CJ PDF updates and perspectives

Alberto Accardi and Shujie Li

with many thanks to our CTEQ-JLab collaborators: I. Fernando, X. Jing, S. Park, C.E. Keppel, W. Melnitchouk, P. Monaghan, J. Owens

PVDIS and EW Physics at JLab 12 GeV and Beyond

INT, Seattle - 30 June 2022

CTEO-Jefferson Lab Collaboration

This work is in part supported by the DOE Office of Science

Overview

• Part 1: PDF uncertainties and large-*x* extrapolation

- Experimental uncertainties
 - \rightarrow "Why do different global fits give different PDF uncertainties?"
- Theoretical uncertainties
 - \rightarrow e.g., nuclear w.f. and PDF parametrization
- Biases at large x
 - \rightarrow Interplay of HT and off-shell corrections

• Part 2: PVDIS in global fits

- $\circ \quad \text{PVDIS on } p$
 - → "Still needed in the BONuS 12 and Marathon era?"
- PVDIS on D
 - \rightarrow CSV from nuclear, HT dynamics?

• Part 1:

PDF uncertainties and large-x extrapolation

- Experimental uncertainties
 - \rightarrow "Why do different global fits give different PDF uncertainties?"
- Theoretical uncertainties
 - \rightarrow e.g., nuclear w.f. and PDF parametrization
- Biases at large x
 - \rightarrow Interplay of HT and off-shell corrections

Global QCD fits

 $d\sigma_{\text{hadron}} = \sum_{f_1, f_2, i, j} \phi_{f_1} \otimes \hat{\sigma}_{\text{parton}}^{f_1 f_2 \to ij} \otimes \phi_{f_2}$ PDFs (from DIS fits)

- pQCD factorization & universality: can fit PDFs to a variety of hard scattering data
 - Hadron-hadron collisions
 - \rightarrow Jets
 - → Electro-weak boson production
 - Electron-proton DIS
 - Electron-Deuteron DIS
- >1000 data points
- 40+ years of experience,
 - "High-energy" fitters:
 - \rightarrow CTEQ-TEA, MMHT, NNPDF, HERAPDF
 - Lower-energy / nuclear focus:
 - → CTEQ-JLab, AKP, ABMP, JAM

Large-x PDFs: the valence quark triangle

accardi@jlab.org

Large-x PDFs: the valence quark triangle

The CJ15 d/u ratio

• Statistical uncertainties

- Propagated from exp. stat. errors into the PDF parameters
- Theoretical uncertainties: difficult to quantify, e.g.:
 - <u>Nuclear</u>: wave function choice
 - \circ <u>Off-shell uncertainties</u> are parametrized \rightarrow partly included in statistical band
 - <u>Parametrization</u>: *d*-quark flexibility in extrapolation region
- Theoretical biases: even less obvious!
 - Interplay of HT and offshell implementation choices

- Part 1: PDF uncertainties and large-x extrapolation
 - Experimental uncertainties
 - → "Why do different global fits give different PDF uncertainties?"
 - Theoretical uncertainties
 - \rightarrow e.g., nuclear w.f. and PDF parametrization
 - Biases at large x
 - \rightarrow Interplay of HT and off-shell corrections

Global fits are not created equal...

Data choice and coverage, ...

- No SLAC, JLab without TMC, HT corrections Ο
- Highest x reach for d/u on proton if using reconstructed W asymmetries Ο (vs. decay lepton asymmetries)

Ο . . .

Ο

Ο

Ο

0

0

 \bigcirc

(*) CJ vs. CT comparison on "equal" footing: Accardi, Hobbs, Jing, Nadolsky, EPJC 81 (2021) 7

On the determination of uncertainties

- The method can effectively modify the likelihood!
 - Even with perfectly compatible (toy) data!

N. Hunt-Smith et al., 2206.10782

• Bayesian Methods

(Markov Chain MC, Nested Sampling)

- Explore the likelihood function
- Well approximated by
 - \rightarrow Hessian, Data Resampling (**DR**)

• Cross Validation, NN-based fits

- Inflate the uncertainties
- Deform the likelihood

Combining PDF fits

- PDF4LHC
 - Statistically combines different fits (\rightarrow *T. Cridge*)
 - But their likelihoods differ
 - → What's the statistical meaning of the combination?
- CT, MMHT
 - \rightarrow Hessian + (different) tolerances
- NNPDF
 - \rightarrow DR + Cross Validation
 - + NN parametrization

• How should we interpret the resulting PDF4LHC error band?

