Intruder States and the Challenges They Pose From a χ EFT consumer point of view

Anna E. McCoy

INT 2025 March 20, 2025

Outline

- Brief review of *ab initio* no-core shell model (NCSM)
- Intruder states in ¹²Be
- Impacts of intruder states on observables
- Looking for a "LO" picture What we know, what we want to know

No-core shell model

Solve many-body Schrodinger equation

$$\sum_{i}^{A} - \frac{\hbar^2}{2m_i} \nabla_i^2 \Psi + \frac{1}{2} \sum_{i,j=1}^{A} V(|r_i - r_j|) \Psi = E \Psi$$

Expanding wavefunctions in a basis

$$\Psi = \sum_{k=1}^{\infty} a_k \phi_k$$

Reduces to matrix eigenproblem

$$\begin{pmatrix} H_{11} & H_{12} & \dots \\ H_{21} & H_{22} & \dots \\ \vdots & \vdots & \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} = E \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix}$$

Harmonic oscillator basis

- Basis states are configurations, i.e., distributions of particles over harmonic oscillator shells (*nlj substates*)
- States are organized by total number of oscillator quanta above the lowest Pauli allowed number N_{ex}
- States with higher N_{ex} contribute less to the wavefunction
- Basis must be truncated: Restrict $N_{\text{ex}} \le N_{\text{max}}$

 $N_{\rm ex} = 2$

Convergence Challenge

Results for calculations in a finite space depend upon:

- Many-body truncation N_{max}
- Single-particle basis scale $\hbar\omega$

Nuclear rotations

Rotation of intrinsic state $|\phi_K\rangle$ by Euler angles ϑ (J = K, K + 1, ...)

Characteristic energies

 $E(J) = \frac{E_0}{E_0} + \frac{A}{A} [J(J+1)]$

Enhanced E2 transitions within band

U.S. DEPARTMENT OF ENERGY

Mixing of intruder and normal states

Two state mixing

Mixing angle

 $\langle J_f; K || Q_2 || J_i; K \rangle \propto (J_i K; 20 | J_f K) (eQ_0)$

Why do we care about intruder states

- Makes uncertainty quantification hard Values depend on degree of mixing U.S. DEPARTMENT OF ENERGY

Mixing of intruder and normal states

Why do we care about intruder states

- Makes uncertainty quantification hard Values depend on degree of mixing
- Makes it harder to detangle error from EFT convergence or many-body convergence

Consistent currents

12 Be *E*2 transitions

Why do we care about intruder states

- Makes uncertainty quantification hard Values depend on degree of mixing
- Makes it harder to detangle error from EFT convergence or many-body convergence
- Want LO description that captures normal and intruder states
 - Molecular orbitals and cluster models
 - Rotational model
 - Nilsson model
 - Algebraic models [Elliott SU(3) and Wigner SU(4)]

 σ -orbit

(a)

Beryllium isotopic chain

Nilsson Model

Wood Saxon parameters: J. Suhonen. From Nucleons to Nuclei Concepts of Microscopic Nuclear Theory, Chapter 3.

Why do we care about intruder states

- Makes uncertainty quantification hard Values depend on degree of mixing
- Makes it harder to detangle error from EFT convergence or many-body convergence
- Want LO description that captures normal and intruder states
 - Molecular orbitals and cluster models
 - Rotational model
 - Nilsson model
 - Algebraic models [Elliott SU(3) and Wigner SU(4)]

 σ -orbit

(a)

Wigner SU(4) decompositions of ¹²Be

Wigner SU(4) decompositions of ¹²Be

Elliott SU(3)

Labels (λ, μ) associated with deformation parameters β and γ O. Castanos, J. P. Draaver, Y. Leschber, Z. Phys. A 329 (1988) 3.

$$\beta^2 \propto (\lambda^2 + \lambda\mu + \mu^2 + 3\lambda + 3\mu + 3)$$

$$\gamma = \tan^{-1} \left[\sqrt{3}(\mu + 1)/(2\lambda + \mu + 3) \right]$$

Lowest energies correspond to most deformed state D. J. Rowe, G. Thiamova, and J. L. Wood. Phys. Rev. Lett. 97 (2006) 202501.

$$H = H_0 - \underbrace{\kappa \mathbf{Q} \cdot \mathbf{Q}}_{\propto \beta^2 \langle r^2 \rangle^2} + L \cdot S$$

SU(3) symmetry of a configuration

- Each particle has SU(3) symmetry $(N, 0), N = 2n + \ell$
- Allowed spins dictated by antisymmetry constraints _
- Final quantum numbers are $N_{\rm ex}(\lambda\mu)S$.

