network).

✔ TN method provides us with various ways to invesAgate laBce QFT.
・w/ the Hamiltonian formalism

・w/ the Lagrangian formalism

✔ The natural applicaAon is QFT on a laBce, which gives us a finite-dimensional 
descripAon of the original QFT.

Orús, APS Physics 1(2019)538-550

Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401
Meurice-Sakai-Unmuth–Yockey, Rev. Mod. Phys. 94(2022)025005

Okunishi-Nishino-Ueda, J. Phys. Soc. Jap. 91(2022)062001

Describe a state vector as a TN, which is varia-onally op-mized. 

Describe a path integral as a TN, which is approximately contracted.

Cf. DMRG, TEBD White, PRL69(1992)2863-2866, White, PRB48(1993)10345-10356
Vidal, PRL91(2003)147902, Vidal, PRL98(2007)070201

Cf. Talks in 4/3~4/6

Cf. TRG, TNR, Loop-TNR, GILT Levin-Nave, PRL99(2007)120601
Evenbly-Vidal, PRL115(2015)180405, Evenbly, PRB95(2017)045117

Yang-Gu-Wen, PRL118(2017)110504
Hauru-Delcamp-Mizera, PRB97(2018)045111



Advantages of the TRG approach
2/26

・PEPS, Fermionic PEPS, Tree TN, isoTNS, Fermionic isoTNS

✔ Tensor renormalizaAon group (TRG) approximately contract a given TN based on 
the idea of real-space renormalizaAon group.

✔ Applicability to the higher-dimensional systems

・No sign problem
・The computational cost scales logarithmically w. r. t. system size

・Direct evalua-on of the Grassmann integrals
・Direct evalua-on of the path integral

・If the system is translationally invariant on a lattice,
we can easily apply the TRG to contract the TN.

・TRG would give us valuable informaAon for the future development of higher-
dimensional TN algorithms.

・Improvement of the TRG based on the removement of short-range correla@ons
Cf. Next talk by Ryo Sakai



Current status of (3+1)D TN calculations 
3/26

Hamiltonian formalism Lagrangian formalism

・QED at finite density Magnifico+

・Ising model SA+
・Staggered fermion w/ strongly coupled U(N) Milde+
・Complex 𝜙! theory at finite density SA+
・Nambu—Jona-Lasinio model at finite density SA+
・Real 𝜙! theory SA+
・ℤ" gauge-Higgs at finite density SA-Kuramashi

✔ So far, the (3+1)D TN calculaAons have been driven by the Lagrangian formalism 
w/ the TRG approach.

✔ Development of parallel compu-ng method specialized for individual algorithms
to reduce their execuAon Ame per process.

Yamashita-Sakurai, CPC278(2022)108423

SA+, PoS(LATTICE2019)138
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Algorithm Cost 𝒅 = 𝟑 𝒅 = 𝟒

HOTRG
Xie+, 

PRB86(2012)045139
𝐷!#$%ln𝐿

Ising Xie+, 
Potts model Wang+,

free Wilson fermion Sakai+,
ℤ" gauge theory

Dittirich+, Kuramashi-Yoshimura,
U(1) gauge theory 
Judah Unmuth-Yockey

Ising model SA+,
Staggered fermion 

w/strongly coupled U(N) 
Milde+

Anisotropic TRG 
(ATRG)

Adachi-Okubo-Todo, 
PRB102(2020)054432

𝐷"#&%ln𝐿

Ising model Adachi+,
SU(2) gauge Kuwahara-Tsuchiya,

Real 𝜙! theory SA+,
Hubbard model SA-Kuramashi,
ℤ" gauge-Higgs SA-Kuramashi

Complex 𝜙! theory SA+,
NJL model SA+,

Real 𝜙! theory SA+,
ℤ" gauge-Higgs

SA-Kuramashi

Triad RG
Kadoh-Nakayama, 
arXiv:1912.02414

𝐷#&'ln𝐿

Ising model Kadoh-Nakayama,
O(2) model Bloch+, 

ℤ' (extended) clock model Bloch+,
Potts models Raghav G. Jha

-

𝐷: bond dimension, 𝐿: linear system size, 𝑑: spaceRme dimension

Current status of higher-dimensional TRGs



TRG & Matrix product decomposition



Procedure of TRG approach
5/26

1) Represent the path integral as a tensor network.

