Tensor renormalization group approach to higher-dimensional quantum fields on a lattice

Shinichiro Akiyama a), b)
${ }^{\text {a) }}$ Endowed Chair for Quantum Software, University of Tokyo
${ }^{\text {b }}$) Institute for Physics of Intelligence, University of Tokyo
2023.4.7 @ INT, University of Washington

Tensor Networks in Many Body and Quantum Field Theory

Contents

1. Research motivation
2. TRG \& Matrix product decomposition
3. TRG study of (3+1)D \mathbb{Z}_{2} gauge-Higgs model on a lattice
4. Summary \& Future perspective

Research motivation

Tensor network \& Lattice field theory

\checkmark A method to investigate quantum many-body system expressing an objective function as a tensor contraction ($=$ tensor network). Orús, APS Physics 1(2019)538-550
\checkmark The natural application is QFT on a lattice, which gives us a finite-dimensional description of the original QFT.

Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401
Meurice-Sakai-Unmuth-Yockey, Rev. Mod. Phys. 94(2022)025005
Okunishi-Nishino-Ueda, J. Phys. Soc. Jap. 91(2022)062001
\checkmark TN method provides us with various ways to investigate lattice QFT.

- w/ the Hamiltonian formalism

Describe a state vector as a TN, which is variationally optimized.
Cf. DMRG, TEBD White, PRL69(1992)2863-2866, White, PRB48(1993)10345-10356
Vidal, PRL91(2003)147902, Vidal, PRL98(2007)070201

- w/ the Lagrangian formalism

Cf. Talks in 4/3~4/6
Describe a path integral as a TN, which is approximately contracted.
Cf. TRG, TNR, Loop-TNR, GILT

Advantages of the TRG approach

$\boldsymbol{\checkmark}$ Tensor renormalization group (TRG) approximately contract a given TN based on the idea of real-space renormalization group.

- No sign problem
- The computational cost scales logarithmically w. r. t. system size
- Direct evaluation of the Grassmann integrals
- Direct evaluation of the path integral
\checkmark Applicability to the higher-dimensional systems
- If the system is translationally invariant on a lattice, we can easily apply the TRG to contract the TN.

- TRG would give us valuable information for the future development of higherdimensional TN algorithms.
- PEPS, Fermionic PEPS, Tree TN, isoTNS, Fermionic isoTNS
- Improvement of the TRG based on the removement of short-range correlations

Current status of (3+1)D TN calculations

Hamiltonian formalism

- QED at finite density magnifico+

Lagrangian formalism

- Ising model SA+
- Staggered fermion w/ strongly coupled U(N) Milde+
- Complex ϕ^{4} theory at finite density SA+
- Nambu-Jona-Lasinio model at finite density SA+
- Real ϕ^{4} theory SA+
- \mathbb{Z}_{2} gauge-Higgs at finite density SA-Kuramashi
\checkmark So far, the (3+1)D TN calculations have been driven by the Lagrangian formalism $\mathrm{w} /$ the TRG approach.
\checkmark Development of parallel computing method specialized for individual algorithms to reduce their execution time per process.

SA+, PoS(LATTICE2019)138

Current status of higher-dimensional TRGs

Algorithm

HOTRG
Xie+,
PRB86(2012)045139

Anisotropic TRG
(ATRG)
Adachi-Okubo-Todo, PRB102(2020)054432

Triad RG
Kadoh-Nakayama, arXiv:1912.02414

$$
D^{4 d-1} \ln L
$$

$$
D^{2 d+1} \ln L
$$

$$
D^{d+3} \ln L
$$

$$
d=3
$$

Ising Xie+,
Potts model Wang+,
free Wilson fermion Sakai+,
\mathbb{Z}_{2} gauge theory
Dittirich+, Kuramashi-Yoshimura,
$\mathrm{U}(1)$ gauge theory
Judah Unmuth-Yockey
Ising model Adachi+,
SU(2) gauge Kuwahara-Tsuchiya,
Real ϕ^{4} theory SA+,
Hubbard model SA-Kuramashi,
\mathbb{Z}_{2} gauge-Higgs SA-Kuramashi
Ising model Kadoh-Nakayama, O(2) model Bloch + ,
\mathbb{Z}_{3} (extended) clock model Bloch+, Potts models Raghav G. Jha

Ising model SA+, Staggered fermion $w /$ strongly coupled $U(N)$ Milde+

Complex ϕ^{4} theory SA+, NJL model SA+,
Real ϕ^{4} theory SA ,
\mathbb{Z}_{2} gauge-Higgs
SA-Kuramashi
D : bond dimension, L : linear system size, d : spacetime dimension

TRG \& Matrix product decomposition

Procedure of TRG approach

1) Represent the path integral as a tensor network.

