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Outline

– Brief review of ab initio no-core shell model (NCSM)

– Intruder states in 12Be

– Impacts of intruder states on observables

– Looking for a “LO" picture
What we know, what we want to know



No-core shell model

Solve many-body Schrodinger equation
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Harmonic oscillator basis

– Basis states are configurations, i.e., distributions of
particles over harmonic oscillator shells (nlj substates)

– States are organized by total number of oscillator quanta
above the lowest Pauli allowed number Nex

– States with higher Nex contribute
less to the wavefunction

– Basis must be truncated:
Restrict Nex ≤ Nmax
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Convergence Challenge

Results for calculations in a finite space depend upon:
– Many-body truncation Nmax
– Single-particle basis scale ℏω
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Normal States vs. Intruder States

6 8 10 12 ∞

E
x
p

Nmax

−70

−65

−60

−55

E
n

er
gy

(M
ev

)

10Be

Daejeon16
h̄ω = 12.5 MeV

0+
1

0 1 2 3 4 5 6

Nex

0.0

0.2

0.4

0.6

0.8

P
(N

ex
)

10Be
0+

1

Nmax=6



Normal States vs. Intruder States

6 8 10 12 ∞

E
x
p

Nmax

−70

−65

−60

−55

E
n

er
gy

(M
ev

)

10Be

Daejeon16
h̄ω = 12.5 MeV

0+
1

0 1 2 3 4 5 6 7 8

Nex

0.0

0.2

0.4

0.6

0.8

P
(N

ex
)

10Be
0+

1

Nmax=8



Normal States vs. Intruder States

6 8 10 12 ∞

E
x
p

Nmax

−70

−65

−60

−55

E
n

er
gy

(M
ev

)

10Be

Daejeon16
h̄ω = 12.5 MeV

0+
1

0 1 2 3 4 5 6 7 8 9 10

Nex

0.0

0.2

0.4

0.6

0.8

P
(N

ex
)

10Be
0+

1

Nmax=10



Normal States vs. Intruder States

6 8 10 12 ∞

E
x
p

Nmax

−70

−65

−60

−55

E
n

er
gy

(M
ev

)

10Be

Daejeon16
h̄ω = 12.5 MeV

0+
1

0 1 2 3 4 5 6 7 8 9 10 11 12

Nex

0.0

0.2

0.4

0.6

0.8

P
(N

ex
)

10Be 0+
1

Nmax=12



Normal States vs. Intruder States

6 8 10 12

E
x
p

Nmax

−70

−65

−60

−55

E
n

er
gy

(M
ev

)

12Be

Daejeon16
h̄ω = 12.5 MeV

0+
1

0 1 2 3 4 5 6

Nex

0.0

0.2

0.4

0.6

0.8

P
(N

ex
)

12Be
0+

1

Nmax=6



Normal States vs. Intruder States

6 8 10 12

E
x
p

Nmax

−70

−65

−60

−55

E
n

er
gy

(M
ev

)

12Be

Daejeon16
h̄ω = 12.5 MeV

0+
1

0 1 2 3 4 5 6 7 8

Nex

0.0

0.2

0.4

0.6

0.8

P
(N

ex
)

12Be
0+

1

Nmax=8



Normal States vs. Intruder States

6 8 10 12

E
x
p

Nmax

−70

−65

−60

−55

E
n

er
gy

(M
ev

)

12Be

Daejeon16
h̄ω = 12.5 MeV

0+
1

0 1 2 3 4 5 6 7 8 9 10

Nex

0.0

0.2

0.4

0.6

0.8

P
(N

ex
)

12Be
0+

1

Nmax=10



Normal States vs. Intruder States
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Nuclear rotations

Rotation of intrinsic state |ϕK⟩ by Euler angles ϑ (J = K,K +1, . . .)

