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EM PROBES:  “Is it possible to see the EOS softest point from EM probes measured by STAR? 
How reliable are comparisons to theory?” (Akamatsu, Du, Pisarski, Ruan)

Criticality in emission rate of photons and dileptons
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• Photon spectrum
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Figure 1. Photon spectra from critical fluctuations near the
critical point ā → aω
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Here, the universal scaling function !(ω) incorporates fre-
quency and transport coe!cients, reflecting the nonequi-
librium properties of the critical fluid probed by the on-
shell photon, ε = k. This stands in stark contrast to
the critical damping rate observed in quasielastic photon
scattering experiments [38], which probe the near-static
regime ε ↗ 0 with fixed k and the longitudinal channel
instead of the transverse channel of velocity fluctuations.
These experiments are beautifully described by the uni-
versal function ”K(y) = 3

4y
→2[1+y2+(y3↔y→1) arctan y]

with y = kϑ, known as the Kawasaki function [39, 40].
Critical Dynamics — Hydrodynamics near the QCD

critical point is governed by conserved densities and the
order parameter. Due to the mixing of the conserved den-
sities and order parameter fields, it su!ces to consider
the conserved densities in the description at long time
and length scales [36]. Specifically, these are the density
fluctuations of baryon number, energy, and momentum.
Among these five modes, the slowest mode is the spe-
cific entropy ŝ → s/n – a di"usive scalar mode whose
fluctuations can be represented by a linear combination
of the energy (ϱe) and baryon (ϱn) density fluctuations
ϱŝ → ϱ(s/n) = 1

nT ϱe ↔
e+p
n2T ϱn. The evolution of ϱŝ is de-

layed by critical slowing down. The other modes, such as
sound and shear modes, evolve much faster than the dif-
fusive mode at long wavelengths. At the nonlinear level,

the relevant interaction for the di"usive mode ϱŝ, denoted
as ς in the model H, arises from the mode coupling with
the shear mode vT , which is the transverse projection of
v. This leads us to critical hydrodynamics, also known as
model H [36].

The Langevin equation of model H is written as [37]

ς̇ = ↔
1

w
→ ·

(
ς

ϱF

ϱvT

)
+ φ↘2 ϱF

ϱς
+→ · ωϑ, (2a)

wv̇T = PT

(
↔ς→ϱF

ϱς
+

↼̄

w
↘

2 ϱF

ϱvT
+ ωv

)
, (2b)

F =

∫
d3xK

[
(→ς)2

2
+

aς2

2
+

b3ς3

3
+

b4ς4

4

]
+

wv2T
2

.

(2c)

Here, K, a, b3, b4 are parameters of the e"ective potential,
φ = w2↽B/(n4T 2) is proportional to baryon conductivity
↽B , and PT (V ) denotes the transverse projection of a
vector V , i.e. PT (V ) → V ↔ (V ·k)k/k2 in k-space. The
property of noises ωϑ and ωv is determined by requiring
the fluctuation-dissipation relation:

≃⇀ϑk(x)⇀ϑl(x
↑)⇐ = 2Tφϱklϱ

4(x↔ x↑), (3a)
≃⇀vk(x)⇀vl(x

↑)⇐ = ↔2T ↼̄ϱkl↘
2ϱ4(x↔ x↑). (3b)

The parameters satisfy K = n2T/(cpa) and a = 1/ϑ2,
where cp is isobaric specific heat [41]. If we neglect the
self-interaction of ς, cp ↓ ϑ2 and thus K approaches a
constant at the critical point. The self-interactions mod-
ifies the relation to cp ↓ ϑ2→ω = a→1+ω/2, where the
scaling exponent is ↼ = O(⇁2) in the ⇁-expansion scheme
(⇁ = 4↔d and d is the spatial dimension). A combination
Kφa is the (heat) di"usion coe!cient, expressed using
baryon conductivity by D = Kφa = w2↽B/(Tn2cp).