• Part 1: PDF uncertainties and large-*x* extrapolation

- Experimental uncertainties
 - \rightarrow "Why do different global fits give different PDF uncertainties?"
- Theoretical uncertainties
 - → e.g., nuclear w.f. and PDF parametrization
- Biases at large x
 - → Interplay of HT and off-shell corrections

Deuteron 1: Fermi motion and binding

• Weak binding approximation:

- Incoherent scattering from not too fast individual nucleons
- Neglects FSI

$$F_{2d}(x,Q^2) = \int \frac{dz}{z} dp_T^2 \mathcal{K}(z,p^2,\gamma) \left| \psi_{N/d}(|\vec{p}|) \right|^2 F_{2N}(x/z,Q^2,p^2)$$
kinematic and
"flux" factors Nucleon wave function

$$\rightarrow z = \frac{p \cdot q}{p_d \cdot q} \approx 1 + \frac{p_0 + \gamma p_z}{M} \left[p_0 = M + \varepsilon, \ \varepsilon = \varepsilon_d - \frac{\vec{p}^2}{2M} \right]$$
momentum fraction of *d* carried by *N*

$$\rightarrow \text{ at finite } Q^2, \ \gamma = \sqrt{1 + 4x^2p^2/Q^2}$$

quantifies how far the nucleon is from the light cone ($\gamma = 1$)

PVDIS and EW @ JLab and beyond- 16 June 2022

Off-shell corrections in Deuteron

- Nucleons are bound in the deuteron:
 - $^{\circ}$ $p^2 < M^2$
 - Structure functions are deformed (but not too much if x not too large)

• Offshell expansion:

- Expand PDFs in nucleon's virtuality $q_N(x,Q^2,p^2) = q_N^{\text{free}}(x,Q^2) \left[1 + \frac{p^2 M^2}{M^2} \delta f_q^N(x)\right]$
- \circ With flavor-independent δf

$$F_{2N}(x,Q^2,p^2) = F_{2N}^{\text{free}}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$

Free proton, neutron structure function

• Parametrized and fitted (see the earlier triangle)

 \rightarrow CJ15, AKP, JAM

"offshell function"

When fitted, this effectively becomes a phenomenological "catch-all" term (see later)

CJ15 and AKP: free nucleons

CJ15: PRD 93 (2016) 114017 AKP: PRD 96 (2017) 054005 (see also 2203.07333)

- AKP has smaller *d/u* but bigger *n/p* ???
 - Not possible at Leading Twist!
 - $\circ \rightarrow$ Large HT contributions to high-*x n/p* ratio

CJ15 and AKP17: off-shell function

Kulagin, Petti (e+A fits), NPA 765 (2006) 126

Alekhin + *KP* (*e*+*d global fits*) *PRD96* (2017) 054005

CJ15: PRD 93 (2016) 114017

• Different shape and size ??

Ongoing CJ + AKP benchmarking effort

- But many (<u>MANY</u>) differences
 - Extended d-quark (CJ15) vs. conventional (AKP, d/u-->0)
 - Fit real W asymetry vs. only decay lepton $W \rightarrow I + (n)$ asymmetry
 - Off-shell, HT choices, and their interplay

The most important, in our opinion!

Ο

. . .