Characteristic energies

E(J) = E0+A
[
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12Be Band Evolution
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12Be Band Evolution
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12Be Band Evolution
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12Be Band Evolution
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Mixing of intruder and normal states
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Two state mixing

Hmix =

(
E1 V
V E2

)
︸        ︷︷        ︸

mixing Hamiltonian
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Mixing angle(
Ψ ′1
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)
=
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Observables with a band
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Observables with a band
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Observables with a band
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Observables with a band
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Observables with a band
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Observables with a band
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Why do we care about intruder states

– Makes uncertainty quantification hard
Values depend on degree of mixing



Mixing of intruder and normal states
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Why do we care about intruder states

– Makes uncertainty quantification hard
Values depend on degree of mixing

– Makes it harder to detangle error from EFT convergence or many-body
convergence



Consistent currents

Figure 5.4. Convergence of Gamow-Teller transition reduced matrix
elements in A = 13, 15, and 17 nuclei for fixed ~! = 25 MeV across

different choices of interaction order and regulator parameter. Results for
A = 13 and 15 are shown at Nmax = 4, 6, and 8; and for A = 17 at

Nmax = 2, 4, and 6. The experimental transition reduced matrix elements
from Ref.[232] are shown as horizontal error bands. Remaining notation the

same as Fig. 4.3. Full ~! scans are included in Figs. I.25 to I.30.
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12Be E2 transitions
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Why do we care about intruder states

– Makes uncertainty quantification hard
Values depend on degree of mixing

– Makes it harder to detangle error from EFT convergence or many-body
convergence

– Want LO description that captures normal and intruder states
– Molecular orbitals and cluster models
– Rotational model
– Nilsson model
– Algebraic models [Elliott SU(3) and Wigner SU(4)]

nents. The K!!02
" band is approximately described by 0"#

configurations, while the K!!01
" , 03

" , 21
" bands are domi-

nated by 2"# configurations with two neutrons in sd-like
orbits. On the other hand, the main components of the K!

!11
# band are 1"# configurations.
The idea of molecular orbits surrounding a 2$ core is

helpful to understand the roles of the valence neutrons in
neutron-rich Be isotopes. The molecular orbits in Be isotopes
were suggested in a study of 9Be with a 2$"n cluster model
%24&. They assumed ' orbits and ! orbits which are made
from linear combinations of the p orbits around the $ cores
(see Fig. 5). This idea was applied to neutron-rich Be iso-
topes by Seya et al. a long time ago %1&. In the 1990s Oertzen
et al. %3,32& revived this kind of research to understand the
rotational bands of neutron-rich Be isotopes, and Itagaki
et al. %8,9& described the structures of the low-lying states of
10Be and 12Be by assuming 2$ core and valence neutrons in
the molecular orbits. The formation of the 2$ and valence
neutron structures in neutron-rich Be isotopes was first guar-
anteed theoretically by the AMD calculation %2,5–7,11&,
where the existence of any clusters or molecular orbits was
not assumed. In these AMD studies, the viewpoint of the
molecular orbit was found to be useful to understand the
cluster development in 10Be and 11Be. Therefore, it is an
interesting problem whether the states of 12Be can be de-
scribed by the molecular orbits.
In the present results for 12Be, we find a new kind of

molecular orbit besides the suggested ! orbit and ' orbit. In
the positive-parity orbits of the valence neutrons in 12Be,
two kinds of molecular orbits appear, both of which are as-
sociated with sd orbits. The first one is the ' orbit %Fig.
5(a)&, while the second one is quite a new molecular orbit,
shown in Fig. 5(c). This orbit is the other positive-parity
orbit made from a linear combination of the p orbits around
the $ cores. As shown in Fig. 5(c), the combined p orbits in
this orbit are perpendicular to those in the ' orbit. We call
this new positive-parity orbit a *! orbit in the present paper,
although it has (+,)!(01) symmetry in the SU3 limit,
which is perpendicular to the so-called *-orbit in the field of
the molecular physics. In the case of 12Be, the negative-
parity orbit of the neutron surrounding 2$ does not neces-
sarily correspond to the pure molecular ! orbit, because the
p3/2-shell closure cannot be described by simple ! orbits.
Therefore, in the following discussions, we concentrate on

the positive-parity orbits of the valence neutrons associated
with the molecular ' orbits and *! orbits.
Figure 6 shows the density distributions of the single-

particle wave functions of the first and second highest neu-
tron orbits. In the low-spin cluster states, the positive-parity
orbits of the valence neutrons can be well associated with the
two types of the molecular orbits ' and *!. In the 01

" state,
two valence neutrons with up and down spins occupy the
'-like orbits, which have two nodes along the longitudinal
axis. In the 03

" state, which is dominated by the other 2"#
configurations, the two neutrons occupy *!-like orbits. It is
very surprising that the developed 6He"6He cluster struc-
ture in the 03