Photon Emission Rate — Formula for photon emission
rate from medium with temperature T is [42]

k
dNε

d3kd4x
=

α

2π2

Im#Tii
R (k,k)

ek/T ↔ 1
↗

α

2π2
#Tii

S (k,k), (4)

where #Tii
R/S(ε,k) = (ϱij ↔ kikj/k2)#ij

R/S(ε,k) is trace of
transverse projection of the response/correlation function
#ij

R/S(ε,k). When ε ↑ T , the fluctuation-dissipation
theorem dictates #Tij

S (ε,k) ↗ T
ϖ Im#Tij

R (ε,k). The cor-
relation function is defined by the electric current Jem (in
unit of the elementary charge e =

⇒
4πα)

#ij
S (ε,k) →

∫
d4xeiϖt→ik·x

≃J i
em(x)J

j
em(0)⇐T,µ. (5)
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Figure 1. Photon spectra from critical fluctuations near the
critical point ā → aω
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Universal photon spectrum at low energy



Criticality in emission rate of photons and dileptons

• Yield of low energy photons

Roughly, substituting 1fm for all unknown scales, the plateau is around 
𝜔 '(*
'+)

∼ 2 fm* ≃ 50 GeV+* for 𝜉 ≃ 10 fm, 𝑉, ∼ 10 fm ,

• Near-CP soft-mode (ω) mixing;

• Finite-µB hadronic matter with baryons producing strong in-medium broad-
ening of the ε/ϑ, encoding density information;

• Moat regimes.

1.2 Criticality in emission rates of photons and dileptons

The e!ect of critical fluctuations on the emission rates of photons and dilep-
tons have been studied recently. The critical e!ects are expected to appear
in low frequency and momentum regime of the correlation function of electro-
magnetic current, where hydrodynamics describes the dynamics of conserved
densities and critical fluctuations. To be specific, in Ref. [1], the model H in the
Hohenberg-Halperin classification, which is believed to be an e!ective theory
for QCD critical point, is used to calculate the photon spectra near the critical
point. In the model H, critical fluctuation mixes with baryon and energy density
fluctuations so that it couples to momentum density. The photon spectrum at
ϑ ↭ ϖωϱ2 is enhanced near the critical point as

ϑ
dNε

d3k

∣∣∣
ϑ→0

→ ς

12φ3
· T

2

↼̄
· ↽T

ϱ2
· ϱV4 ↑ ϱV4 (1)

↓ 2↔ 10↑5 ·
(
T 2

↼̄
[fm]

)
·
(
↽T

ϱ2
[fm↑4]

)
·
(
ϱV4[fm

5]
)

(2)

where V4 is the spacetime volume. In the hydrodynamic regime, the electric cur-
rent (transverse current) is given by the Ohmic law JT = ωeET = ↗ωe⇀tAT .
Therefore the retarded function of transverse electric current JT is GT,ij

R (ϑ ↓
0,k = 0) = iωeϑ, yielding ϑ dNω

d3k

∣∣
ϑ→0

↑ ωe. This enhancement can be under-
stood from the critical behavior of baryon conductivity ωb ↑ ϱ in model H.

Here we list issues for further investigation in theory and experimenet:

• Ratio ↽T /ϱ2 should approach constant at the critical point but is not yet
known.

• When ϱ ↓ 10fm and V4 ↓ (10fm)4, and assuming T 2/↼̄ ↓ 1fm and

↽T /ϱ2 ↓ 1fm↑4, the photon spectrum is ϑ dNω

d3k

∣∣
ϑ→0

↓ 2fm2 → 50GeV↑2.

• The energy of photon ϑ ↓ ϖω/ϱ2 is quite soft and experimental measure-
ment still seems di”cult. When ϱ ↓ 10fm and assuming ϖω = ↼̄/(e+ p) ↓
1fm, the photon energy is around ϑ ↓ 2MeV.

• Dilepton emission rate from model H (previous work using Nambu-Jona-
Lasinio model [2, 3]).

• Nonequilibrium correction to the emission rate.

2

• How low is the photon energy?

