
Chapter 2: A different perspective on uncertainty

What are the limits of replica distribution uncertainties? 

We’ve seen that new data doesn’t just shrink error bars, but shift means.

We’ve seen that adding flexibility to the model does the same

1



2



3



4



What is the constraining power of the data on the PDFs?

Parameterized models lead to artificial certainty, especially at large x.

How might we explore the impact data has on input scale PDF without having to worry about model bias? 

We need a universal function - test all models simultaneously
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We explore 
models that 
look like this

Not like this

Data could be incompatible, or



Pixelized PDFs
Instead of a parametric model, we ‘pixelize’ our input scale PDF. Each pixel is its own free parameter.
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This is a universal function approximator, at the cost (benefit?) of introducing a finite resolution in 
x. Doesn’t remove all model bias, but it is much more flexible than the parametric models used so 
far, especially because it’s easy to increase flexibility by adding more pixels



In convoluted observables, what can we learn?

Consider the most trivial convolution: the partial moment. What can we infer from it?
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The area under the curve is constrained, not the exact form
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Isomorphic to the average value of the function between two x points being constrained



What do we expect for the distribution of valid replicas?

Consider loading all the information into individual pixels

10Set some pixels to 0, let the other pixels pick up the rest of the area



What do we expect for the distribution of valid replicas?

The finer your grid, the wider the distribution of replicas!
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This implies an infinite uncertainty for infinitely flexible models, even when data has 
zero uncertainty!



Data tell us about the resolution of PDFs:

These histograms are the real constraints of data
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How can we infer the PDF resolution from DIS data? 

● The convolutions involved in computing observables are much more complex
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● I don’t know how to infer the resolution analytically
● But I have an algorithm that starts with a high resolution fit and gradually 

lowers the resolution until the quality of the fit begins to degrade 



How to determine the lowest resolution

Compare high and low resolution fit, if both give good chi^2 (within some 
tolerance) then we have a better idea of how low the resolution really is
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More 
informative 
about our 
true state of 
knowledge 



Bucketing

Take some sequential pixels, and replace them with their average
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Reject the Bucket if it Harms the Chi^2
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Recursively check all bucket sizes and positions
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Width = 50

Width = 49



Recursively check all bucket sizes and positions
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Width = 40



Recursively check all bucket sizes and positions
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Width = 15



Recursively check all bucket sizes and positions
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Width = 14



Recursively check all bucket sizes and positions
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Width = 4



Recursively check all bucket sizes and positions
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Example: Trivial Kernel
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Example: Trivial Kernel

24Does what we expect when I don’t show the bad examples



Example: Pgg Splitting Kernel
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Example: Pgg Splitting Kernel
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Example: Pgg Splitting Kernel
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Incorporating Uncertainty of the Data

● Usually experimental uncertainties are incorporated into fits via 
bootstrapping/reshuffling of data

● On each reshuffle, a new set of parameters are trained in order to generate a 
new replica - the distribution of replicas give the statistical uncertainty of the 
model

● Now that we have a minimum resolution fit, our parameters are just the 
intensities of the low resolution pixels

● So we can apply reshuffling to ge uncertainties on the pixel intensities
● We have decorrelated the resolution and the uncertainty of the data
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Fit Minimum Bias Model

Our minimum bias model is given by the minimum resolution staircase function, 
where the height of each stair is a free parameter. Fit to the data

29

Example:
Trivial
Kernel



Example: Trivial Kernel
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● Vertical 
uncertainties 
given by 
replica 
distribution



Additional flavors

Loop over flavors is inserted after the loop over bucket widths.

Example:
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Preliminary!



Strengths and Weakness

Weaknesses:

● Doesn’t extend nicely to higher dimensions
● Greedy algorithm - finds local optima
● Doesn’t quite pass all sanity checks
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Strengths:
● It exists
● Behaves reasonably
● Deterministic (and reproducible). Can serve as a 

cross-check for future algorithms
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Other Methods

Kevin Braga’s Method

● Take individual pixels and adjust their position
● If this harms the chi2, insert more pixels
● If this doesn’t harm the chi2, merge pixels

Emil Constantinescu

● Subdivide pixels based on evolution - larger derivative = more 
subdivisions

● In our case derivative must be of chi2. Might be doable in our 
matrix evolution framework



Conclusions

● Model flexibility is somewhat isomorphic to replica uncertainty, so we should 
be careful about comparing different models

● Data can only constrain the resolution , or the average value, or integrals of 
the PDFs

● The resolution of PDFs is related to the distribution of data (in x (mostly))
● The uncertainty of data can then be turned into uncertainty of the average 

value of the PDFs within a bin - Decorolating data distribution from data 
uncertainty
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