Chapter 2: A different perspective on uncertainty

What are the limits of replica distribution uncertainties?

We've seen that new data doesn't just shrink error bars, but shift means.

We've seen that adding flexibility to the model does the same
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The tolerance puzzie

Why do groups fitting similar data sets

obtain different PDF uncertainties?
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The answer has direct implications for high-stake experiments such as W
boson mass measurement, tests of nonperturbative QCD models and
lattice QCD, high-mass BSM searches, etc.

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data 22




Comparisons of the latest PDF sets

Q = 100 GeV
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FIG. 2. Comparison of the PDFs at Q@ = 100 GeV. The PDFs shown are the N2LO sets of NNPDF4.0, CT18, MSHT20,
ABMPI16 with a,(Mz) = 0.118, and ATLASpdf21. The ratio to the NNPDF4.0 central value and the relative 1o uncertainty
are shown for the gluon g, singlet I, total strangeness s = s + 5, total charm ¢* = ¢+, up valence v" and down valence d
PDFs.

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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What is the constraining power of the data on the PDFs?

Data could be incompatible, or

Parameterized models lead to artificial certainty, especially at large x.
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How might we explore the impact data has on input scale PDF without having to worry about model bias?

We need a universal function - test all models simultaneously




Pixelized PDFs

Instead of a parametric model, we ‘pixelize’ our input scale PDF. Each pixel is its own free parameter.
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This is a universal function approximator, at the cost (benefit?) of introducing a finite resolution in
x. Doesn’t remove all model bias, but it is much more flexible than the parametric models used so
far, especially because it's easy to increase flexibility by adding more pixels




In convoluted observables, what can we learn?

Consider the most trivial convolution: the partial moment. What can we infer from it?
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In convoluted observables, what can we learn?

Consider the most trivial convolution: the partial moment. What can we infer from it?
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Isomorphic to the average value of the function between two x points being constrained
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What do we expect for the distribution of valid replicas?

Consider loading all the information into individual pixels
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Set some pixels to 0, let the other pixels pick up the rest of the area
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What do we expect for the distribution of valid replicas?

The finer your grid, the wider the distribution of replicas!
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Data tell us about the resolution of PDFs: (f(z;<z<x;i1))

These histograms are the real constraints of data
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How can we infer the PDF resolution from DIS data?

e The convolutions involved in computing observables are much more complex

Fy(x, —wze fdz (/2 05) fo(@, Q%)

S0z fi(z, Q%) = 3= f%pij(x/z,Qz)fi(w,QZ)

e | don’t know how to infer the resolution analytically
e But | have an algorithm that starts with a high resolution fit and gradually
lowers the resolution until the quality of the fit begins to degrade




How to determine the lowest resolution

Compare high and low resolution fit, if both give good chi?*2 (within some
tolerance) then we have a better idea of how low the resolution really is
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Bucketing

Take some sequential pixels, and replace them with their average
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Recursively check all bucket sizes and positions
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Recursively check all bucket sizes and positions
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Recursively check all bucket sizes and positions
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Recursively check all bucket sizes and positions
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}  data }  data
I Test Bucket I Test Bucket

T T

0 10 20 30 10 50 10 20 30
n n

}  data }  data
I Test Bucket I Test Bucket

WO | W T

10 20 30 40 50 a 10 20 30 40 50
n n




Recursively check all bucket sizes and positions
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Recursively check all bucket sizes and positions
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Example: Trivial Kernel
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Example: Pgg Splitting Kernel
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Example: Pgg Splitting Kernel
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Example: Pgg Splitting Kernel
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Incorporating Uncertainty of the Data

Usually experimental uncertainties are incorporated into fits via
bootstrapping/reshuffling of data

On each reshuffle, a new set of parameters are trained in order to generate a
new replica - the distribution of replicas give the statistical uncertainty of the
model

Now that we have a minimum resolution fit, our parameters are just the
intensities of the low resolution pixels

So we can apply reshuffling to ge uncertainties on the pixel intensities

We have decorrelated the resolution and the uncertainty of the data




Fit Minimum Bias Model

Our minimum bias model is given by the minimum resolution staircase function,
where the height of each stair is a free parameter. Fit to the data
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Additional flavors

Loop over flavors is inserted after the loop over bucket widths.
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Strengths and Weakness

Strengths:
It exists
Behaves reasonably

Deterministic (and reproducible). Can serve as a
cross-check for future algorithms

Weaknesses:

Doesn’t extend nicely to higher dimensions
Greedy algorithm - finds local optima
Doesn’t quite pass all sanity checks




Other Methods

Kevin Braga’s Method

Take individual pixels and adjust their position
If this harms the chi2, insert more pixels
If this doesn’t harm the chi2, merge pixels

Emil Constantinescu

Subdivide pixels based on evolution - larger derivative = more
subdivisions

In our case derivative must be of chi2. Might be doable in our
matrix evolution framework




Conclusions

Model flexibility is somewhat isomorphic to replica uncertainty, so we should
be careful about comparing different models
Data can only constrain the resolution , or the average value, or integrals of

the PDFs

The resolution of PDFs is related to the distribution of data (in x (mostly))
The uncertainty of data can then be turned into uncertainty of the average
value of the PDFs within a bin - Decorolating data distribution from data
uncertainty