Typical photon energy is 𝜔 ∼
-,
.-
∼ 0.01 fm+/ ≃ 2 MeV for 𝜉 ≃ 10 fm

Experimental Challenges



Criticality in emission rate of photons and dileptons

• Dileptons

• Nonequilibrium correction to the emission rate ~ similar to Kibble-Zurek scaling

- Enhancement is expected from conductivity σ ∝ ξ
- NJL model calculation       Nishimura-Kitazawa-Kunihiro (23,24)
- Model H calculation to obtain universal scaling

Theoretical Directions



Criticality in emission rate of photons and dileptons

Theoretical Description

3

Corresponding to the transverse polarization of photons,
only the transverse components contribute to the emis-
sion rate. Here, our focus lies on the soft momentum
region, which is predominantly influenced by critical fluc-
tuations. The electric current in Nf = 2 is decomposed as
Jµ
em = 1

2J
µ
B + Jµ

I , where Jµ
B represents the baryon current

and Jµ
I denotes the isospin current. Furthermore, near

the critical point, the isospin fluctuation is shown to be
irrelevant [36], leading to the approximation Jµ

em →
1
2J

µ
B.

Hence, it becomes necessary to define the baryon current
Jµ
B within the framework of model H.
In hydrodynamics, baryon current is expanded by fluc-

tuations and their derivatives

J0
B = n+

(
ωn

ωŝ

)

p

εŝ+

(
ωn

ωp

)

ŝ

εp+
nv2

2
+ · · · , (6a)

JB =

[
n+

(
ωn

ωŝ

)

p

εŝ+

(
ωn

ωp

)

ŝ

εp

]
v ↑ ϑBT→

( µ

T

)
+ · · · ,

(6b)

where the thermodynamic derivatives can be expressed
by (ωn/ωŝ)p = ↑n2(1↑ ϖ→1)/b and (ωn/ωp)ŝ = n/(c2sw).
Here b ↓ (ωp/ωT )n is finite and the adiabatic index ϖ ↓

cp/cv is divergent at the critical point. The di!usive mode
is mostly composed of εŝ while the sound mode mostly
consists of the fluctuations of pressure εp and longitudinal
momentum vL. In the model H for critical dynamics, the
latter decouples due to its fast oscillation. Furthermore,
the squared amplitudes of the transverse momentum v2T
is negligible compared to critical fluctuation εŝ. Thus, we
can write

J0
B → n+Aϱ, (7a)

JB → nvT +A
[
ϱvT +Kς→

[
(↔2

↑ a)ϱ
]
↑ ωω

]
, (7b)

with A ↓ (ωn/ωŝ)p.
One-loop Calculation of Model H — Using the Langevin

equation of model H, we calculate the correlation function
of the transverse electric current !Tij

S (φ,k) at the one-
loop level. Since the transverse electric current is given
by

J T
em ↓ PT (Jem) →

A

2
PT (ϱvT ↑ ωω) +

n

2
vT , (8)

the two-point function consists of various combinations of
terms. At tree level, ↗↼ωk(x)↼ωl(x↑)↘ and ↗vTk(x)vTl(x↑)↘
contribute and we obtain for light-like momenta kµ as
!Tii

S (k,k)|tree → A
2Tς + n2

w Tϖε in the limit ϖεk ≃ 1.
At the one-loop level, we need to calculate ↗ϱvTk(x) ·

ϱvTl(x↑)↘, one-loop correction to ↗vTk(x)vTl(x↑)↘, and
↗ϱvTk(x) · ↼ωl(x↑)↘, while the other terms contribute only
at the two-loop level and beyond. For light-like momenta
kµ, we obtain for ↗ϱvTk · ϱvTl↘

!Tii
S (k,k)|1-loop →

k k

i j

p

k ↑ p

=
A

2

4

(
εij ↑

kikj
k2

)∫
d4p

(2↽)4
Gωω

S0 (p)G
Tij
S0 (k ↑ p), (9)

where Gωω
S0 and GTij

S0 are tree-level correlation functions
given by

Gωω
S0 (p) =

p

=
2Tςp2

(p0)2 + (Kς)2p4(a+ p2)2
, (10a)