- Some approximation is necessary for continuous degrees of freedom.

Cf. Meurice-Sakai-Unmuth-Yockey, Rev. Mod. Phys. 94(2022)025005 Meurice, "Quantum Field Theory, A quantm computation approach"
2) Take contractions approximately.

- Various algorithms are proposed.
- In 2D, we can also use other schemes to take contractions approximately.

Cf. iTEBD for 2D classical Ising model: Orús-Vidal, PRB78(2008)155117

TN rep. for 2 d Ising model w/ PBC

Decompose nearest-neighbor interactions

$$
\begin{gathered}
Z=\Sigma_{\{\sigma= \pm 1\}} \Pi_{n, \mu} \exp \left[\beta J \sigma_{n} \sigma_{n+\widehat{\mu}}\right] \\
\exp \left[\beta J \sigma_{n} \sigma_{n+\hat{\mu}}\right]=\sum_{l_{n}} \sqrt{\lambda_{l n}} U\left(\sigma_{n}, l_{n}\right) \sqrt{\lambda_{l_{n}}} U\left(\sigma_{n+\tilde{\mu}}, l_{n}\right)=\sum_{n} T_{\left.x_{n} y_{n} x_{n}^{\prime} y_{n}^{\prime}\right]} W\left(\sigma_{n}, l_{n}\right) W\left(\sigma_{n+\widehat{\mu}}, l_{n}\right) \\
T_{x_{n} y_{n} x_{n}^{\prime} y_{n}^{\prime}} \text { specifies the details of the model } \\
T_{x_{n} y_{n} x_{n}^{\prime} y_{n}^{\prime}}:=\sum_{\sigma_{n}= \pm 1} W\left(\sigma_{n}, x_{n}\right) W\left(\sigma_{n}, y_{n}\right) W\left(\sigma_{n}, x_{n}^{\prime}\right) W\left(\sigma_{n}, y_{n}^{\prime}\right) \\
x_{n}^{\prime}:=x_{n-x}, y_{n}^{\prime}:=y_{n-\hat{v}}
\end{gathered}
$$

Basic concept of TRG algorithm

Idea of real-space renormalization group Iterate a simple transformation w/ approximation and we can investigate thermodynamic properties

$$
+
$$

Information compression

 w/ the Singular Value Decomposition (SVD)$$
\begin{aligned}
& A_{i j}=\Sigma_{k} U_{i k} \sigma_{k} V_{j k} \approx \Sigma_{k=1}^{D} U_{i k} \sigma_{k} V_{j k} \\
& \text { w/ } \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min (m, n)} \geq 0
\end{aligned}
$$

($A: m \times n$ matrix, $U: m \times m$ unitary, $V: n \times n$ unitary)
\downarrow

TRG employs the SVD to reduce d. o. f. and perform the tensor contraction approximately

Higher-order TRG (HOTRG)

\checkmark Applicable to any d-dimensional lattice

\checkmark \# of tensors are reduced to half. Iterating this CG \boldsymbol{n} times, we can approximately contract $\mathbf{2}^{\boldsymbol{n}}$ tensors.

Example: 3d Ising model w/ HOTRG

Xie+, PRB86(2012)045139

Critical point

Method	T_{c}
HOTRG $(D=16$, from $U)$	4.511544
HOTRG $(D=16$, from $M)$	4.511546
Monte Carlo 37	4.511523
Monte Carlo 38	4.511525
Monte Carlo 39	4.511516
Monte Carlo 35	4.511528
Series expansion 40	4.511536
CTMRG 12	4.5788
TPVA	
CTMRG 14	4.5704
TPVA	4.5393
Algebraic variation	

Good agreement with the Monte Carlo results

Anisotropic TRG (ATRG)

\checkmark Applicable to any d-dimensional lattice
\checkmark Accuracy with the fixed computational time is improved compared with the HOTRG.

\# of tensors are reduced to half

ATRG for 2d Ising model

Comparison of three types of TRG

$$
\mathrm{w} / D=24
$$

Relative error vs execution time

\checkmark HOTRG \& ATRG improve the accuracy of the original (LN-)TRG at the same D. The exact solution is well reproduced.
\checkmark ATRG shows better performance than the HOTRG at the same execution time.