" state is understood by the new molecular *!
orbits. It occurs when two deformed 6He clusters are at-
tached in parallel. In the 02

" state, all of the four valence
neutrons are in the negative-parity orbits. Comparing the en-
ergies of the 03

" state with those of the 01
" and 02

" states, the
*! orbit is the highest among the molecular orbits ' , ! , and
*!.
The molecular ' orbit is one of the reasons for the de-

formed ground state of 12Be with the 2"# configurations,
which is lower than the closed neutron-shell state. Since Be
nuclei prefer prolate deformations because of the 2$-cluster
core, the ' orbit gains kinetic energy in the developed cluster
system. In pioneering studies %9,11&, the importance of the '
orbit in the ground states of 11Be and 12Be were discussed in
relation to a vanishing of the magic number. Thus, the neu-
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FIG. 5. Sketches for the molecular orbits, (a) ' orbits, (b) !
orbits, and (c) *! orbits surrounding 2$ core. These molecular or-
bits are explained by linear combinations of the p-shell orbits
around the $ cores.
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around the $ cores.
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Nilsson Model
Wood Saxon potential

VWS =
−V0

1+ e(r−R)/a ,

a = 0.67fm, V0 = 57MeV,

R = 1.27(A = 8)1/3 fm.

Nilsson Hamiltonian

H = VWS+βℏωr2Y20

ℏω = 12.5, β = 1

Wood Saxon parameters: J. Suhonen. From Nucleons to Nucleus:
Concepts of Microscopic Nuclear Theory, Chapter 3. −0.5 0.0 0.5 1.0 1.5 2.0
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Why do we care about intruder states

– Makes uncertainty quantification hard
Values depend on degree of mixing

– Makes it harder to detangle error from EFT convergence or many-body
convergence

– Want LO description that captures normal and intruder states
– Molecular orbitals and cluster models
– Rotational model
– Nilsson model
– Algebraic models [Elliott SU(3) and Wigner SU(4)]

nents. The K!!02
" band is approximately described by 0"#

configurations, while the K!!01
" , 03

" , 21
" bands are domi-

nated by 2"# configurations with two neutrons in sd-like
orbits. On the other hand, the main components of the K!

!11
# band are 1"# configurations.
The idea of molecular orbits surrounding a 2$ core is

helpful to understand the roles of the valence neutrons in
neutron-rich Be isotopes. The molecular orbits in Be isotopes
were suggested in a study of 9Be with a 2$"n cluster model
%24&. They assumed ' orbits and ! orbits which are made
from linear combinations of the p orbits around the $ cores
(see Fig. 5). This idea was applied to neutron-rich Be iso-
topes by Seya et al. a long time ago %1&. In the 1990s Oertzen
et al. %3,32& revived this kind of research to understand the
rotational bands of neutron-rich Be isotopes, and Itagaki
et al. %8,9& described the structures of the low-lying states of
10Be and 12Be by assuming 2$ core and valence neutrons in
the molecular orbits. The formation of the 2$ and valence
neutron structures in neutron-rich Be isotopes was first guar-
anteed theoretically by the AMD calculation %2,5–7,11&,
where the existence of any clusters or molecular orbits was
not assumed. In these AMD studies, the viewpoint of the
molecular orbit was found to be useful to understand the
cluster development in 10Be and 11Be. Therefore, it is an
interesting problem whether the states of 12Be can be de-
scribed by the molecular orbits.
In the present results for 12Be, we find a new kind of

molecular orbit besides the suggested ! orbit and ' orbit. In
the positive-parity orbits of the valence neutrons in 12Be,
two kinds of molecular orbits appear, both of which are as-
sociated with sd orbits. The first one is the ' orbit %Fig.
5(a)&, while the second one is quite a new molecular orbit,
shown in Fig. 5(c). This orbit is the other positive-parity
orbit made from a linear combination of the p orbits around
the $ cores. As shown in Fig. 5(c), the combined p orbits in
this orbit are perpendicular to those in the ' orbit. We call
this new positive-parity orbit a *! orbit in the present paper,
although it has (+,)!(01) symmetry in the SU3 limit,
which is perpendicular to the so-called *-orbit in the field of
the molecular physics. In the case of 12Be, the negative-
parity orbit of the neutron surrounding 2$ does not neces-
sarily correspond to the pure molecular ! orbit, because the
p3/2-shell closure cannot be described by simple ! orbits.
Therefore, in the following discussions, we concentrate on

the positive-parity orbits of the valence neutrons associated
with the molecular ' orbits and *! orbits.
Figure 6 shows the density distributions of the single-

particle wave functions of the first and second highest neu-
tron orbits. In the low-spin cluster states, the positive-parity
orbits of the valence neutrons can be well associated with the
two types of the molecular orbits ' and *!. In the 01