2) Take contracAons approximately. 

𝑍 →

・In 2D, we can also use other schemes to take contrac@ons approximately. 
・Various algorithms are proposed.

Cf. iTEBD for 2D classical Ising model: Orús-Vidal, PRB78(2008)155117

・Some approxima@on is necessary for con@nuous degrees of freedom.
Cf. Meurice-Sakai-Unmuth–Yockey, Rev. Mod. Phys. 94(2022)025005
Meurice, “Quantum Field Theory, A quantm computakon approach”



TN rep. for 2d Ising model w/ PBC

𝑍 = Σ{"#±%}Π',)exp 𝛽𝐽𝜎'𝜎'*+)

Decompose nearest-neighbor interactions

exp 𝛽𝐽𝜎!𝜎!"#$ =(
%!

𝜆%!𝑈 𝜎! , 𝑙! 𝜆%!𝑈 𝜎!"#$ , 𝑙! =(
%!

𝑊 𝜎! , 𝑙! 𝑊 𝜎!"#$ , 𝑙!

𝑍 = Tr Π'𝑇,&-&,&' -&'

𝑥(𝑥()
𝑦(

𝑦()

1𝑥

1𝑦

𝑇(!)!(!" )!" specifies the details of the model 
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𝑇(!)!(!" )!" ≔ (
*!+±-

𝑊 𝜎! , 𝑥! 𝑊 𝜎! , 𝑦! 𝑊 𝜎! , 𝑥!. 𝑊 𝜎! , 𝑦!.
𝑥!" ≔ 𝑥!#%̂, 𝑦!" ≔ 𝑦!#&'

𝑛 𝑛 + 1𝑥𝑛 − 1𝑥

𝑛 + 1𝑦

𝑛 − 1𝑦
1𝑥

1𝑦

Real Space TN rep. for 𝑍

𝑇

𝑊 𝑎, 𝑏 ≔ 𝜆(𝑈(𝑎, 𝑏)



Basic concept of TRG algorithm

1𝑥

1𝑦

Information compression 
w/ the Singular Value Decomposition (SVD)

𝐴34 = Σ5𝑈35𝜎5𝑉45 ≈ Σ56%𝑫 𝑈35𝜎5𝑉45

w/   𝜎% ≥ 𝜎" ≥ ⋯ ≥ 𝜎89: ;,( ≥ 0

( 𝐴:𝑚×𝑛 matrix, 𝑈:𝑚×𝑚 unitary, 𝑉: 𝑛×𝑛 unitary )

Idea of real-space renormalizaJon group
Iterate a simple transformaRon w/ approximaJon
and we can invesRgate thermodynamic properRes

TRG employs the SVD to reduce d. o. f. 
and perform the tensor contracJon approximately

+
→

We cannot perform the contractions 
in TN rep. exactly ( too many d. o. f. ) 

7/26



Higher-order TRG (HOTRG)

(B)

(C)

(A)

HOSVD

ContractionIteration

𝑫: bond dimension

8/26

𝑈 𝑈<

Sequen@al coarse-graining along with each direc@on

1𝑥

1𝑦

✔ # of tensors are reduced to half.
IteraJng this CG 𝒏 Jmes, we can approximately contract 𝟐𝒏 tensors. 