Canonical form in ATRG 1/2

\checkmark Canonical form is an MPS constructed by tensors w/ orthogonality conditions.
Schollwöck, Annals of Physics 326(2011)96-192
Cf. Talk by Pooja Siwach
\checkmark ATRG converts two adjacent tensors into a canonical form.

Canonical form in ATRG 2/2

\checkmark Reduced density matrix (RDM) is simplified by the canonical form. EVD/SVD for RDM gives us projectors that accomplish spacetime coarse-graining.

\checkmark Adjacent tensors are compressed as a canonical MPS before we carry out spacetime coarse-graining.

Grassmann TRG approach

\checkmark Any TRG algorithm can be applied for fermions.
Fermionic path integral can be expressed as a tensor network generated by
Grassmann tensors.
Gu, PRB88(2013)115139

$$
\mathcal{T}_{\eta_{1} \eta_{2} \eta_{3} \cdots}=\sum_{i_{1}, i_{2}, i_{3}, \cdots} T^{i_{1} i_{2} i_{3} \cdots} \eta_{1}^{i_{1}} \eta_{2}^{i_{2}} \eta_{3}^{i_{3}} \cdots
$$

Shimizu-Kuramashi, PRD90(2014)014508
Takeda-Yoshimura, PTEP2015(2015)043B01
Meurice, PoS LATTICE2018(2018)231
Bao's thesis, PhD, Uwaterloo SA-Kadoh, JHEP10(2021)188
\checkmark A clear correspondence btw tensors and Grassmann tensors.

	Tensor	Grassmann tensor
index	integer	Grassmann number
contraction	$\Sigma_{i} \cdots$	$\iint \mathrm{~d} \bar{\eta} \mathrm{~d} \eta \mathrm{e}^{-\bar{\eta} \eta} \ldots$
	$\mathrm{e}^{A \overline{\boldsymbol{\psi}}_{n} \boldsymbol{\psi}_{n+\mu}=\left(\iint \mathrm{d} \bar{\eta}_{n} \mathrm{~d} \eta_{n} \mathrm{e}^{-\bar{\eta}_{n} \eta_{n}}\right) \exp \left[-\sqrt{A} \overline{\boldsymbol{\psi}}_{n} \eta_{n}+\sqrt{A} \bar{\eta}_{n} \boldsymbol{\psi}_{n+\mu}\right]}$	

\checkmark A sample code of a novel GTRG is available on GitHub.

Bond-weighting method for the Grassmann TRG

\checkmark Bond-weighting method is a novel way to improve the accuracy of LN-TRG algorithms without increasing their computational costs.

Adachi-Okubo-Todo, PRB105(2022)L060402
\checkmark Bond-weighting method works well also for lattice fermions.
SA, JHEP11(2022)030
\checkmark The sample code is available on GitHub.
https://github.com/akiyama-es/Grassmann-BTRG

2d massless free Wilson fermion

MPD for two- and three-flavor GNW model in 2D

\checkmark 2D TN w/ $D=\mathbf{4}^{N_{f}}$ is equivalent to N_{f}-layer TN w/ $D=4$.
\checkmark Approximately contracting N_{f}-layer TN, one obtain the path integral.
\checkmark Is this kind of exact MPD available for 4D Wilson fermion w/ finite N_{f} ?

TRG study of $(3+1) D \mathbb{Z}_{2}$ gauge-Higgs model on a lattice

\mathbb{Z}_{2} gauge-Higgs model in the unitary gauge

\checkmark Action of the $(d+1)$-dimensional \mathbb{Z}_{2} gauge-Higgs model

$$
\begin{aligned}
S= & -\beta \sum_{n} \sum_{v>\rho} U_{v}(n) U_{\rho}(n+\hat{v}) U_{v}(n+\hat{\rho}) U_{\rho}(n) \\
& -\eta \sum_{n} \sum_{v}\left[\mathrm{e}^{\mu \delta_{v, d+1}} \sigma(n) U_{v}(n) \sigma(n+\hat{v})+\mathrm{e}^{-\mu \delta_{v, d+1}} \sigma(n) U_{v}(n-\hat{v}) \sigma(n-\hat{v})\right]
\end{aligned}
$$

\checkmark Choosing the unitary gauge, all the matter fields are eliminated

$$
\begin{gathered}
\sigma(n) U_{v}(n) \sigma(n+\hat{v}) \mapsto U_{v}(n) \\
S=-\beta \sum_{n} \sum_{v>\rho} U_{v}(n) U_{\rho}(n+\hat{v}) U_{v}(n+\hat{\rho}) U_{\rho}(n)-2 \eta \sum_{n} \sum_{v} \cosh \left(\mu \delta_{v, d+1}\right) U_{v}(n)
\end{gathered}
$$