" state,
two valence neutrons with up and down spins occupy the
'-like orbits, which have two nodes along the longitudinal
axis. In the 03

" state, which is dominated by the other 2"#
configurations, the two neutrons occupy *!-like orbits. It is
very surprising that the developed 6He"6He cluster struc-
ture in the 03

" state is understood by the new molecular *!
orbits. It occurs when two deformed 6He clusters are at-
tached in parallel. In the 02

" state, all of the four valence
neutrons are in the negative-parity orbits. Comparing the en-
ergies of the 03

" state with those of the 01
" and 02

" states, the
*! orbit is the highest among the molecular orbits ' , ! , and
*!.
The molecular ' orbit is one of the reasons for the de-

formed ground state of 12Be with the 2"# configurations,
which is lower than the closed neutron-shell state. Since Be
nuclei prefer prolate deformations because of the 2$-cluster
core, the ' orbit gains kinetic energy in the developed cluster
system. In pioneering studies %9,11&, the importance of the '
orbit in the ground states of 11Be and 12Be were discussed in
relation to a vanishing of the magic number. Thus, the neu-
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FIG. 5. Sketches for the molecular orbits, (a) ' orbits, (b) !
orbits, and (c) *! orbits surrounding 2$ core. These molecular or-
bits are explained by linear combinations of the p-shell orbits
around the $ cores.
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In the present results for 12Be, we find a new kind of
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5(a)&, while the second one is quite a new molecular orbit,
shown in Fig. 5(c). This orbit is the other positive-parity
orbit made from a linear combination of the p orbits around
the $ cores. As shown in Fig. 5(c), the combined p orbits in
this orbit are perpendicular to those in the ' orbit. We call
this new positive-parity orbit a *! orbit in the present paper,
although it has (+,)!(01) symmetry in the SU3 limit,
which is perpendicular to the so-called *-orbit in the field of
the molecular physics. In the case of 12Be, the negative-
parity orbit of the neutron surrounding 2$ does not neces-
sarily correspond to the pure molecular ! orbit, because the
p3/2-shell closure cannot be described by simple ! orbits.
Therefore, in the following discussions, we concentrate on

the positive-parity orbits of the valence neutrons associated
with the molecular ' orbits and *! orbits.
Figure 6 shows the density distributions of the single-

particle wave functions of the first and second highest neu-
tron orbits. In the low-spin cluster states, the positive-parity
orbits of the valence neutrons can be well associated with the
two types of the molecular orbits ' and *!. In the 01

" state,
two valence neutrons with up and down spins occupy the
'-like orbits, which have two nodes along the longitudinal
axis. In the 03

" state, which is dominated by the other 2"#
configurations, the two neutrons occupy *!-like orbits. It is
very surprising that the developed 6He"6He cluster struc-
ture in the 03

" state is understood by the new molecular *!
orbits. It occurs when two deformed 6He clusters are at-
tached in parallel. In the 02

" state, all of the four valence
neutrons are in the negative-parity orbits. Comparing the en-
ergies of the 03

" state with those of the 01
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" states, the
*! orbit is the highest among the molecular orbits ' , ! , and
*!.
The molecular ' orbit is one of the reasons for the de-

formed ground state of 12Be with the 2"# configurations,
which is lower than the closed neutron-shell state. Since Be
nuclei prefer prolate deformations because of the 2$-cluster
core, the ' orbit gains kinetic energy in the developed cluster
system. In pioneering studies %9,11&, the importance of the '
orbit in the ground states of 11Be and 12Be were discussed in
relation to a vanishing of the magic number. Thus, the neu-
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Wigner SU(4) decompositions of 12Be
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12Be Band Evolution
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Wigner SU(4) decompositions of 12Be
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Elliott SU(3)
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Labels (λ,µ) associated with deformation parameters β and γ
O. Castanos, J. P. Draayer, Y. Leschber, Z. Phys. A 329 (1988) 3.