✔ Applicable to any 𝑑-dimensional laVce

Xie+, PRB86(2012)045139

Cf. Talk by James Osborn



Example: 3d Ising model w/ HOTRG

Good agreement with
the Monte Carlo results 

COARSE-GRAINING TENSOR RENORMALIZATION BY . . . PHYSICAL REVIEW B 86, 045139 (2012)
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FIG. 7. (Color online) Graphical representation for the determi-
nation of the bond density matrix ρ(n)

zw,xy from the environment tensor
E

(n+2)
lrf bud in three dimensions.

the Monte Carlo result.27 Our result for the specific heat agrees
with the Monte Carlo one. At the critical temperature, Tc =
4.511544, the internal energy is found to be Uc = −0.995592
for D = 14. This value of Uc, as shown in Table I, also agrees
well with other published data.

From the temperature dependence of the specific heat
around the critical point, one can estimate the critical exponent
of the specific heat with the formula,

C ∼ t−α, (16)

where t = |1 − T/Tc|. However, as the specific heat data are
obtained simply from the numerical derivative of the internal
energy, the accuracy of the specific heat data is much less than
that of the internal energy, especially around the critical point.
This causes a big error in the determination of the exponent α
with the above formula. This problem can be solved by directly
evaluating this exponent from the temperature dependence of
the internal energy. From the temperature integration of the
specific heat, it is simple to show that the internal energy
should exhibit the following critical behavior:

U = Uc + at + bt1−α, (17)

FIG. 8. (Color online) The internal energy and the specific heat
for the 3D Ising model obtained by the HOTRG with D = 14.
The Monte Carlo result (black curve) obtained from an empirical
fit formula given in Ref. 27 is shown for comparison.

TABLE I. Comparison of the internal energy at the critical
temperature Uc for the 3D Ising model obtained by different methods.

Method Uc

HOTRG (D = 16) − 0.990842(3)
Series expansion30 − 0.991(1)
Series expansion31 − 0.9902(1)
Series expansion32 − 0.99218(15)
Monte Carlo27 − 0.990604(4)
Monte Carlo33 − 0.9904(8)
Monte Carlo34 − 0.990(4)

where a and b are unknown parameters which can be
determined by fitting.

Figure 9 shows the fitting curves for the internal energy
around the critical point obtained with Eq. (17). The critical
exponent is found to be α = 0.1023 and 0.1137 for the tem-
perature higher and lower than the critical value, respectively.
These values of the critical exponent are consistent with the
result obtained from the series expansion,28 0.104, and the
Monte Carlo calculation,29 0.111.

Figure 10 shows the temperature dependence of the sponta-
neous magnetization M obtained by the HOTRG with D = 14.
Our data agree well with the Monte Carlo results.35 From the
singular behavior of M , we find that the critical temperature
Tc = 4.511615 for D = 14. Furthermore, by fitting the data of
M in the critical regime with the formula,

M ∼ tγ , (18)

we find that the exponent γ = 0.3295, consistent with the
Monte Carlo29 (0.3262) and series expansion36 (0.3265)
results.

Figure 11 shows the critical temperature Tc determined
from the singular points of the internal energy as well as the
magnetization for D up to 16. The values of Tc obtained from
these two quantities agree with each other. For D = 16, Tc

obtained from the internal energy and the magnetization are
4.511544 and 4.511546, respectively. The relative difference
is less than 10−6. But Tc does not vary monotonically with

FIG. 9. (Color online) The internal energy (D = 14) and its fitting
curves with Eq. (17) around the critical point for the 3D Ising model.
α is the critical exponent for the specific heat.

045139-5

Critical point
𝐷 = 14
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Xie+, PRB86(2012)045139



Anisotropic TRG (ATRG)

(B)(A)

(C)

ContractionIteration

SVD
&

HOSVD

✔ Applicable to any 𝑑-dimensional laVce    

✔ Accuracy with the fixed computaRonal Rme is improved compared with the HOTRG.