Phase diagram of the $(3+1) \mathrm{D}$ model at $\mu=0$

Motivation of studying \mathbb{Z}_{2} gauge-Higgs model

\checkmark The simplest lattice gauge theory coupling to a matter field
A good target to see whether the TRG is efficient for the (3+1)D lattice gauge theory or not.
\checkmark The model possesses the critical endpoint (CEP)
QCD at finite temperature and density also has the CEP. Can we use the TRG to specify the precise location of CEP?
\checkmark We can consider the model at finite density
We can investigate how the CEP moves by introducing the chemical potential. Note that the model is free from the sign problem even at finite density.

Cf. TRG studies of gauge-Higgs models in 2D
Unmuth-Yockey+, PRD98(2018)094511
Bazavov+, PRD99(2019)114507
Butt+, PRD101(2020)094509

TN representation of LGT

$\boldsymbol{\sim}$ We employ the HOSVD for the plaquette weight

$$
\mathrm{e}^{\beta U_{\nu}(n) U_{\rho}(n+\widehat{v}) U_{\nu}(n+\widehat{\rho}) U_{\rho}(n)}=\sum_{a, b, c, d} V_{U_{v}(n) a} V_{U_{\rho}(n+\hat{v}) b} V_{U_{v}(n+\widehat{\rho}) c} V_{U_{\rho}(n) d} B_{a b c d}
$$

\checkmark We follow the so-called asymmetric formulation, which allows us to have a uniform TN. Some contractions are necessary before the TRG is carried out.

Basic unit in (2+1)D

Liu+, PRD88(2013)056005
Cf. Today's talk by Judah Unmuth-Yockey
\checkmark The resulting TN is approximately contracted by the parallelized ATRG.

Study of the $(2+1)$ D model at $\mu=0$

SA-Kuramashi, JHEP05(2022)102

Comparison with the self-dual line

SA-Kuramashi, JHEP05(2022)102

\checkmark All transition points are well located on the self-dual line.

$(3+1) \mathrm{D}$ model at vanishing density

SA-Kuramashi, JHEPO5(2022)102

Mean-field Brezin-Drouffe, NPB200(1982)93	$\left(\beta_{c}, \eta_{c}\right)=(0.22,0.205)$
MC on $V=8^{4}$ Creutz,	$\left(\beta_{c}, \eta_{c}\right)$ $=(0.22(3), 0.24(2))$
PRD21(1980) 1006	$=\left(\beta_{c}, \eta_{c}\right)$
$=(0.3051(2), 0.1784(2))$	

Current status of the phase diagram near the CEP

SA-Kuramashi, JHEPO5(2022)102

\checkmark It seems that TRG and MC share a similar first-order line at $\mu=0$.

Summary

\checkmark TRG is a typical TN algorithm, which enables us to perform TN contraction approximately using the idea of RSRG.
\checkmark TRG w/ parallel computation has been a good way to investigate higherdimensional QFT on a thermodynamic lattice.
\checkmark Although TRG is based on the Lagrangian formalism, several techniques are shared with TN methods based on the Hamiltonian approach.
\checkmark A sample code of BTRG for fermion is available on GitHub.
\checkmark The first application of TRG for (3+1)D LGT has been made. We have obtained the TRG estimate of CEP in \mathbb{Z}_{2} gauge-Higgs model at finite density.

Future Perspective

\checkmark A next interesting (challenging?) target can be the (3+1)D QED.

- Variational approach based on the tree TN for the (3+1)D lattice QED ($L \leq 8$).

Magnifico+, Nature Commun. 12(2021)1
\checkmark Is an exact MPD available for 4D interacting Wilson fermions?

- Analytical considerations are necessary. Discussion welcome!
\checkmark How can we approach $D \rightarrow \infty$?
- This problem may be shared with PEPS or TTN.

Cf. Finite-entanglement scaling:
Tagliacozzo+, PRB78(2008)024410
Pollmann+, PRL102(2009)255701
\checkmark Although TRG is based on Lagrangian formalism, some problems are shared with quantum computations based on Hamiltonian formalism.

- How can we deal with higher-dimensional non-abelian gauge theories with TN?

Cf. TRG approach for 3D pure SU(2) gauge theory Kuwahara-Tsuchiya, PTEP2022(2022)093B02

- TRG may give us insights from the viewpoint of classical computation (and vice versa).
- Which regimes seem to be difficult to study w/o quantum computation?