β2 ∝ (λ2+λµ+µ2+3λ+3µ+3)
γ = tan−1[

√
3(µ+1)/(2λ+µ+3)]

Lowest energies correspond to most deformed state
D. J. Rowe, G. Thiamova, and J. L. Wood. Phys. Rev. Lett. 97 (2006) 202501.

H = H0− κQ·Q︸︷︷︸
∝β2⟨r2⟩

2

+L ·S

SU(3) symmetry of a configuration

– Each particle has SU(3) symmetry (N,0), N = 2n+ ℓ

– Allowed spins dictated by antisymmetry constraints

– Final quantum numbers are Nex(λµ)S.



Elliott rotational bands: 10Be
H = H0− κQ ·Q

= H0−6κCSU3(λ,µ)+3κL2

J. Phys. G: Nucl. Part. Phys. 35 (2008) 123101 Topical Review

Figure 2. A traditional (βγ ) plot, where β (β ! 0) is the radius vector and γ (0 " γ " π/3)
is the azimuthal angle, demonstrates the relationship between the collective model shape variables
(βγ ) and the SU(3) irrep labels (λµ).

a prolate shape, irreps with λ = 0 correspond to an oblate geometry, and irreps with λ = µ

describe a maximally asymmetric shape. A spherical nucleus is described by the (00) irrep.
In short, the SU(3) classification of many-body states allows for a geometrical analysis

of the eigenstates of a nuclear system via relations (54) and (55) and hence gives insight into
phenomena associated with nuclear deformation.

5. Symplectic shell model

The symplectic model [10–12] is a microscopic algebraic model of nuclear collective motion
that includes monopole and quadrupole collective vibrations as well as vorticity degrees of
freedom for a description of rotational dynamics in a continuous range from irrotational to
rigid rotor flows. It can be regarded as both a microscopic realization of the successful
phenomenological Bohr–Mottelson–Frankfurt collective model and a multi-h̄% extension of
the Elliott SU(3) model.

While the NCSM divides the many-nucleon Hilbert space into ‘horizontal’ layers of
Nh̄% subspaces, the symplectic model divides it into ‘vertical’ slices of Sp(3, R) irreducible
representations, which is schematically illustrated in figure 4. The symplectic model thus
allows one to restrict a model space to vertical slices that admit the most important modes of
nuclear collective dynamics.

The symplectic model is based on the 21-dimensional algebra sp(3, R) and has a very
rich group structure (see figure 3). In particular, there are two important subgroup chains
that unveil the physical content of the symplectic model: the shell model subgroup chain
associated with the Elliott SU(3) group and the collective model chain related to the general
collective motion GCM(3) group. The intersection of these chains is the group of rotations
SO(3).
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Elliott rotational bands: 10Be
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Figure 2. A traditional (βγ ) plot, where β (β ! 0) is the radius vector and γ (0 " γ " π/3)
is the azimuthal angle, demonstrates the relationship between the collective model shape variables
(βγ ) and the SU(3) irrep labels (λµ).

a prolate shape, irreps with λ = 0 correspond to an oblate geometry, and irreps with λ = µ

describe a maximally asymmetric shape. A spherical nucleus is described by the (00) irrep.
In short, the SU(3) classification of many-body states allows for a geometrical analysis

of the eigenstates of a nuclear system via relations (54) and (55) and hence gives insight into
phenomena associated with nuclear deformation.

5. Symplectic shell model

The symplectic model [10–12] is a microscopic algebraic model of nuclear collective motion
that includes monopole and quadrupole collective vibrations as well as vorticity degrees of
freedom for a description of rotational dynamics in a continuous range from irrotational to
rigid rotor flows. It can be regarded as both a microscopic realization of the successful
phenomenological Bohr–Mottelson–Frankfurt collective model and a multi-h̄% extension of
the Elliott SU(3) model.