# of tensors are reduced to half

𝑇>?>!?! ≈ ∑36%@ 𝐴>?3𝐵>!?!3

ATRG considers the block-spin transformation within 
lower-rank tensors. ( Memory: 𝑂 𝐷"# → 𝑂 𝐷#$% )

1𝑥

1𝑦

Adachi-Okubo-Todo, PRB102(2020)054432

10/26



2.1 2.2 2.3 2.4 2.5
Temperature

10-9

10-8

10-7

10-6

10-5

R
el

at
iv

e 
er

ro
r o

f f
re

e 
en

er
gy

Levin-Nave TRG
ATRG
HOTRG

ATRG for 2d Ising model
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Comparison of three types of TRG 
w/ 𝐷 = 24

✔ HOTRG & ATRG improve the accuracy of the original (LN-)TRG at the same 𝐷.
The exact soluRon is well reproduced.
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𝛽 = 𝛽1

RelaAve error vs execuAon Ame

✔ ATRG shows bePer performance than the HOTRG at the same execuJon Jme.



Canonical form in ATRG 1/2
12/26

✔ Canonical form is an MPS constructed by tensors w/ orthogonality condiAons.

Truncated SVD

✔ ATRG converts two adjacent tensors into a canonical form.

Schollwöck, Annals of Physics 326(2011)96-192
Cf. Talk by Pooja Siwach

1𝑥

1𝑦



Canonical form in ATRG 2/2
13/26

✔ Reduced density matrix (RDM) is simplified by the canonical form.
EVD/SVD for RDM gives us projectors that accomplish spaceAme coarse-graining.

✔ Adjacent tensors are compressed as a canonical MPS before we carry out
space-me coarse-graining.



Grassmann TRG approach
14/26

✔ Any TRG algorithm can be applied for fermions.
Fermionic path integral can be expressed as a tensor network generated by 
Grassmann tensors.

Gu-Verstraete-Wen, arXiv:1004.2563

𝒯2/2021⋯ = /
4/,40,41,⋯

𝑇4/4041⋯𝜂%
4/𝜂5

40𝜂6
41⋯

Tensor Grassmann tensor

index integer Grassmann number

contraction Σ4⋯ ∫ ∫ d�̅�d𝜂e7822⋯

✔ A clear correspondence btw tensors and Grassmann tensors.

Gu, PRB88(2013)115139
Shimizu-Kuramashi, PRD90(2014)014508

Takeda-Yoshimura, PTEP2015(2015)043B01
Meurice, PoS LATTICE2018(2018)231

Bao’s thesis, PhD, Uwaterloo
SA-Kadoh, JHEP10(2021)188 

✔ A sample code of a novel GTRG is available on GitHub.
https://github.com/akiyama-es/Grassmann-BTRG

SA, JHEP11(2022)030

e23𝝍𝒏𝝍𝒏$𝝁 = ∫ ∫ d�̅�!d𝜂!e536!6! exp − 𝐴8𝝍𝒏𝜂! + 𝐴�̅�!𝝍𝒏"𝝁

Cf. Fermionic PEPS: Talks by Patrick Emonts and by Johann Ostmeyer on 4/4

https://github.com/akiyama-es/Grassmann-BTRG


!(") !(")

"(")
#(")

Bond-weighting method for the Grassmann TRG

SA, JHEP11(2022)030

Adachi-Okubo-Todo, PRB105(2022)L060402

✔ Bond-weighAng method works well also for laBce fermions.

2d massless free Wilson fermion

○: w/ bond-weigh.ng
□: w/o bond-weighkng

✔ The sample code is available on GitHub.
hqps://github.com/akiyama-es/Grassmann-BTRG

15/26

✔ Bond-weighting method is a novel way to improve the accuracy of LN-TRG 
algorithms without increasing their computational costs.