Elliott rotational bands: ¹⁰Be

U.S. DEPARTMENT OF

Elliott rotational bands: ¹⁰Be

Elliott rotational bands: ¹⁰Be

SU(3) decompositions of ¹²Be

Mixed states

SU(3) decompositions of ¹²Be

Pure states

Wigner SU(4) and Elliott SU(3)

Why do we care about intruder states

- Makes uncertainty quantification hard Values depend on degree of mixing
- Makes it harder to detangle error from EFT convergence or many-body convergence
- Want LO description that captures normal and intruder states
 - Molecular orbitals and cluster models
 - Rotational model
 - Nilsson model
 - Algebraic models [Elliott SU(3) and Wigner SU(4)]
- What terms in chiral expansion are important for describing intruder states? *Would a sensitivity analysis of the normal and intruder states show significant differences?*

Conclusions and hopes for the future

- Intruder states, which appear throughout the nuclear chart, are challenging to describe with current ab initio methods, *e.g.*, *Hoyle state*.
- Want to be able to provide accurate theoretical predictions with uncertainty quantifications Error from chiral truncation, error from many-body method Mixing of intruder and normal states can significantly impact structure
- Want to understand from a chiral point of view, how intruder and normal states differ What drives deformation? Z.H.Sun, A. Ekström, C. Forssén, G. Hagen, G. R. Jansen and T. Papenbrock. Phys. Rev. X 15, 011028
- Nuclei exhibit approximate symmetry.

Want to understand how symmetries are broken from a Chiral EFT perspective Guide symmetry adapted approaches

Radii

Quadrupole deformation

Wigner SU(4) and U(N) symmetries

E.g., Wigner SU(4) associated with spin, isospin and beta decay

- $U(\Omega)$ associated with nuclear shells

Creation and annihilation operators a_i^{\dagger} *and* a_j *generate* U(Ω) Ω *is number of single particle states*

- U(Ω) labeled by young tableau [u] = [$u_1u_2\cdots u_{\Omega}$]
 - Boxes in same column are antisymmetric
 - Boxes in same row are symmetric
 - Fully antisymmeterized slater determinant: $[u] = [1^{\Omega}]$.
- For SU(Ω), remove columns with Ω blocks

$$- [f_1f_2\cdots f_{\Omega-1}] = [u_1 - u_\omega, u_2 - u_\Omega, \cdots, u_{\Omega-1} - u_\Omega] - [f_1f_2\cdots f_{\Omega-1}] = [u_1 - u_2, u_2 - u_3, \cdots u_\Omega - 1 - u_\omega]$$

Factorize U(N) into spatial and spin symmetries

 $U(\Omega) \rightarrow U(N_s) \times U(N_x)$

 $N_{\rm s} = 2$ number of different spin states $N_{\rm x} = \frac{(N+1)(N+2)}{2}$ is number of spatial states:

Antisymmetry requires conjugate tableau Conjugate tableau: exchange rows and columns

$$N = 1: U(6) \rightarrow U(3) \times U(2)$$

Factorize U(M) into spatial and spin symmetries

 $U(\Omega) \rightarrow U(N_s) \times U(N_x)$

 $N_{\rm s} = 4$ number of different spin and isospin states $N_{\rm x} = \frac{(N+1)(N+2)}{2}$ is number of spatial states

Antisymmetry requires conjugate tableau Conjugate tableau: exchange rows and columns

 $N = 1: U(12) \rightarrow U(3) \times U(4)$