GTij
S0 (p) =

i jp

=
2Tw→1ϖε(εijp2

↑ pipj)

(p0)2 + ϖ2
εp

4
. (10b)

As shown below, Eq. (9) behaves as ⇐ φ→1/2 in the
low photon energy φ = k ⇒ 0 at the critical point
a = 0, contributing to the renormalization of ς. The
next singular contribution comes from one-loop correc-
tion to ↗vTk(x)vTl(x↑)↘, which behaves as ⇐ φ→1/4 and
contributes to the renormalization of ϖε, which will be
reported in a separate paper. Finally, ↗ϱvTk(x) · ↼ωl(x↑)↘
does not yield any singular contribution at low energy.

When both a = 1/⇀2 and φ approach 0 near the critical
point, a natural scaling variable is the ratio between the
photon frequency φ and the typical damping rate ϖε/⇀2 of
vT , yielding ⇁ = φ⇀2/ϖε = φ/(ϖεa). Note that the damp-
ing rate of vT with the wavelength ⇀ is relevant because
of the mode coupling between ϱ and vT . The one-loop
integral near the critical point can be approximated as

!Tii
S (k,k)|1-loop →

A
2T 2

6↽Kwϖεa1/2
”(⇁). (11)

The left hand side, with a proper multiplicative constant,
is compared with ”(⇁) in Fig. 2. By using the asymptotic
forms of ”(0) = 1 and ”(⇁ ⇑ 1) → 1/

⇓
2⇁, we obtain a

formula for the critical enhancement of the photon emis-
sion rate for φ = k ≃ T [40]:

φ
dNϑ

d3kd4x
→






αA2

12↽3Kw

T 2⇀

ϖε

(
φ ≃

ϖε
⇀2

)

αA2

12↽3Kw

T 2

√
2ϖεφ

(
ϖε
⇀2

≃ φ ≃
c2s
ϖε

) (12)

Mass ∼ 𝜌𝜆0
Charge ∼ 𝑛𝜆0

λ

Field ∼ 𝐸 = 𝐸 (𝜔)𝑒+123
Force ∼ 𝑛𝜆0𝐸

Drag ∼ −𝜆* ⋅ 𝜂𝑣𝜆+/ = −𝜂𝑣𝜆

EoM: −𝑖𝜔𝜌𝑣 𝜔 𝜆0 = −𝜂𝑣 𝜔 𝜆 + 𝑛𝜆0𝐸 (𝜔)

Current 𝐽 𝜔 = 𝑛𝑣 𝜔 = 4-

+125678.-

Charge fluctuation 𝑛* = /
8.-6..-
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Here, K, a, b3, b4 are parameters of the e"ective potential,
φ = w2↽B/(n4T 2) is proportional to baryon conductivity
↽B , and PT (V ) denotes the transverse projection of a
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constant at the critical point. The self-interactions mod-
ifies the relation to cp ↓ ϑ2→ω = a→1+ω/2, where the
scaling exponent is ↼ = O(⇁2) in the ⇁-expansion scheme
(⇁ = 4↔d and d is the spatial dimension). A combination
Kφa is the (heat) di"usion coe!cient, expressed using
baryon conductivity by D = Kφa = w2↽B/(Tn2cp).

Photon Emission Rate — Formula for photon emission
rate from medium with temperature T is [42]

k
dNε

d3kd4x
=

α

2π2

Im#Tii
R (k,k)

ek/T ↔ 1
↗

α

2π2
#Tii

S (k,k), (4)

where #Tii
R/S(ε,k) = (ϱij ↔ kikj/k2)#ij

R/S(ε,k) is trace of
transverse projection of the response/correlation function
#ij

R/S(ε,k). When ε ↑ T , the fluctuation-dissipation
theorem dictates #Tij

S (ε,k) ↗ T
ϖ Im#Tij

R (ε,k). The cor-
relation function is defined by the electric current Jem (in
unit of the elementary charge e =

⇒
4πα)

#ij
S (ε,k) →

∫
d4xeiϖt→ik·x

≃J i
em(x)J

j
em(0)⇐T,µ. (5)
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