𝜅 = 1.26(7)

𝜅 = 1.22(8)

𝛿𝑓~𝐷59 w/ 𝜅 = 1.344 when 𝑐 = 1 Tagliacozzo+, PRB78(2008)024410 
Pollmann+, PRL102(2009)255701

https://github.com/akiyama-es/Grassmann-BTRG


MPD for two- and three-flavor GNW model in 2D
16/26

✔ 2D TN w/ 𝑫 = 𝟒𝑵𝒇 is equivalent to 𝑵𝒇-layer TN w/ 𝑫 = 𝟒.
SA, arXiv:2304.01473
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Number density MPD 

Chemical poten@al

𝑁; = 3
𝑔5 = 10
𝑚 = 1
𝑉 = 25<

✔ Approximately contracAng 𝑁&-layer TN, one obtain the path integral. 

✔ Is this kind of exact MPD available for 4D Wilson fermion w/ finite 𝑁&?



TRG study of (3+1)D ℤ𝟐 gauge-Higgs model on a laQce



ℤ𝟐 gauge-Higgs model in the unitary gauge
✔ AcAon of the (𝑑 + 1)-dimensional ℤ' gauge-Higgs model

𝑆 = −𝛽∑(∑ABC𝑈A 𝑛 𝑈C 𝑛 + �̂� 𝑈A 𝑛 + 1𝜌 𝑈C 𝑛

✔ Choosing the unitary gauge, all the maQer fields are eliminated 

−𝜂∑(∑A eDE&,()*𝜎 𝑛 𝑈A 𝑛 𝜎 𝑛 + �̂� + e$DE&,()*𝜎 𝑛 𝑈A 𝑛 − �̂� 𝜎(𝑛 − �̂�)

𝑈( 𝑛 (∈ ℤ𝟐): link variable (gauge field) 
𝜎 𝑛 ∈ ℤ𝟐 : ma_er field 

𝜎 𝑛 𝑈A 𝑛 𝜎 𝑛 + �̂� ↦ 𝑈A(𝑛)

𝑆 = −𝛽∑(∑ABC𝑈A 𝑛 𝑈C 𝑛 + �̂� 𝑈A 𝑛 + 1𝜌 𝑈C 𝑛 − 2𝜂 ∑(∑A cosh 𝜇𝛿A,#&% 𝑈A(𝑛)

𝑛 𝑛 + �̂�

𝑛 + >𝜌 𝑛 + �̂� + >𝜌

𝑈9(𝑛)

𝑈9(𝑛 + >𝜌)

𝑈:(𝑛 + �̂�)𝑈:(𝑛)

17/26



Phase diagram of the (3+1)D model at 𝜇 = 0
We invesJgate the phase diagram along the 
first-order line toward the criJcal endpoint.

𝜂

𝛽

Higgs 

Free Charge

Confinement

0 ∞

CriJcal endpoint 

Triple point 

𝐿 =
1

𝑑 + 1 𝑉
𝜕

𝜕(2𝜂) ln 𝑍

We evaluate the average link 𝑳 , whose gap 
vanishes at the criJcal endpoint.

1st order

2nd order

1st order
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MoSvaSon of studying ℤ𝟐 gauge-Higgs model

✔ The simplest laSce gauge theory coupling to a maQer field

✔ The model possesses the critical endpoint (CEP) 

A good target to see whether the TRG is efficient for the (3+1)D laBce gauge 
theory or not.

QCD at finite temperature and density also has the CEP.
Can we use the TRG to specify the precise locaAon of CEP?

✔We can consider the model at finite density

We can investigate how the CEP moves by introducing the chemical potential.
Note that the model is free from the sign problem even at finite density.

19/26

Cf. TRG studies of gauge-Higgs models in 2D
Unmuth–Yockey+, PRD98(2018)094511

Bazavov+, PRD99(2019)114507
Buq+, PRD101(2020)094509



TN representaSon of LGT 

eFG& ( G+ (&HA G& (&HC G+(() = ∑I,J,K,# 𝑉G& ( I𝑉G+ (&HA J𝑉G& (&HC K𝑉G+ ( #𝐵IJK#

Basic unit in (2+1)D Basic unit in (3+1)D

✔ The resulAng TN is approximately contracted by the parallelized ATRG.