HT systematics

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

- HT assumptions
 - Additive vs. Multiplicative
 - \rightarrow In both cases, Q^2 -independent
 - Isospin symmetric or not

 $F_2(x,Q^2) = F_2^{LT}(x,Q^2) + \frac{H(x)}{Q^2}$ $F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$

- Isospin and Q² assumptions are not independent
 - e.g., a Q²-independent, isospin symmetric multiplicative HT generates an equivalent additive HT that depends on both

 $\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$

- Non-negligible large-*x* bias
 - if using isospin-independent coefficients
 - \rightarrow Multiplicative (CJ15) underestimates
 - \rightarrow Additive (AKP17) overestimates (H > 0)

$$\frac{n}{p} \xrightarrow[x \to 1]{} \begin{cases} \frac{1}{4} & \text{mult. } p = n \\ \frac{1}{4} + \frac{H}{u} & p \neq n \\ \frac{1}{4} + 3\frac{H}{u} & \text{add. } p = n \end{cases}$$

CJ fits - isospin symmetric HT

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

- Additive *n/p*
 - Larger than Mult *n*/*p*
 - Even if *d/u* is smaller
- Fitted offshell function compensates n/p bias
 - \circ *D*/*p* well fitted, indeed
- CJ15/AKP17 differences are reproduced!
 - And explained

* uses generic 2^{nd} order polynomial δf

CJ fits - isospin breaking HT

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

• Bias removed !!!

- Small systematics remains
- n/p & d/u
 - Much closer to CJ15
 - Attention when using AKP!
- Small *δf* offshell correction
 - When averaged over *p* and *n*
 - Large cancellation is possible, but need A=3 data to confirm (*Tropiano et al., PRC 2019*) (*Cocuzza et al., PRD 2021*)

- Can we confirm the picture just painted? Is δf zero or negative?
 - Need direct experimental sensitivity to δf
 - Tagged DIS experiments at JLab 6, 12 and EIC
- To start with, BONuS 6 don't seem to disagree!
 - But may not be precise enough at large *x*

- Can extend the large-*x* triangle to a parallelogram
 - → and verify if off-shell is flavor independent or not !!
 - \rightarrow ...hence if off-shell protons ~ off-shell neutrons

• Can extend the large-*x* triangle to a parallelogram

→ and verify if off-shell is flavor independent or not !!

 \rightarrow ...hence if off-shell protons ~ off-shell neutrons

 $\delta f|_{\rm CJ} = \frac{u\,\delta f_u + d\,\delta f_d}{u+d} \approx 0$ by accident!

Open questions 2 and 3

• Can extend the large-*x* triangle to a parallelogram

→ and verify if off-shell is flavor independent or not !!

 \rightarrow ...hence if off-shell protons ~ off-shell neutrons

$$\delta f|_{\mathrm{CJ}} = \frac{u \, \delta f_u + d \, \delta f_d}{u + d} \approx 0$$

by accident!

Open Questions 3:

- \rightarrow But is also $\delta f_u^p \stackrel{?}{=} \delta f_d^n$
 - as assumed in the JAM analysis?
- \rightarrow Are there nuclear-level CSV effects?
- \rightarrow How to tell?

- Part 2: PVDIS in global fits
 - **PVDIS on p**
 - → "Still needed in the BONuS 12 and Marathon era?"
 - PVDIS on D
 - $\rightarrow~$ CSV from nuclear, HT dynamics ?

PVDIS on protons

PVIDS on protons - notes

• Can focus on dynamical HT

- TMCs are under control
- Kinematics far enough from x=1 end point

- \circ Large effective Q² leverage
 - → Power corrections efficiently removed
 Global fits can extract d/u

• JLab 24: higher Q^2

- \circ More precision for HT extraction
 - \rightarrow hence more statistics for d/u fitting
- Less kinematic shift $x \rightarrow \xi$:
 - \rightarrow higher *x* reach for d/u

1.04

1.02

 $A_{\mathrm{PV}}/A_{\mathrm{PV}}^{(0)}$

OPE

EFP E-S

AQ

 $Q^2 = 2 \text{ GeV}^2$

0.2

0.4

x

0.6

0.8

27

Brady, AA, TH, WM, PRD 84 (2011)

PVIDS on protons - notes

• Can focus on dynamical HT

- TMCs are under control
- Kinematics far enough from x=1 end point

- Large effective Q² leverage
 - → Power corrections efficiently removed
 Global fits can extract d/u

• JLab 22: higher Q^2

- \circ $\,$ $\,$ More precision for HT extraction $\,$
 - → hence more statistics for d/u fitting
- Less kinematic shift $x \rightarrow \xi$:
 - \rightarrow higher *x* reach for d/u

Brady, AA, TH, WM, PRD 84 (2011)