While the NCSM divides the many-nucleon Hilbert space into ‘horizontal’ layers of
Nh̄% subspaces, the symplectic model divides it into ‘vertical’ slices of Sp(3, R) irreducible
representations, which is schematically illustrated in figure 4. The symplectic model thus
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The symplectic model is based on the 21-dimensional algebra sp(3, R) and has a very
rich group structure (see figure 3). In particular, there are two important subgroup chains
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associated with the Elliott SU(3) group and the collective model chain related to the general
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Elliott rotational bands: 10Be
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– Ground state band: Nex(λµ)S = 0(2,2)0
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SU(3) decompositions of 12Be
Mixed states
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SU(3) decompositions of 12Be
Pure states
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Wigner SU(4) and Elliott SU(3)
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Why do we care about intruder states

– Makes uncertainty quantification hard
Values depend on degree of mixing

– Makes it harder to detangle error from EFT convergence or many-body
convergence

– Want LO description that captures normal and intruder states
– Molecular orbitals and cluster models
– Rotational model
– Nilsson model
– Algebraic models [Elliott SU(3) and Wigner SU(4)]

– What terms in chiral expansion are important for describing intruder states?
Would a sensitivity analysis of the normal and intruder states show
significant differences?



Conclusions and hopes for the future

– Intruder states, which appear throughout the nuclear chart, are challenging to describe with current
ab initio methods, e.g.,Hoyle state.

– Want to be able to provide accurate theoretical predictions with uncertainty quantifications
Error from chiral truncation, error from many-body method
Mixing of intruder and normal states can significantly impact structure

– Want to understand from a chiral point of view, how intruder and normal states differ
What drives deformation?

Z.H.Sun, A. Ekström, C. Forssén, G. Hagen, G. R. Jansen and T. Papenbrock. Phys. Rev. X 15, 011028

– Nuclei exhibit approximate symmetry.
Want to understand how symmetries are broken from a Chiral EFT perspective
Guide symmetry adapted approaches
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Quadrupole deformation

0.0

0.5

1.0

1.5

β
p

β[Q ·Q] β[Q0,rot]

0+
1 0+

2 1−1 1
2

+

1
1
2

−
1

3
2

−
2

0+
1′ 0+

2′ 1−1 1
2

−
1

1
2

+

1
3
2

+

1

0.0

0.5

1.0

1.5

β
n

10Be 11Be 12Be 13Be

βp ∝
Q0,p
√

Z ⟨r2
p⟩

βp ∝
Q0,n
√

N ⟨r2
n⟩

From q-invariant (dynamic deformation)

⟨Q ·Q⟩ = ⟨Q0 ·Q0⟩

If symmetric rotor

Q(J) =
Ĵ

(1+δK,0)
(JK20|JK)Q0

D. J. Rowe. Rep. Prog. Phys. 48(1985) 1419.
D. J. Rowe, Nuclear Collective Motion: Models and Theory (2010).



Wigner SU(4) and U(N) symmetries

E.g.,Wigner SU(4) associated with spin, isospin and beta decay

– U(Ω) associated with nuclear shells
Creation and annihilation operators a†i and aj generate U(Ω)
Ω is number of single particle states

– U(Ω) labeled by young tableau [u] = [u1u2 · · ·uΩ]
– Boxes in same column are antisymmetric
– Boxes in same row are symmetric
– Fully antisymmeterized slater determinant: [u] = [1Ω].

– For SU(Ω), remove columns with Ω blocks
– [f1f2 · · · fΩ−1] = [u1−uω,u2−uΩ, · · · ,uΩ−1−uΩ]
– [f1f2 · · · fΩ−1] = [u1−u2,u2−u3, · · ·uΩ−1−uω]

1 2 3 . . . u1−1 u1

1 2 3 . . . u2
...
...

1 uΩ
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Factorize U(N) into spatial and spin symmetries

U(Ω)→ U(Ns)×U(Nx)

Ns = 2 number of different spin states
Nx =

(N+1)(N+2)
2 is number of spatial states:

Antisymmetry requires conjugate tableau
Conjugate tableau: exchange rows and columns

N = 1: U(6)→ U(3)×U(2)

︸︷︷︸
spin:S=1

× ︸︷︷︸
spatial: (λµ)=(1,1)

︸︷︷︸
spin:S=0

× ︸︷︷︸
spatial: (λµ)=(0,2)
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Factorize U(M) into spatial and spin symmetries

U(Ω)→ U(Ns)×U(Nx)

Ns = 4 number of different spin and isospin states
Nx =

(N+1)(N+2)
2 is number of spatial states

Antisymmetry requires conjugate tableau
Conjugate tableau: exchange rows and columns

N = 1: U(12)→ U(3)×U(4)

︸︷︷︸
spin: [f ]=[0,1,0]

× ︸︷︷︸
spatial: (λµ)=(2,2)
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