20/26

Liu+, PRD88(2013)056005

SA+, PoS(LATTICE2019)138

✔We employ the HOSVD for the plaque_e weight

✔We follow the so-called asymmetric formulation, which allows us to have a 
uniform TN. Some contractions are necessary before the TRG is carried out.  

Cf. Today’s talk by Judah Unmuth-Yockey

SA-Kuramashi, JHEP05(2022)102
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Study of the (2+1)D model at 𝜇 = 0

with 𝐷 ≤ 48, 𝜂) − 𝜂# = 𝑂(10#*)

First-order points seem 
robust against 𝑫

Bond dimension

Δ 𝐿 = 𝐴 𝛽 − 𝛽; <Δ 𝐿 = 𝐵 𝜂; − 𝜂 =
MC 

Somoza+, 
PRX11(2021)041008

𝛽K ≈ 0.701

TRG 
this work

𝛽K = 0.70051(7)
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SA-Kuramashi, JHEP05(2022)102
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✔All transi-on points are well located on the self-dual line.

SA-Kuramashi, JHEP05(2022)102
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(3+1)D model at vanishing density

Difference btw 𝐷 = 48 and 
𝐷 = 52 is about 0.057%

with 𝐷 ≤ 52, 𝜂) − 𝜂# = 𝑂(10#+)

Mean-field
Brezin-Drouffe, 

NPB200(1982)93
𝛽K , 𝜂K = (0.22, 0.205)

MC on 𝑉 = 8!
Creutz,

PRD21(1980)1006

𝛽K , 𝜂K
= (0.22(3), 0.24(2))

TRG w/ 𝐷 = 52
this work

𝛽K , 𝜂K
= (0.3051 2 , 0.1784(2))

Δ 𝐿 = 𝐵 𝜂; − 𝜂 =

Δ 𝐿 = 𝐴 𝛽 − 𝛽; <

Bond dimension
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SA-Kuramashi, JHEP05(2022)102
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SA-Kuramashi, JHEP05(2022)102

✔ It seems that TRG and MC share a similar first-order line at 𝜇 = 0.



Summary
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✔ TRG is a typical TN algorithm, which enables us to perform TN contraction 
approximately using the idea of RSRG.

✔ TRG w/ parallel computation has been a good way to investigate higher-
dimensional QFT on a thermodynamic lattice.

SA, JHEP11(2022)030

✔ Although TRG is based on the Lagrangian formalism, several techniques 
are shared with TN methods based on the Hamiltonian approach.

✔ A sample code of BTRG for fermion is available on GitHub.
hqps://github.com/akiyama-es/Grassmann-BTRG

✔ The first application of TRG for (3+1)D LGT has been made.
We have obtained the TRG estimate of CEP in ℤ𝟐 gauge-Higgs model 
at finite density.

https://github.com/akiyama-es/Grassmann-BTRG


Future Perspective
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Magnifico+, Nature Commun. 12(2021)1

✔ A next interesting (challenging?) target can be the (3+1)D QED.

・How can we deal with higher-dimensional non-abelian gauge theories with TN?
Cf. TRG approach for 3D pure SU(2) gauge theory

✔ Although TRG is based on Lagrangian formalism, some problems are 
shared with quantum computaJons based on Hamiltonian formalism.

・Which regimes seem to be difficult to study w/o quantum computaRon?

・TRG may give us insights from the viewpoint of classical computation (and vice versa).

Kuwahara-Tsuchiya, PTEP2022(2022)093B02

✔ Is an exact MPD available for 4D interacJng Wilson fermions?

・ Variational approach based on the tree TN for the (3+1)D lattice QED (𝐿 ≤ 8).

・This problem may be shared with PEPS or TTN.

✔ How can we approach 𝑫 → ∞ ?

・AnalyRcal consideraRons are necessary. Discussion welcome! 

Cf. Finite-entanglement scaling:
Tagliacozzo+, PRB78(2008)024410 
Pollmann+, PRL102(2009)255701