PVIDS on protons - notes

• Can focus on dynamical HT

- TMCs are under control
- Kinematics far enough from x=1 end point

- \circ Large effective Q² leverage
 - → Power corrections efficiently removed Global fits can extract d/u

• JLab 22: higher Q^2

- \circ $\,$ $\,$ More precision for HT extraction $\,$
 - → hence more statistics for d/u fitting
- Less kinematic shift $x \rightarrow \xi$:
 - \rightarrow higher x reach for d/u

Brady, AA, TH, WM, PRD 84 (2011)

• Part 2: PVDIS in global fits

- PVDIS on p
 - \rightarrow Still needed in the BONuS 12 and Marathon era?

• PVDIS on D

→ CSV from nuclear, HT dynamics ?

PVDIS on Deuterons

• TMC

- Per mille level, very small model dependence
- Don't forget the kinematic shift

• Nuclear corrections

- Likely small, too
- (But not quantified)

- Higher twists analogous to proton discussion
 - Large Q² lever arm when analyzed in a global fit
 - Need to fit $HT(p) \neq HT(n)$ to avoid biases
 - → Formulate this at quark level and impose/verify charge symmetry
 - → Attention to HT/offshell interplay

 $HT_u^p \stackrel{?}{=} HT_d^n; HT_d^p \stackrel{?}{=} HT_u^n$ $\delta f_u^p \stackrel{?}{=} \delta f_d^n; \delta f_d^p \stackrel{?}{=} \delta f_u^n$

PVDIS on Deuterons

• CSV from nuclear and HT dynamics, as well?

$$R^{CSV} = \underbrace{R^{CSV}_{pdf} + R^{CSV}_{off}}_{\text{How to tell?}} + R^{CSV}_{HT}$$

• If we find an "anomaly": is it BSM or nuclear physics?

- \rightarrow Remember the NuTeV anomaly
- \rightarrow Here we have a deuteron, no p/n asymmetry to possibly trick us
- \rightarrow Still, let's keep our eyes and minds open

Need half a honeycomb, at least!

- Global QCD analysis is a powerful tool:
 - → d/u, nuclear dynamics, parton correlations, CSV
 - \rightarrow PVDIS still relevant in BONuS 12 / Marathon era !!

Finally...

Final thoughts

• Large-x data analysis in global QCD fits

- Needs careful attention to evaluation of statistical errors
- <u>Can have large systematic bias</u> due to HT assumptions
 - \rightarrow That deforms the extracted offshell function
- Isospin-asymmetric HT parameterization is needed
 - \rightarrow Better formulate this at parton level, though

• PVDIS in a global QCD analysis

- Best control, extraction of HT corrections
 - \rightarrow Will revitalize theory in that sector
 - \rightarrow Would benefit from nDIS, positron data for gamma-Z str. fns.
- Proton: will contribute to d/u fit precision and accuracy
- Deuteron: with HT under control, can focus on CSV / BSM

• High-quality data expected

- Need high-quality phenomenology and theory
 - \rightarrow We are in time to develop this

Final thoughts

- High-quality data is expected
 - Need high-quality phenomenology and theory
 - \rightarrow We are in time to develop this
- For example,
 - Nuclear/off-shell and CSV corrections currently assume

 $D = \mathcal{S} \otimes [p+n] = \mathcal{S} \otimes [(u^*u^*d^* + \ldots) + (u^*d^*d^* + \ldots)]$

- \rightarrow Neglects higher Fock hadronic states
- \rightarrow Off-shell function may just be a phenomenological, cover-all blanket
- \rightarrow An adequate concept for the aims of the PVDIS program?
- Maybe better to describe teh Deuteron at parton level

 $D = \left[u \, u \, d \, u \, d \, d + \dots \right]$

 \rightarrow Lattice QCD powerful enough these days, can guide pheno assumptions

References

Large-x fits with nuclear corrections

- **CJ15**: Accardi et al., <u>PRD 93 (2016) 114017</u>
 - Accardi, DNP 2020 / Fernando, GHP 2021 / Accardi, APS 2022
- AKP: Alekhin, Kulagin, Petti, <u>PRD 96 (2017) 054005</u> & <u>arXiv:2203.07333</u>
- JAM: Cocuzza et al. (JAM), PRL 127 (2021) 24

PDF uncertainties

• Hunt-Smith, Accardi, Melnitchouk, Sato, Thomas, White, <u>arXiv:2206.10782</u>

PVDIS study

Brady, Accardi, Hobbs, Melnitchouk, PRD 84 (2011) 074008

Light quark asymmetry, QCD analysis

- Park, Accardi, Jing, and Owens, arXiv:2108.05786
- Guzzi et al. (CT), <u>arXiv:2108.06596</u>
- Cocuzza et al. (JAM), <u>PRD 104 (2021) 074031</u>

General References

QCD global analysis from protons to nuclei:

- Accardi, <u>PoS DIS2015 (2015) 001</u>
- Jimenez-Delgado, Melnitchouk, Owens, <u>J.Phys.G40 (2013) 093102</u>
- Ethier, Nocera, Ann. Rev. Nucl. Part. Sci. (2020) 70, 1-34

QCD global analysis and statistical methods:

• Kovarik, Nadolsky, Soper, <u>*Rev.Mod.Phys.* 92 (2020) 4, 045003</u>

Thank you!

Thank you!

Are we done with (nuclear) corrections?

Theoretical choices ———

	КР	AKP	CJ15	AKP-like
shadowing	yes	yes (which one?)	MST x<0.1	(same)
smearing	Paris	AV18	AV18 x>0.1	(same)
pi-cloud	yes	yes		
ТМС	GP O(Q4)?	GP O(Q4)??	GP approx.	(same)
HT	H (p=n ??)	H (p=n)	C (p=n)	H & C, p=n & p!=n
HT(x)	??	5 pt. spline	parametrized	parametrized
off-shell	O(p2-M2)	O(p2-M2)	O(p2-M2)	(same)
df(x)	factorized	polyn. 2nd/3rd	factorized + sum rule	polyn. 2nd/3rd
pi thresh.	yes	yes		

accardi@jlab.org

Are we done with (nuclear) corrections?

accardi@jlab.org

Light quark sea

Medium-x PDFs: the light sea triangle

Medium-x PDFs: the light sea triangle

Tagged DIS to the rescue

- Can we confirm the picture just painted? Is δf negative?
 - Need direct experimental sensitivity to *Sf*
 - Tagged DIS experiments
- BONuS 6 data don't seem to disagree!
 - But may not be precise enough at large *x*

 10^{1}

 GeV^2 (*i* = 5)

- Is the simple proposed factorization correct?
 - Or at least phenomenologically acceptable ?

$$F_{2N}(x, Q^2, p^2) = F_{2N}^{free}(x, Q^2) \left[1 + v \,\delta f(x) \right]$$

$$v = \frac{p^2 - M^2}{M^2}$$

- Are FSI negligible?
 - Inclusive DIS only probes small off-shellness

More data, please!

• One can extract δf

$$\frac{F_{2N}}{F_{2N}^{free}} = 1 + v\,\delta f(x)$$

- Experiment by experiment
- \circ or in a global QCD fit

• Need more tagged DIS data with

- FSI under control (small v, backward φ)
- Large lever arm, good resolution on v
 (or p_s)
- x>0.6 would clearly distinguish the two cases

More data, please!

- At JLab:
 - BONuS 12, TDIS-n, BAND, LAD...
 - Proton and <u>neutron</u> tagging

• At the EIC

- Simulated Data (C.Weiss et al. JLab LDRD 2014)
 - \rightarrow Proton tagging + on-shell extrapolation method

1.00

0.75

0.50

0.25

0.00

 10^{-4}

 $\delta_{\rm rel}^{\rm EIC}({
m e}^-+{
m TDIS})/\delta_{\rm rel}^{\rm EIC}({
m e}^-)$

 u_v

 $\overline{d} + \overline{u}$

 10^{-3}

-d/u

 $-\overline{d}/\overline{u}$

 $-R_s$

 10^{-2}

• Fits by X.Jing and S.Li

0.1

0.3

CJ

 $0.7\boldsymbol{x}$

 $Q^2 = 10 \text{ GeV}^2$

0.5